More stories

  • in

    Emma Gibson: Optimizing health care logistics in Africa

    Growing up in South Africa at the turn of the century, Emma Gibson saw the rise of the HIV/AIDS epidemic and its devastating impact on her home country, where many people lacked life-saving health care. At the time, Gibson was too young to understand what a sexually transmitted infection was, but she knew that HIV was infecting millions of South Africans and AIDS was taking hundreds of thousands of lives. “As a child, I was terrified by this monster that was HIV and felt so powerless to do anything about it,” she says.

    Now, as an adult, her childhood fear of the HIV epidemic has evolved into a desire to fight it. Gibson seeks to improve health care for HIV and other diseases in regions with limited resources, including South Africa. She wants to help health care facilities in these areas to use their resources more effectively so that patients can more easily obtain care.

    To help reach her goal, Gibson sought mathematics and logistics training through higher education in South Africa. She first earned her bachelor’s degree in mathematical sciences at the University of the Witwatersrand, and then her master’s degree in operations research at Stellenbosch University. There, she learned to tackle complex decision-making problems using math, statistics, and computer simulations.

    During her master’s, Gibson studied the operational challenges faced in rural South African health care facilities by working with staff at Zithulele Hospital in the Eastern Cape, one of the country’s poorest provinces. Her research focused on ways to reduce hours-long wait times for patients seeking same-day care. In the end, she developed a software tool to model patient congestion throughout the day and optimize staff schedules accordingly, enabling the hospital to care for its patients more efficiently.

    After completing her master’s, Gibson wanted to further her education outside of South Africa and left to pursue a PhD in operations research at MIT. Upon arrival, she branched out in her research and worked on a project to improve breast cancer treatment in U.S. health care, a very different environment from what she was used to.

    Two years later, Gibson had the opportunity to return to researching health care in resource-limited settings and began working with Jónas Jónasson, an associate professor at the MIT Sloan School of Management, on a new project to improve diagnostic services in sub-Saharan Africa. For the past four years, she has been working diligently on this project in collaboration with researchers at the Indian School of Business and Northwestern University. “My love language is time,” she says. “If I’m investing a lot of time in something, I really value it.”

    Scheduling sample transport

    Diagnostic testing is an essential tool that allows medical professionals to identify new diagnoses in patients and monitor patients’ conditions as they undergo treatment. For example, people living with HIV require regular blood tests to ensure that their prescribed treatments are working effectively and provide an early warning of potential treatment failures.

    For Gibson’s current project, she’s trying to improve diagnostic services in Malawi, a landlocked country in southeast Africa. “We have the tools” to diagnose and treat diseases like HIV, she says. “But in resource-limited settings, we often lack the money, the staff, and the infrastructure to reach every patient that needs them.”

    When diagnostic testing is needed, clinicians collect samples from patients and send the samples to be tested at a laboratory, which then returns the results to the facility where the patient is treated. To move these items between facilities and laboratories, Malawi has developed a national sample transportation network. The transportation system plays an important role in linking remote, rural facilities to laboratory services and ensuring that patients in these areas can access diagnostic testing through community clinics. Samples collected at these clinics are first transported to nearby district hubs, and then forwarded to laboratories located in urban areas. Since most facilities do not have computers or communications infrastructure, laboratories print copies of test results and send them back to facilities through the same transportation process.

    The sample transportation cycle is onerous, but it’s a practical solution to a difficult problem. “During the Covid pandemic, we saw how hard it was to scale up diagnostic infrastructure,” Gibson says. Diagnostic services in sub-Saharan Africa face “similar challenges, but in a much poorer setting.”

    In Malawi, sample transportation is managed by a  nongovernment organization called Riders 4 Health. The organization has around 80 couriers on motorcycles who transport samples and test results between facilities. “When we started working with [Riders], the couriers operated on fixed weekly schedules, visiting each site once or twice a week,” Gibson says. But that led to “a lot of unnecessary trips and delays.”

    To make sample transportation more efficient, Gibson developed a dynamic scheduling system that adapts to the current demand for diagnostic testing. The system consists of two main parts: an information sharing platform that aggregates sample transportation data, and an algorithm that uses the data to generate optimized routes and schedules for sample transport couriers.

    In 2019, Gibson ran a four-month-long pilot test for this system in three out of the 27 districts in Malawi. During the pilot study, six couriers transported over 20,000 samples and results across 51 health care facilities, and 150 health care workers participated in data sharing.

    The pilot was a success. Gibson’s dynamic scheduling system eliminated about half the unnecessary trips and reduced transportation delays by 25 percent — a delay that used to be four days was reduced to three. Now, Riders 4 Health is developing their own version of Gibson’s system to operate nationally in Malawi. Throughout this project, “we focused on making sure this was something that could grow with the organization,” she says. “It’s gratifying to see that actually happening.”

    Leveraging patient data

    Gibson is completing her MIT degree this September but will continue working to improve health care in Africa. After graduation, she will join the technology and analytics health care practice of an established company in South Africa. Her initial focus will be on public health care institutions, including Chris Hani Baragwanath Academic Hospital in Johannesburg, the third-largest hospital in the world.

