More stories

  • in

    How artificial intelligence can help combat systemic racism

    In 2020, Detroit police arrested a Black man for shoplifting almost $4,000 worth of watches from an upscale boutique. He was handcuffed in front of his family and spent a night in lockup. After some questioning, however, it became clear that they had the wrong man. So why did they arrest him in the first place?

    The reason: a facial recognition algorithm had matched the photo on his driver’s license to grainy security camera footage.

    Facial recognition algorithms — which have repeatedly been demonstrated to be less accurate for people with darker skin — are just one example of how racial bias gets replicated within and perpetuated by emerging technologies.

    “There’s an urgency as AI is used to make really high-stakes decisions,” says MLK Visiting Professor S. Craig Watkins, whose academic home for his time at MIT is the Institute for Data, Systems, and Society (IDSS). “The stakes are higher because new systems can replicate historical biases at scale.”

    Watkins, a professor at the University of Texas at Austin and the founding director of the Institute for Media Innovation​, researches the impacts of media and data-based systems on human behavior, with a specific concentration on issues related to systemic racism. “One of the fundamental questions of the work is: how do we build AI models that deal with systemic inequality more effectively?”

    Play video

    Artificial Intelligence and the Future of Racial Justice | S. Craig Watkins | TEDxMIT

    Ethical AI

    Inequality is perpetuated by technology in many ways across many sectors. One broad domain is health care, where Watkins says inequity shows up in both quality of and access to care. The demand for mental health care, for example, far outstrips the capacity for services in the United States. That demand has been exacerbated by the pandemic, and access to care is harder for communities of color.

    For Watkins, taking the bias out of the algorithm is just one component of building more ethical AI. He works also to develop tools and platforms that can address inequality outside of tech head-on. In the case of mental health access, this entails developing a tool to help mental health providers deliver care more efficiently.

    “We are building a real-time data collection platform that looks at activities and behaviors and tries to identify patterns and contexts in which certain mental states emerge,” says Watkins. “The goal is to provide data-informed insights to care providers in order to deliver higher-impact services.”

    Watkins is no stranger to the privacy concerns such an app would raise. He takes a user-centered approach to the development that is grounded in data ethics. “Data rights are a significant component,” he argues. “You have to give the user complete control over how their data is shared and used and what data a care provider sees. No one else has access.”

    Combating systemic racism

    Here at MIT, Watkins has joined the newly launched Initiative on Combatting Systemic Racism (ICSR), an IDSS research collaboration that brings together faculty and researchers from the MIT Stephen A. Schwarzman College of Computing and beyond. The aim of the ICSR is to develop and harness computational tools that can help effect structural and normative change toward racial equity.

    The ICSR collaboration has separate project teams researching systemic racism in different sectors of society, including health care. Each of these “verticals” addresses different but interconnected issues, from sustainability to employment to gaming. Watkins is a part of two ICSR groups, policing and housing, that aim to better understand the processes that lead to discriminatory practices in both sectors. “Discrimination in housing contributes significantly to the racial wealth gap in the U.S.,” says Watkins.

    The policing team examines patterns in how different populations get policed. “There is obviously a significant and charged history to policing and race in America,” says Watkins. “This is an attempt to understand, to identify patterns, and note regional differences.”

    Watkins and the policing team are building models using data that details police interventions, responses, and race, among other variables. The ICSR is a good fit for this kind of research, says Watkins, who notes the interdisciplinary focus of both IDSS and the SCC. 

    “Systemic change requires a collaborative model and different expertise,” says Watkins. “We are trying to maximize influence and potential on the computational side, but we won’t get there with computation alone.”

    Opportunities for change

    Models can also predict outcomes, but Watkins is careful to point out that no algorithm alone will solve racial challenges.

    “Models in my view can inform policy and strategy that we as humans have to create. Computational models can inform and generate knowledge, but that doesn’t equate with change.” It takes additional work — and additional expertise in policy and advocacy — to use knowledge and insights to strive toward progress.

    One important lever of change, he argues, will be building a more AI-literate society through access to information and opportunities to understand AI and its impact in a more dynamic way. He hopes to see greater data rights and greater understanding of how societal systems impact our lives.

    “I was inspired by the response of younger people to the murders of George Floyd and Breonna Taylor,” he says. “Their tragic deaths shine a bright light on the real-world implications of structural racism and has forced the broader society to pay more attention to this issue, which creates more opportunities for change.” More

  • in

    Understanding air pollution from space

    Climate change and air pollution are interlocking crises that threaten human health. Reducing emissions of some air pollutants can help achieve climate goals, and some climate mitigation efforts can in turn improve air quality.