    In this role, Gibson will work to fill in gaps in African patient data for medical operational research and develop ways to use this data more effectively to improve health care in resource-limited areas. For example, better data systems can help to monitor the prevalence and impact of different diseases, guiding where health care workers and researchers put their efforts to help the most people. “You can’t make good decisions if you don’t have all the information,” Gibson says.

    To best leverage patient data for improving health care, Gibson plans to reevaluate how data systems are structured and used in the hospital. For ideas on upgrading the current system, she’ll look to existing data systems in other countries to see what works and what doesn’t, while also drawing upon her past research experience in U.S. health care. Ultimately, she’ll tailor the new hospital data system to South African needs to accurately inform future directions in health care.

    Gibson’s new job — her “dream job” — will be based in the United Kingdom, but she anticipates spending a significant amount of time in Johannesburg. “I have so many opportunities in the wider world, but the ones that appeal to me are always back in the place I came from,” she says. More

  • in

    Teaching AI to ask clinical questions

    Physicians often query a patient’s electronic health record for information that helps them make treatment decisions, but the cumbersome nature of these records hampers the process. Research has shown that even when a doctor has been trained to use an electronic health record (EHR), finding an answer to just one question can take, on average, more than eight minutes.

    The more time physicians must spend navigating an oftentimes clunky EHR interface, the less time they have to interact with patients and provide treatment.

    Researchers have begun developing machine-learning models that can streamline the process by automatically finding information physicians need in an EHR. However, training effective models requires huge datasets of relevant medical questions, which are often hard to come by due to privacy restrictions. Existing models struggle to generate authentic questions — those that would be asked by a human doctor — and are often unable to successfully find correct answers.

    To overcome this data shortage, researchers at MIT partnered with medical experts to study the questions physicians ask when reviewing EHRs. Then, they built a publicly available dataset of more than 2,000 clinically relevant questions written by these medical experts.

    When they used their dataset to train a machine-learning model to generate clinical questions, they found that the model asked high-quality and authentic questions, as compared to real questions from medical experts, more than 60 percent of the time.

    With this dataset, they plan to generate vast numbers of authentic medical questions and then use those questions to train a machine-learning model which would help doctors find sought-after information in a patient’s record more efficiently.

    “Two thousand questions may sound like a lot, but when you look at machine-learning models being trained nowadays, they have so much data, maybe billions of data points. When you train machine-learning models to work in health care settings, you have to be really creative because there is such a lack of data,” says lead author Eric Lehman, a graduate student in the Computer Science and Artificial Intelligence Laboratory (CSAIL).

    The senior author is Peter Szolovits, a professor in the Department of Electrical Engineering and Computer Science (EECS) who heads the Clinical Decision-Making Group in CSAIL and is also a member of the MIT-IBM Watson AI Lab. The research paper, a collaboration between co-authors at MIT, the MIT-IBM Watson AI Lab, IBM Research, and the doctors and medical experts who helped create questions and participated in the study, will be presented at the annual conference of the North American Chapter of the Association for Computational Linguistics.

    “Realistic data is critical for training models that are relevant to the task yet difficult to find or create,” Szolovits says. “The value of this work is in carefully collecting questions asked by clinicians about patient cases, from which we are able to develop methods that use these data and general language models to ask further plausible questions.”

    Data deficiency

    The few large datasets of clinical questions the researchers were able to find had a host of issues, Lehman explains. Some were composed of medical questions asked by patients on web forums, which are a far cry from physician questions. Other datasets contained questions produced from templates, so they are mostly identical in structure, making many questions unrealistic.

    “Collecting high-quality data is really important for doing machine-learning tasks, especially in a health care context, and we’ve shown that it can be done,” Lehman says.

    To build their dataset, the MIT researchers worked with practicing physicians and medical students in their last year of training. They gave these medical experts more than 100 EHR discharge summaries and told them to read through a summary and ask any questions they might have. The researchers didn’t put any restrictions on question types or structures in an effort to gather natural questions. They also asked the medical experts to identify the “trigger text” in the EHR that led them to ask each question.

    For instance, a medical expert might read a note in the EHR that says a patient’s past medical history is significant for prostate cancer and hypothyroidism. The trigger text “prostate cancer” could lead the expert to ask questions like “date of diagnosis?” or “any interventions done?”

    They found that most questions focused on symptoms, treatments, or the patient’s test results. While these findings weren’t unexpected, quantifying the number of questions about each broad topic will help them build an effective dataset for use in a real, clinical setting, says Lehman.

    Once they had compiled their dataset of questions and accompanying trigger text, they used it to train machine-learning models to ask new questions based on the trigger text.

    Then the medical experts determined whether those questions were “good” using four metrics: understandability (Does the question make sense to a human physician?), triviality (Is the question too easily answerable from the trigger text?), medical relevance (Does it makes sense to ask this question based on the context?), and relevancy to the trigger (Is the trigger related to the question?).

    Cause for concern

    The researchers found that when a model was given trigger text, it was able to generate a good question 63 percent of the time, whereas a human physician would ask a good question 80 percent of the time.

    They also trained models to recover answers to clinical questions using the publicly available datasets they had found at the outset of this project. Then they tested these trained models to see if they could find answers to “good” questions asked by human medical experts.

    The models were only able to recover about 25 percent of answers to physician-generated questions.

    “That result is really concerning. What people thought were good-performing models were, in practice, just awful because the evaluation questions they were testing on were not good to begin with,” Lehman says.