    One part of MIT Professor Arlene Fiore’s research program is to investigate the fundamental science in understanding air pollutants — how long they persist and move through our environment to affect air quality.

    “We need to understand the conditions under which pollutants, such as ozone, form. How much ozone is formed locally and how much is transported long distances?” says Fiore, who notes that Asian air pollution can be transported across the Pacific Ocean to North America. “We need to think about processes spanning local to global dimensions.”

    Fiore, the Peter H. Stone and Paola Malanotte Stone Professor in Earth, Atmospheric and Planetary Sciences, analyzes data from on-the-ground readings and from satellites, along with models, to better understand the chemistry and behavior of air pollutants — which ultimately can inform mitigation strategies and policy setting.

    A global concern

    At the United Nations’ most recent climate change conference, COP26, air quality management was a topic discussed over two days of presentations.

    “Breathing is vital. It’s life. But for the vast majority of people on this planet right now, the air that they breathe is not giving life, but cutting it short,” said Sarah Vogel, senior vice president for health at the Environmental Defense Fund, at the COP26 session.

    “We need to confront this twin challenge now through both a climate and clean air lens, of targeting those pollutants that warm both the air and harm our health.”

    Earlier this year, the World Health Organization (WHO) updated its global air quality guidelines it had issued 15 years earlier for six key pollutants including ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO). The new guidelines are more stringent based on what the WHO stated is the “quality and quantity of evidence” of how these pollutants affect human health. WHO estimates that roughly 7 million premature deaths are attributable to the joint effects of air pollution.

    “We’ve had all these health-motivated reductions of aerosol and ozone precursor emissions. What are the implications for the climate system, both locally but also around the globe? How does air quality respond to climate change? We study these two-way interactions between air pollution and the climate system,” says Fiore.

    But fundamental science is still required to understand how gases, such as ozone and nitrogen dioxide, linger and move throughout the troposphere — the lowermost layer of our atmosphere, containing the air we breathe.

    “We care about ozone in the air we’re breathing where we live at the Earth’s surface,” says Fiore. “Ozone reacts with biological tissue, and can be damaging to plants and human lungs. Even if you’re a healthy adult, if you’re out running hard during an ozone smog event, you might feel an extra weight on your lungs.”

    Telltale signs from space

    Ozone is not emitted directly, but instead forms through chemical reactions catalyzed by radiation from the sun interacting with nitrogen oxides — pollutants released in large part from burning fossil fuels—and volatile organic compounds. However, current satellite instruments cannot sense ground-level ozone.

    “We can’t retrieve surface- or even near-surface ozone from space,” says Fiore of the satellite data, “although the anticipated launch of a new instrument looks promising for new advances in retrieving lower-tropospheric ozone”. Instead, scientists can look at signatures from other gas emissions to get a sense of ozone formation. “Nitrogen dioxide and formaldehyde are a heavy focus of our research because they serve as proxies for two of the key ingredients that go on to form ozone in the atmosphere.”

    To understand ozone formation via these precursor pollutants, scientists have gathered data for more than two decades using spectrometer instruments aboard satellites that measure sunlight in ultraviolet and visible wavelengths that interact with these pollutants in the Earth’s atmosphere — known as solar backscatter radiation.

    Satellites, such as NASA’s Aura, carry instruments like the Ozone Monitoring Instrument (OMI). OMI, along with European-launched satellites such as the Global Ozone Monitoring Experiment (GOME) and the Scanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY), and the newest generation TROPOspheric Monitoring instrument (TROPOMI), all orbit the Earth, collecting data during daylight hours when sunlight is interacting with the atmosphere over a particular location.

    In a recent paper from Fiore’s group, former graduate student Xiaomeng Jin (now a postdoc at the University of California at Berkeley), demonstrated that she could bring together and “beat down the noise in the data,” as Fiore says, to identify trends in ozone formation chemistry over several U.S. metropolitan areas that “are consistent with our on-the-ground understanding from in situ ozone measurements.”

    “This finding implies that we can use these records to learn about changes in surface ozone chemistry in places where we lack on-the-ground monitoring,” says Fiore. Extracting these signals by stringing together satellite data — OMI, GOME, and SCIAMACHY — to produce a two-decade record required reconciling the instruments’ differing orbit days, times, and fields of view on the ground, or spatial resolutions. 

    Currently, spectrometer instruments aboard satellites are retrieving data once per day. However, newer instruments, such as the Geostationary Environment Monitoring Spectrometer launched in February 2020 by the National Institute of Environmental Research in the Ministry of Environment of South Korea, will monitor a particular region continuously, providing much more data in real time.

    Over North America, the Tropospheric Emissions: Monitoring of Pollution Search (TEMPO) collaboration between NASA and the Smithsonian Astrophysical Observatory, led by Kelly Chance of Harvard University, will provide not only a stationary view of the atmospheric chemistry over the continent, but also a finer-resolution view — with the instrument recording pollution data from only a few square miles per pixel (with an anticipated launch in 2022).

    “What we’re very excited about is the opportunity to have continuous coverage where we get hourly measurements that allow us to follow pollution from morning rush hour through the course of the day and see how plumes of pollution are evolving in real time,” says Fiore.

    Data for the people

    Providing Earth-observing data to people in addition to scientists — namely environmental managers, city planners, and other government officials — is the goal for the NASA Health and Air Quality Applied Sciences Team (HAQAST).

    Since 2016, Fiore has been part of HAQAST, including collaborative “tiger teams” — projects that bring together scientists, nongovernment entities, and government officials — to bring data to bear on real issues.

    For example, in 2017, Fiore led a tiger team that provided guidance to state air management agencies on how satellite data can be incorporated into state implementation plans (SIPs). “Submission of a SIP is required for any state with a region in non-attainment of U.S. National Ambient Air Quality Standards to demonstrate their approach to achieving compliance with the standard,” says Fiore. “What we found is that small tweaks in, for example, the metrics we use to convey the science findings, can go a long way to making the science more usable, especially when there are detailed policy frameworks in place that must be followed.”

    Now, in 2021, Fiore is part of two tiger teams announced by HAQAST in late September. One team is looking at data to address environmental justice issues, by providing data to assess communities disproportionately affected by environmental health risks. Such information can be used to estimate the benefits of governmental investments in environmental improvements for disproportionately burdened communities. The other team is looking at urban emissions of nitrogen oxides to try to better quantify and communicate uncertainties in the estimates of anthropogenic sources of pollution.

    “For our HAQAST work, we’re looking at not just the estimate of the exposure to air pollutants, or in other words their concentrations,” says Fiore, “but how confident are we in our exposure estimates, which in turn affect our understanding of the public health burden due to exposure. We have stakeholder partners at the New York Department of Health who will pair exposure datasets with health data to help prioritize decisions around public health.

    “I enjoy working with stakeholders who have questions that require science to answer and can make a difference in their decisions.” Fiore says. More

  • in

    Data flow’s decisive role on the global stage

    In 2016, Meicen Sun came to a profound realization: “The control of digital information will lie at the heart of all the big questions and big contentions in politics.” A graduate student in her final year of study who is specializing in international security and the political economy of technology, Sun vividly recalls the emergence of the internet “as a democratizing force, an opener, an equalizer,” helping give rise to the Arab Spring. But she was also profoundly struck when nations in the Middle East and elsewhere curbed internet access to throttle citizens’ efforts to speak and mobilize freely.

    During her undergraduate and graduate studies, which came to focus on China and its expanding global role, Sun became convinced that digital constraints initially intended to prevent the free flow of ideas were also having enormous and growing economic impacts.

    “With an exceptionally high mobile internet adoption rate and the explosion of indigenous digital apps, China’s digital economy was surging, helping to drive the nation’s broader economic growth and international competitiveness,” Sun says. “Yet at the same time, the country maintained the most tightly controlled internet ecosystem in the world.”

    Sun set out to explore this apparent paradox in her dissertation. Her research to date has yielded both novel findings and troubling questions.  

    “Through its control of the internet, China has in effect provided protectionist benefits to its own data-intensive domestic sectors,” she says. “If there is a benefit to imposing internet control, given the absence of effective international regulations, does this give authoritarian states an advantage in trade and national competitiveness?” Following this thread, Sun asks, “What might this mean for the future of democracy as the world grows increasingly dependent on digital technology?”

    Protect or innovate

    Early in her graduate program, classes in capitalism and technology and public policy, says Sun, “cemented for me the idea of data as a factor of production, and the importance of cross-border information flow in making a country innovative.” This central premise serves as a springboard for Sun’s doctoral studies.