    The team is now applying this work toward their initial goal: building a model that can automatically answer physicians’ questions in an EHR. For the next step, they will use their dataset to train a machine-learning model that can automatically generate thousands or millions of good clinical questions, which can then be used to train a new model for automatic question answering.

    While there is still much work to do before that model could be a reality, Lehman is encouraged by the strong initial results the team demonstrated with this dataset.

    This research was supported, in part, by the MIT-IBM Watson AI Lab. Additional co-authors include Leo Anthony Celi of the MIT Institute for Medical Engineering and Science; Preethi Raghavan and Jennifer J. Liang of the MIT-IBM Watson AI Lab; Dana Moukheiber of the University of Buffalo; Vladislav Lialin and Anna Rumshisky of the University of Massachusetts at Lowell; Katelyn Legaspi, Nicole Rose I. Alberto, Richard Raymund R. Ragasa, Corinna Victoria M. Puyat, Isabelle Rose I. Alberto, and Pia Gabrielle I. Alfonso of the University of the Philippines; Anne Janelle R. Sy and Patricia Therese S. Pile of the University of the East Ramon Magsaysay Memorial Medical Center; Marianne Taliño of the Ateneo de Manila University School of Medicine and Public Health; and Byron C. Wallace of Northeastern University. More

  • in

    Exploring emerging topics in artificial intelligence policy

    Members of the public sector, private sector, and academia convened for the second AI Policy Forum Symposium last month to explore critical directions and questions posed by artificial intelligence in our economies and societies.

    The virtual event, hosted by the AI Policy Forum (AIPF) — an undertaking by the MIT Schwarzman College of Computing to bridge high-level principles of AI policy with the practices and trade-offs of governing — brought together an array of distinguished panelists to delve into four cross-cutting topics: law, auditing, health care, and mobility.

    In the last year there have been substantial changes in the regulatory and policy landscape around AI in several countries — most notably in Europe with the development of the European Union Artificial Intelligence Act, the first attempt by a major regulator to propose a law on artificial intelligence. In the United States, the National AI Initiative Act of 2020, which became law in January 2021, is providing a coordinated program across federal government to accelerate AI research and application for economic prosperity and security gains. Finally, China recently advanced several new regulations of its own.

    Each of these developments represents a different approach to legislating AI, but what makes a good AI law? And when should AI legislation be based on binding rules with penalties versus establishing voluntary guidelines?

    Jonathan Zittrain, professor of international law at Harvard Law School and director of the Berkman Klein Center for Internet and Society, says the self-regulatory approach taken during the expansion of the internet had its limitations with companies struggling to balance their interests with those of their industry and the public.

    “One lesson might be that actually having representative government take an active role early on is a good idea,” he says. “It’s just that they’re challenged by the fact that there appears to be two phases in this environment of regulation. One, too early to tell, and two, too late to do anything about it. In AI I think a lot of people would say we’re still in the ‘too early to tell’ stage but given that there’s no middle zone before it’s too late, it might still call for some regulation.”

    A theme that came up repeatedly throughout the first panel on AI laws — a conversation moderated by Dan Huttenlocher, dean of the MIT Schwarzman College of Computing and chair of the AI Policy Forum — was the notion of trust. “If you told me the truth consistently, I would say you are an honest person. If AI could provide something similar, something that I can say is consistent and is the same, then I would say it’s trusted AI,” says Bitange Ndemo, professor of entrepreneurship at the University of Nairobi and the former permanent secretary of Kenya’s Ministry of Information and Communication.

    Eva Kaili, vice president of the European Parliament, adds that “In Europe, whenever you use something, like any medication, you know that it has been checked. You know you can trust it. You know the controls are there. We have to achieve the same with AI.” Kalli further stresses that building trust in AI systems will not only lead to people using more applications in a safe manner, but that AI itself will reap benefits as greater amounts of data will be generated as a result.

    The rapidly increasing applicability of AI across fields has prompted the need to address both the opportunities and challenges of emerging technologies and the impact they have on social and ethical issues such as privacy, fairness, bias, transparency, and accountability. In health care, for example, new techniques in machine learning have shown enormous promise for improving quality and efficiency, but questions of equity, data access and privacy, safety and reliability, and immunology and global health surveillance remain at large.

    MIT’s Marzyeh Ghassemi, an assistant professor in the Department of Electrical Engineering and Computer Science and the Institute for Medical Engineering and Science, and David Sontag, an associate professor of electrical engineering and computer science, collaborated with Ziad Obermeyer, an associate professor of health policy and management at the University of California Berkeley School of Public Health, to organize AIPF Health Wide Reach, a series of sessions to discuss issues of data sharing and privacy in clinical AI. The organizers assembled experts devoted to AI, policy, and health from around the world with the goal of understanding what can be done to decrease barriers to access to high-quality health data to advance more innovative, robust, and inclusive research results while being respectful of patient privacy.

    Over the course of the series, members of the group presented on a topic of expertise and were tasked with proposing concrete policy approaches to the challenge discussed. Drawing on these wide-ranging conversations, participants unveiled their findings during the symposium, covering nonprofit and government success stories and limited access models; upside demonstrations; legal frameworks, regulation, and funding; technical approaches to privacy; and infrastructure and data sharing. The group then discussed some of their recommendations that are summarized in a report that will be released soon.

    One of the findings calls for the need to make more data available for research use. Recommendations that stem from this finding include updating regulations to promote data sharing to enable easier access to safe harbors such as the Health Insurance Portability and Accountability Act (HIPAA) has for de-identification, as well as expanding funding for private health institutions to curate datasets, amongst others. Another finding, to remove barriers to data for researchers, supports a recommendation to decrease obstacles to research and development on federally created health data. “If this is data that should be accessible because it’s funded by some federal entity, we should easily establish the steps that are going to be part of gaining access to that so that it’s a more inclusive and equitable set of research opportunities for all,” says Ghassemi. The group also recommends taking a careful look at the ethical principles that govern data sharing. While there are already many principles proposed around this, Ghassemi says that “obviously you can’t satisfy all levers or buttons at once, but we think that this is a trade-off that’s very important to think through intelligently.”

    In addition to law and health care, other facets of AI policy explored during the event included auditing and monitoring AI systems at scale, and the role AI plays in mobility and the range of technical, business, and policy challenges for autonomous vehicles in particular.

    The AI Policy Forum Symposium was an effort to bring together communities of practice with the shared aim of designing the next chapter of AI. In his closing remarks, Aleksander Madry, the Cadence Designs Systems Professor of Computing at MIT and faculty co-lead of the AI Policy Forum, emphasized the importance of collaboration and the need for different communities to communicate with each other in order to truly make an impact in the AI policy space.

    “The dream here is that we all can meet together — researchers, industry, policymakers, and other stakeholders — and really talk to each other, understand each other’s concerns, and think together about solutions,” Madry said. “This is the mission of the AI Policy Forum and this is what we want to enable.” More

  • in

    Artificial intelligence predicts patients’ race from their medical images

    The miseducation of algorithms is a critical problem; when artificial intelligence mirrors unconscious thoughts, racism, and biases of the humans who generated these algorithms, it can lead to serious harm. Computer programs, for example, have wrongly flagged Black defendants as twice as likely to reoffend as someone who’s white. When an AI used cost as a proxy for health needs, it falsely named Black patients as healthier than equally sick white ones, as less money was spent on them. Even AI used to write a play relied on using harmful stereotypes for casting. 

    Removing sensitive features from the data seems like a viable tweak. But what happens when it’s not enough? 

    Examples of bias in natural language processing are boundless — but MIT scientists have investigated another important, largely underexplored modality: medical images. Using both private and public datasets, the team found that AI can accurately predict self-reported race of patients from medical images alone. Using imaging data of chest X-rays, limb X-rays, chest CT scans, and mammograms, the team trained a deep learning model to identify race as white, Black, or Asian — even though the images themselves contained no explicit mention of the patient’s race. This is a feat even the most seasoned physicians cannot do, and it’s not clear how the model was able to do this. 

    In an attempt to tease out and make sense of the enigmatic “how” of it all, the researchers ran a slew of experiments. To investigate possible mechanisms of race detection, they looked at variables like differences in anatomy, bone density, resolution of images — and many more, and the models still prevailed with high ability to detect race from chest X-rays. “These results were initially confusing, because the members of our research team could not come anywhere close to identifying a good proxy for this task,” says paper co-author Marzyeh Ghassemi, an assistant professor in the MIT Department of Electrical Engineering and Computer Science and the Institute for Medical Engineering and Science (IMES), who is an affiliate of the Computer Science and Artificial Intelligence Laboratory (CSAIL) and of the MIT Jameel Clinic. “Even when you filter medical images past where the images are recognizable as medical images at all, deep models maintain a very high performance. That is concerning because superhuman capacities are generally much more difficult to control, regulate, and prevent from harming people.”

    In a clinical setting, algorithms can help tell us whether a patient is a candidate for chemotherapy, dictate the triage of patients, or decide if a movement to the ICU is necessary. “We think that the algorithms are only looking at vital signs or laboratory tests, but it’s possible they’re also looking at your race, ethnicity, sex, whether you’re incarcerated or not — even if all of that information is hidden,” says paper co-author Leo Anthony Celi, principal research scientist in IMES at MIT and associate professor of medicine at Harvard Medical School. “Just because you have representation of different groups in your algorithms, that doesn’t guarantee it won’t perpetuate or magnify existing disparities and inequities. Feeding the algorithms with more data with representation is not a panacea. This paper should make us pause and truly reconsider whether we are ready to bring AI to the bedside.” 

    The study, “AI recognition of patient race in medical imaging: a modeling study,” was published in Lancet Digital Health on May 11. Celi and Ghassemi wrote the paper alongside 20 other authors in four countries.

    To set up the tests, the scientists first showed that the models were able to predict race across multiple imaging modalities, various datasets, and diverse clinical tasks, as well as across a range of academic centers and patient populations in the United States. They used three large chest X-ray datasets, and tested the model on an unseen subset of the dataset used to train the model and a completely different one. Next, they trained the racial identity detection models for non-chest X-ray images from multiple body locations, including digital radiography, mammography, lateral cervical spine radiographs, and chest CTs to see whether the model’s performance was limited to chest X-rays. 