    In a series of interconnected research papers using China as her primary case, she is examining the double-edged nature of internet limits. “They accord protectionist benefits to domestic data-internet-intensive sectors, on the one hand, but on the other, act as a potential longer-term deterrent to the country’s capacity to innovate.”

    To pursue her doctoral project, advised by professor of political science Kenneth Oye, Sun is extracting data from a multitude of sources, including a website that has been routinely testing web domain accessibility from within China since 2011. This allows her to pin down when and to what degree internet control occurs. She can then compare this information to publicly available records on the expansion or contraction of data-intensive industrial sectors, enabling her to correlate internet control to a sector’s performance.

    Sun has also compiled datasets for firm-level revenue, scientific citations, and patents that permit her to measure aspects of China’s innovation culture. In analyzing her data she leverages both quantitative and qualitative methods, including one co-developed by her dissertation co-advisor, associate professor of political science In Song Kim. Her initial analysis suggests internet control prevents scholars from accessing knowledge available on foreign websites, and that if sustained, such control could take a toll on the Chinese economy over time.

    Of particular concern is the possibility that the economic success that flows from strict internet controls, as exemplified by the Chinese model, may encourage the rise of similar practices among emerging states or those in political flux.

    “The grim implication of my research is that without international regulation on information flow restrictions, democracies will be at a disadvantage against autocracies,” she says. “No matter how short-term or narrow these curbs are, they confer concrete benefits on certain economic sectors.”

    Data, politics, and economy

    Sun got a quick start as a student of China and its role in the world. She was born in Xiamen, a coastal Chinese city across from Taiwan, to academic parents who cultivated her interest in international politics. “My dad would constantly talk to me about global affairs, and he was passionate about foreign policy,” says Sun.

    Eager for education and a broader view of the world, Sun took a scholarship at 15 to attend school in Singapore. “While this experience exposed me to a variety of new ideas and social customs, I felt the itch to travel even farther away, and to meet people with different backgrounds and viewpoints from mine,” than she says.

    Sun attended Princeton University where, after two years sticking to her “comfort zone” — writing and directing plays and composing music for them — she underwent a process of intellectual transition. Political science classes opened a window onto a larger landscape to which she had long been connected: China’s behavior as a rising power and the shifting global landscape.

    She completed her undergraduate degree in politics, and followed up with a master’s degree in international relations at the University of Pennsylvania, where she focused on China-U.S. relations and China’s participation in international institutions. She was on the path to completing a PhD at Penn when, Sun says, “I became confident in my perception that digital technology, and especially information sharing, were becoming critically important factors in international politics, and I felt a strong desire to devote my graduate studies, and even my career, to studying these topics,”

    Certain that the questions she hoped to pursue could best be addressed through an interdisciplinary approach with those working on similar issues, Sun began her doctoral program anew at MIT.

    “Doer mindset”

    Sun is hopeful that her doctoral research will prove useful to governments, policymakers, and business leaders. “There are a lot of developing states actively shopping between data governance and development models for their own countries,” she says. “My findings around the pros and cons of information flow restrictions should be of interest to leaders in these places, and to trade negotiators and others dealing with the global governance of data and what a fair playing field for digital trade would be.”

    Sun has engaged directly with policy and industry experts through her fellowships with the World Economic Forum and the Pacific Forum. And she has embraced questions that touch on policy outside of her immediate research: Sun is collaborating with her dissertation co-advisor, MIT Sloan Professor Yasheng Huang, on a study of the political economy of artificial intelligence in China for the MIT Task Force on the Work of the Future.

    This year, as she writes her dissertation papers, Sun will be based at Georgetown University, where she has a Mortara Center Global Political Economy Project Predoctoral Fellowship. In Washington, she will continue her journey to becoming a “policy-minded scholar, a thinker with a doer mindset, whose findings have bearing on things that happen in the world.” More

  • in

    “To make even the smallest contribution to improving my country would be my dream”

    Thailand has become an economic leader in Southeast Asia in recent decades, but while the country has rapidly industrialized, many Thai citizens have been left behind. As a child growing up in Bangkok, Pavarin Bhandtivej would watch the news and wonder why families in the nearby countryside had next to nothing. He aspired to become a policy researcher and create beneficial change.