    The team covered many bases in an attempt to explain the model’s behavior: differences in physical characteristics between different racial groups (body habitus, breast density), disease distribution (previous studies have shown that Black patients have a higher incidence for health issues like cardiac disease), location-specific or tissue specific differences, effects of societal bias and environmental stress, the ability of deep learning systems to detect race when multiple demographic and patient factors were combined, and if specific image regions contributed to recognizing race. 

    What emerged was truly staggering: The ability of the models to predict race from diagnostic labels alone was much lower than the chest X-ray image-based models. 

    For example, the bone density test used images where the thicker part of the bone appeared white, and the thinner part appeared more gray or translucent. Scientists assumed that since Black people generally have higher bone mineral density, the color differences helped the AI models to detect race. To cut that off, they clipped the images with a filter, so the model couldn’t color differences. It turned out that cutting off the color supply didn’t faze the model — it still could accurately predict races. (The “Area Under the Curve” value, meaning the measure of the accuracy of a quantitative diagnostic test, was 0.94–0.96). As such, the learned features of the model appeared to rely on all regions of the image, meaning that controlling this type of algorithmic behavior presents a messy, challenging problem. 

    The scientists acknowledge limited availability of racial identity labels, which caused them to focus on Asian, Black, and white populations, and that their ground truth was a self-reported detail. Other forthcoming work will include potentially looking at isolating different signals before image reconstruction, because, as with bone density experiments, they couldn’t account for residual bone tissue that was on the images. 

    Notably, other work by Ghassemi and Celi led by MIT student Hammaad Adam has found that models can also identify patient self-reported race from clinical notes even when those notes are stripped of explicit indicators of race. Just as in this work, human experts are not able to accurately predict patient race from the same redacted clinical notes.

    “We need to bring social scientists into the picture. Domain experts, which are usually the clinicians, public health practitioners, computer scientists, and engineers are not enough. Health care is a social-cultural problem just as much as it’s a medical problem. We need another group of experts to weigh in and to provide input and feedback on how we design, develop, deploy, and evaluate these algorithms,” says Celi. “We need to also ask the data scientists, before any exploration of the data, are there disparities? Which patient groups are marginalized? What are the drivers of those disparities? Is it access to care? Is it from the subjectivity of the care providers? If we don’t understand that, we won’t have a chance of being able to identify the unintended consequences of the algorithms, and there’s no way we’ll be able to safeguard the algorithms from perpetuating biases.”

    “The fact that algorithms ‘see’ race, as the authors convincingly document, can be dangerous. But an important and related fact is that, when used carefully, algorithms can also work to counter bias,” says Ziad Obermeyer, associate professor at the University of California at Berkeley, whose research focuses on AI applied to health. “In our own work, led by computer scientist Emma Pierson at Cornell, we show that algorithms that learn from patients’ pain experiences can find new sources of knee pain in X-rays that disproportionately affect Black patients — and are disproportionately missed by radiologists. So just like any tool, algorithms can be a force for evil or a force for good — which one depends on us, and the choices we make when we build algorithms.”

    The work is supported, in part, by the National Institutes of Health. More

  • in

    Emery Brown earns American Institute for Medical and Biological Engineering Pierre Galletti Award

    The American Institute for Medical and Biological Engineering has awarded its highest honor this year to Emery N. Brown, the Edward Hood Taplin Professor of Computational Neuroscience and Health Sciences and Technology in The Picower Institute for Learning and Memory and the Institute for Medical Engineering and Science at MIT.

    Brown, who is also an anesthesiologist at Massachusetts General Hospital and the Warren M. Zapol Professor at Harvard Medical School, received the 2022 Pierre M. Galletti Award during the national organization’s Annual Event held on March 25.

    For decades, Brown’s lab has uniquely unified three fields: neuroscience, statistics, and anesthesiology. He is renowned for the development of statistical methods and signal-processing algorithms to enable and improve analysis of neural activity measurements. The work has had numerous applications including studies of learning and memory, brain-computer interfaces, and systems neuroscience. He has also pioneered investigations of how general anesthetic drugs work in the brain to induce and maintain simultaneous but reversible states of unconsciousness, amnesia, immobility, and analgesia. Building on these improvements in fundamental understanding, his lab engineers systems to improve monitoring of patient state and anesthetic dosing during surgery. Optimizing doses of general anesthetic drugs can improve patient care in many ways, including by minimizing side effects such as post-operative delirium and by improving post-operative pain management.

    AIMBE said Brown earned the award in recognition of his “significant contributions to neuroscience data analysis and for characterizing the neurophysiology of anesthesia-induced unconsciousness and demonstrating how it can be reliably monitored in real time using electroencephalogram recordings.”

    Brown, who is also a faculty member in MIT’s Department of Brain and Cognitive Sciences, is now working to develop a research center at MIT dedicated to taking neuroscience-based approaches to advance anesthesiology.

    “I am extremely honored and grateful to the AIMBE for choosing me to receive the 2022 Galletti Award in recognition of my research deciphering the neuroscience of how anesthetics work,” he says. “I would like to express my gratitude to my collaborators, post-doctoral fellows, students, research assistants, and clinical coordinators who have made this possible.” More

  • in

    How artificial intelligence can help combat systemic racism

    In 2020, Detroit police arrested a Black man for shoplifting almost $4,000 worth of watches from an upscale boutique. He was handcuffed in front of his family and spent a night in lockup. After some questioning, however, it became clear that they had the wrong man. So why did they arrest him in the first place?

    The reason: a facial recognition algorithm had matched the photo on his driver’s license to grainy security camera footage.

    Facial recognition algorithms — which have repeatedly been demonstrated to be less accurate for people with darker skin — are just one example of how racial bias gets replicated within and perpetuated by emerging technologies.

    “There’s an urgency as AI is used to make really high-stakes decisions,” says MLK Visiting Professor S. Craig Watkins, whose academic home for his time at MIT is the Institute for Data, Systems, and Society (IDSS). “The stakes are higher because new systems can replicate historical biases at scale.”

    Watkins, a professor at the University of Texas at Austin and the founding director of the Institute for Media Innovation​, researches the impacts of media and data-based systems on human behavior, with a specific concentration on issues related to systemic racism. “One of the fundamental questions of the work is: how do we build AI models that deal with systemic inequality more effectively?”

    Play video

    Artificial Intelligence and the Future of Racial Justice | S. Craig Watkins | TEDxMIT

    Ethical AI

    Inequality is perpetuated by technology in many ways across many sectors. One broad domain is health care, where Watkins says inequity shows up in both quality of and access to care. The demand for mental health care, for example, far outstrips the capacity for services in the United States. That demand has been exacerbated by the pandemic, and access to care is harder for communities of color.

    For Watkins, taking the bias out of the algorithm is just one component of building more ethical AI. He works also to develop tools and platforms that can address inequality outside of tech head-on. In the case of mental health access, this entails developing a tool to help mental health providers deliver care more efficiently.

    “We are building a real-time data collection platform that looks at activities and behaviors and tries to identify patterns and contexts in which certain mental states emerge,” says Watkins. “The goal is to provide data-informed insights to care providers in order to deliver higher-impact services.”

    Watkins is no stranger to the privacy concerns such an app would raise. He takes a user-centered approach to the development that is grounded in data ethics. “Data rights are a significant component,” he argues. “You have to give the user complete control over how their data is shared and used and what data a care provider sees. No one else has access.”

    Combating systemic racism

    Here at MIT, Watkins has joined the newly launched Initiative on Combatting Systemic Racism (ICSR), an IDSS research collaboration that brings together faculty and researchers from the MIT Stephen A. Schwarzman College of Computing and beyond. The aim of the ICSR is to develop and harness computational tools that can help effect structural and normative change toward racial equity.

    The ICSR collaboration has separate project teams researching systemic racism in different sectors of society, including health care. Each of these “verticals” addresses different but interconnected issues, from sustainability to employment to gaming. Watkins is a part of two ICSR groups, policing and housing, that aim to better understand the processes that lead to discriminatory practices in both sectors. “Discrimination in housing contributes significantly to the racial wealth gap in the U.S.,” says Watkins.

    The policing team examines patterns in how different populations get policed. “There is obviously a significant and charged history to policing and race in America,” says Watkins. “This is an attempt to understand, to identify patterns, and note regional differences.”

    Watkins and the policing team are building models using data that details police interventions, responses, and race, among other variables. The ICSR is a good fit for this kind of research, says Watkins, who notes the interdisciplinary focus of both IDSS and the SCC. 

    “Systemic change requires a collaborative model and different expertise,” says Watkins. “We are trying to maximize influence and potential on the computational side, but we won’t get there with computation alone.”

    Opportunities for change

    Models can also predict outcomes, but Watkins is careful to point out that no algorithm alone will solve racial challenges.

    “Models in my view can inform policy and strategy that we as humans have to create. Computational models can inform and generate knowledge, but that doesn’t equate with change.” It takes additional work — and additional expertise in policy and advocacy — to use knowledge and insights to strive toward progress.

    One important lever of change, he argues, will be building a more AI-literate society through access to information and opportunities to understand AI and its impact in a more dynamic way. He hopes to see greater data rights and greater understanding of how societal systems impact our lives.

    “I was inspired by the response of younger people to the murders of George Floyd and Breonna Taylor,” he says. “Their tragic deaths shine a bright light on the real-world implications of structural racism and has forced the broader society to pay more attention to this issue, which creates more opportunities for change.” More

  • in

    Unlocking new doors to artificial intelligence

    Artificial intelligence research is constantly developing new hypotheses that have the potential to benefit society and industry; however, sometimes these benefits are not fully realized due to a lack of engineering tools. To help bridge this gap, graduate students in the MIT Department of Electrical Engineering and Computer Science’s 6-A Master of Engineering (MEng) Thesis Program work with some of the most innovative companies in the world and collaborate on cutting-edge projects, while contributing to and completing their MEng thesis.

    During a portion of the last year, four 6-A MEng students teamed up and completed an internship with IBM Research’s advanced prototyping team through the MIT-IBM Watson AI Lab on AI projects, often developing web applications to solve a real-world issue or business use cases. Here, the students worked alongside AI engineers, user experience engineers, full-stack researchers, and generalists to accommodate project requests and receive thesis advice, says Lee Martie, IBM research staff member and 6-A manager. The students’ projects ranged from generating synthetic data to allow for privacy-sensitive data analysis to using computer vision to identify actions in video that allows for monitoring human safety and tracking build progress on a construction site.