    But Bhandtivej knew his goal wouldn’t be easy. He was born with a visual impairment, making it challenging for him to see, read, and navigate. This meant he had to work twice as hard in school to succeed. It took achieving the highest grades for Bhandtivej to break through stigmas and have his talents recognized. Still, he persevered, with a determination to uplift others. “I would return to that initial motivation I had as a kid. For me, to make even the smallest contribution to improving my country would be my dream,” he says.

    “When I would face these obstacles, I would tell myself that struggling people are waiting for someone to design policies for them to have better lives. And that person could be me. I cannot fall here in front of these obstacles. I must stay motivated and move on.”

    Bhandtivej completed his undergraduate degree in economics at Thailand’s top college, Chulalongkorn University. His classes introduced him to many debates about development policy, such as universal basic income. During one debate, after both sides made compelling arguments about how to alleviate poverty, Bhandtivej realized there was no clear winner. “A question came to my mind: Who’s right?” he says. “In terms of theory, both sides were correct. But how could we know what approach would work in the real world?”

    A new approach to higher education

    The search for those answers would lead Bhandtivej to become interested in data analysis. He began investigating online courses, eventually finding the MIT MicroMasters Program in Data, Economics, and Development Policy (DEDP), which was created by MIT’s Department of Economics and the Abdul Latif Jameel Poverty Action Lab (J-PAL). The program requires learners to complete five online courses that teach quantitative methods for evaluating social programs, leading to a MicroMasters credential. Students that pass the courses’ proctored exams are then also eligible to apply for a full-time, accelerated, on-campus master’s program at MIT, led by professors Esther Duflo, Abhijit Banerjee, and Benjamin Olken.

    The program’s mission to make higher education more accessible worked well for Bhandtivej. He studied tirelessly, listening and relistening to online lectures and pausing to scrutinize equations. By the end, his efforts paid off — Bhandtivej was the MicroMasters program’s top scorer. He was soon admitted into the second cohort of the highly selective DEDP master’s program.

    “You can imagine how time-consuming it was to use text-to-speech to get through a 30-page reading with numerous equations, tables, and graphs,” he explains. “Luckily, Disability and Access Services provided accommodations to timed exams and I was able to push through.”   

    In the gap year before the master’s program began, Bhandtivej returned to Chulalongkorn University as a research assistant with Professor Thanyaporn Chankrajang. He began applying his newfound quantitative skills to study the impacts of climate change in Thailand. His contributions helped uncover how rising temperatures and irregular rainfall are leading to reduced rice crop yields. “Thailand is the world’s second largest exporter of rice, and the vast majority of Thais rely heavily on rice for its nutritional and commercial value. We need more data to encourage leaders to act now,” says Bhandtivej. “As a Buddhist, it was meaningful to be part of generating this evidence, as I am always concerned about my impact on other humans and sentient beings.”

    Staying true to his mission

    Now pursuing his master’s on campus, Bhandtivej is taking courses like 14.320 (Econometric Data Science) and studying how to design, conduct, and analyze empirical studies. “The professors I’ve had have opened a whole new world for me,” says Bhandtivej. “They’ve inspired me to see how we can take rigorous scientific practices and apply them to make informed policy decisions. We can do more than rely on theories.”

    The final portion of the program requires a summer capstone experience, which Bhandtivej is using to work at Innovations for Poverty Action. He has recently begun to analyze how remote learning interventions in Bangladesh have performed since Covid-19. Many teachers are concerned, since disruptions in childhood education can lead to intergenerational poverty. “We have tried interventions that connect students with teachers, provide discounted data packages, and send information on where to access adaptive learning technologies and other remote learning resources,” he says. “It will be interesting to see the results. This is a truly urgent topic, as I don’t believe Covid-19 will be the last pandemic of our lifetime.”

    Enhancing education has always been one of Bhandtivej’s priority interests. He sees education as the gateway that brings a person’s innate talent to light. “There is a misconception in many developing countries that disabled people cannot learn, which is untrue,” says Bhandtivej. “Education provides a critical signal to future employers and overall society that we can work and perform just as well, as long as we have appropriate accommodations.”

    In the future, Bhandtivej plans on returning to Thailand to continue his journey as a policy researcher. While he has many issues he would like to tackle, his true purpose still lies in doing work that makes a positive impact on people’s lives. “My hope is that my story encourages people to think of not only what they are capable of achieving themselves, but also what they can do for others.”

    “You may think you are just a small creature on a large planet. That you have just a tiny role to play. But I think — even if we are just a small part — whatever we can do to make life better for our communities, for our country, for our planet … it’s worth it.” More