    “I appreciated all of the expertise from the team and the feedback,” says 6-A graduate Violetta Jusiega ’21, who participated in the program. “I think that working in industry gives the lens of making sure that the project’s needs are satisfied and [provides the opportunity] to ground research and make sure that it is helpful for some use case in the future.”

    Jusiega’s research intersected the fields of computer vision and design to focus on data visualization and user interfaces for the medical field. Working with IBM, she built an application programming interface (API) that let clinicians interact with a medical treatment strategy AI model, which was deployed in the cloud. Her interface provided a medical decision tree, as well as some prescribed treatment plans. After receiving feedback on her design from physicians at a local hospital, Jusiega developed iterations of the API and how the results where displayed, visually, so that it would be user-friendly and understandable for clinicians, who don’t usually code. She says that, “these tools are often not acquired into the field because they lack some of these API principles which become more important in an industry where everything is already very fast paced, so there’s little time to incorporate a new technology.” But this project might eventually allow for industry deployment. “I think this application has a bunch of potential, whether it does get picked up by clinicians or whether it’s simply used in research. It’s very promising and very exciting to see how technology can help us modify, or I can improve, the health-care field to be even more custom-tailored towards patients and giving them the best care possible,” she says.

    Another 6-A graduate student, Spencer Compton, was also considering aiding professionals to make more informed decisions, for use in settings including health care, but he was tackling it from a causal perspective. When given a set of related variables, Compton was investigating if there was a way to determine not just correlation, but the cause-and-effect relationship between them (the direction of the interaction) from the data alone. For this, he and his collaborators from IBM Research and Purdue University turned to a field of math called information theory. With the goal of designing an algorithm to learn complex networks of causal relationships, Compton used ideas relating to entropy, the randomness in a system, to help determine if a causal relationship is present and how variables might be interacting. “When judging an explanation, people often default to Occam’s razor” says Compton. “We’re more inclined to believe a simpler explanation than a more complex one.” In many cases, he says, it seemed to perform well. For instance, they were able to consider variables such as lung cancer, pollution, and X-ray findings. He was pleased that his research allowed him to help create a framework of “entropic causal inference” that could aid in safe and smart decisions in the future, in a satisfying way. “The math is really surprisingly deep, interesting, and complex,” says Compton. “We’re basically asking, ‘when is the simplest explanation correct?’ but as a math question.”

    Determining relationships within data can sometimes require large volumes of it to suss out patterns, but for data that may contain sensitive information, this may not be available. For her master’s work, Ivy Huang worked with IBM Research to generate synthetic tabular data using a natural language processing tool called a transformer model, which can learn and predict future values from past values. Trained on real data, the model can produce new data with similar patterns, properties, and relationships without restrictions like privacy, availability, and access that might come with real data in financial transactions and electronic medical records. Further, she created an API and deployed the model in an IBM cluster, which allowed users increased access to the model and abilities to query it without compromising the original data.

    Working with the advanced prototyping team, MEng candidate Brandon Perez also considered how to gather and investigate data with restrictions, but in his case it was to use computer vision frameworks, centered on an action recognition model, to identify construction site happenings. The team based their work on the Moments in Time dataset, which contains over a million three-second video clips with about 300 attached classification labels, and has performed well during AI training. However, the group needed more construction-based video data. For this, they used YouTube-8M. Perez built a framework for testing and fine-tuning existing object detection models and action recognition models that could plug into an automatic spatial and temporal localization tool — how they would identify and label particular actions in a video timeline. “I was satisfied that I was able to explore what made me curious, and I was grateful for the autonomy that I was given with this project,” says Perez. “I felt like I was always supported, and my mentor was a great support to the project.”

    “The kind of collaborations that we have seen between our MEng students and IBM researchers are exactly what the 6-A MEng Thesis program at MIT is all about,” says Tomas Palacios, professor of electrical engineering and faculty director of the MIT 6-A MEng Thesis program. “For more than 100 years, 6-A has been connecting MIT students with industry to solve together some of the most important problems in the world.” More

  • in

    Deep-learning technique predicts clinical treatment outcomes

    When it comes to treatment strategies for critically ill patients, clinicians want to be able to consider all their options and timing of administration, and make the optimal decision for their patients. While clinician experience and study has helped them to be successful in this effort, not all patients are the same, and treatment decisions at this crucial time could mean the difference between patient improvement and quick deterioration. Therefore, it would be helpful for doctors to be able to take a patient’s previous known health status and received treatments and use that to predict that patient’s health outcome under different treatment scenarios, in order to pick the best path.

    Now, a deep-learning technique, called G-Net, from researchers at MIT and IBM provides a window into causal counterfactual prediction, affording physicians the opportunity to explore how a patient might fare under different treatment plans. The foundation of G-Net is the g-computation algorithm, a causal inference method that estimates the effect of dynamic exposures in the presence of measured confounding variables — ones that may influence both treatments and outcomes. Unlike previous implementations of the g-computation framework, which have used linear modeling approaches, G-Net uses recurrent neural networks (RNN), which have node connections that allow them to better model temporal sequences with complex and nonlinear dynamics, like those found in the physiological and clinical time series data. In this way, physicians can develop alternative plans based on patient history and test them before making a decision.

    “Our ultimate goal is to develop a machine learning technique that would allow doctors to explore various ‘What if’ scenarios and treatment options,” says Li-wei Lehman, MIT research scientist in the MIT Institute for Medical Engineering and Science and an MIT-IBM Watson AI Lab project lead. “A lot of work has been done in terms of deep learning for counterfactual prediction but [it’s] been focusing on a point exposure setting,” or a static, time-varying treatment strategy, which doesn’t allow for adjustment of treatments as patient history changes. However, her team’s new prediction approach provides for treatment plan flexibility and chances for treatment alteration over time as patient covariate history and past treatments change. “G-Net is the first deep-learning approach based on g-computation that can predict both the population-level and individual-level treatment effects under dynamic and time varying treatment strategies.”

    The research, which was recently published in the Proceedings of Machine Learning Research, was co-authored by Rui Li MEng ’20, Stephanie Hu MEng ’21, former MIT postdoc Mingyu Lu MD, graduate student Yuria Utsumi, IBM research staff member Prithwish Chakraborty, IBM Research director of Hybrid Cloud Services Daby Sow, IBM data scientist Piyush Madan, IBM research scientist Mohamed Ghalwash, and IBM research scientist Zach Shahn.

    Tracking disease progression

    To build, validate, and test G-Net’s predictive abilities, the researchers considered the circulatory system in septic patients in the ICU. During critical care, doctors need to make trade-offs and judgement calls, such as ensuring the organs are receiving adequate blood supply without overworking the heart. For this, they could give intravenous fluids to patients to increase blood pressure; however, too much can cause edema. Alternatively, physicians can administer vasopressors, which act to contract blood vessels and raise blood pressure.

    In order to mimic this and demonstrate G-Net’s proof-of-concept, the team used CVSim, a mechanistic model of a human cardiovascular system that’s governed by 28 input variables characterizing the system’s current state, such as arterial pressure, central venous pressure, total blood volume, and total peripheral resistance, and modified it to simulate various disease processes (e.g., sepsis or blood loss) and effects of interventions (e.g., fluids and vasopressors). The researchers used CVSim to generate observational patient data for training and for “ground truth” comparison against counterfactual prediction. In their G-Net architecture, the researchers ran two RNNs to handle and predict variables that are continuous, meaning they can take on a range of values, like blood pressure, and categorical variables, which have discrete values, like the presence or absence of pulmonary edema. The researchers simulated the health trajectories of thousands of “patients” exhibiting symptoms under one treatment regime, let’s say A, for 66 timesteps, and used them to train and validate their model.

    Testing G-Net’s prediction capability, the team generated two counterfactual datasets. Each contained roughly 1,000 known patient health trajectories, which were created from CVSim using the same “patient” condition as the starting point under treatment A. Then at timestep 33, treatment changed to plan B or C, depending on the dataset. The team then performed 100 prediction trajectories for each of these 1,000 patients, whose treatment and medical history was known up until timestep 33 when a new treatment was administered. In these cases, the prediction agreed well with the “ground-truth” observations for individual patients and averaged population-level trajectories.

    A cut above the rest

    Since the g-computation framework is flexible, the researchers wanted to examine G-Net’s prediction using different nonlinear models — in this case, long short-term memory (LSTM) models, which are a type of RNN that can learn from previous data patterns or sequences — against the more classical linear models and a multilayer perception model (MLP), a type of neural network that can make predictions using a nonlinear approach. Following a similar setup as before, the team found that the error between the known and predicted cases was smallest in the LSTM models compared to the others. Since G-Net is able to model the temporal patterns of the patient’s ICU history and past treatment, whereas a linear model and MLP cannot, it was better able to predict the patient’s outcome.

    The team also compared G-Net’s prediction in a static, time-varying treatment setting against two state-of-the-art deep-learning based counterfactual prediction approaches, a recurrent marginal structural network (rMSN) and a counterfactual recurrent neural network (CRN), as well as a linear model and an MLP. For this, they investigated a model for tumor growth under no treatment, radiation, chemotherapy, and both radiation and chemotherapy scenarios. “Imagine a scenario where there’s a patient with cancer, and an example of a static regime would be if you only give a fixed dosage of chemotherapy, radiation, or any kind of drug, and wait until the end of your trajectory,” comments Lu. For these investigations, the researchers generated simulated observational data using tumor volume as the primary influence dictating treatment plans and demonstrated that G-Net outperformed the other models. One potential reason could be because g-computation is known to be more statistically efficient than rMSN and CRN, when models are correctly specified.

    While G-Net has done well with simulated data, more needs to be done before it can be applied to real patients. Since neural networks can be thought of as “black boxes” for prediction results, the researchers are beginning to investigate the uncertainty in the model to help ensure safety. In contrast to these approaches that recommend an “optimal” treatment plan without any clinician involvement, “as a decision support tool, I believe that G-Net would be more interpretable, since the clinicians would input treatment strategies themselves,” says Lehman, and “G-Net will allow them to be able to explore different hypotheses.” Further, the team has moved on to using real data from ICU patients with sepsis, bringing it one step closer to implementation in hospitals.

    “I think it is pretty important and exciting for real-world applications,” says Hu. “It’d be helpful to have some way to predict whether or not a treatment might work or what the effects might be — a quicker iteration process for developing these hypotheses for what to try, before actually trying to implement them in in a years-long, potentially very involved and very invasive type of clinical trial.”

    This research was funded by the MIT-IBM Watson AI Lab. More