More stories

  • in

    Automated system teaches users when to collaborate with an AI assistant

    Artificial intelligence models that pick out patterns in images can often do so better than human eyes — but not always. If a radiologist is using an AI model to help her determine whether a patient’s X-rays show signs of pneumonia, when should she trust the model’s advice and when should she ignore it?

    A customized onboarding process could help this radiologist answer that question, according to researchers at MIT and the MIT-IBM Watson AI Lab. They designed a system that teaches a user when to collaborate with an AI assistant.

    In this case, the training method might find situations where the radiologist trusts the model’s advice — except she shouldn’t because the model is wrong. The system automatically learns rules for how she should collaborate with the AI, and describes them with natural language.

    During onboarding, the radiologist practices collaborating with the AI using training exercises based on these rules, receiving feedback about her performance and the AI’s performance.

    The researchers found that this onboarding procedure led to about a 5 percent improvement in accuracy when humans and AI collaborated on an image prediction task. Their results also show that just telling the user when to trust the AI, without training, led to worse performance.

    Importantly, the researchers’ system is fully automated, so it learns to create the onboarding process based on data from the human and AI performing a specific task. It can also adapt to different tasks, so it can be scaled up and used in many situations where humans and AI models work together, such as in social media content moderation, writing, and programming.

    “So often, people are given these AI tools to use without any training to help them figure out when it is going to be helpful. That’s not what we do with nearly every other tool that people use — there is almost always some kind of tutorial that comes with it. But for AI, this seems to be missing. We are trying to tackle this problem from a methodological and behavioral perspective,” says Hussein Mozannar, a graduate student in the Social and Engineering Systems doctoral program within the Institute for Data, Systems, and Society (IDSS) and lead author of a paper about this training process.

    The researchers envision that such onboarding will be a crucial part of training for medical professionals.

    “One could imagine, for example, that doctors making treatment decisions with the help of AI will first have to do training similar to what we propose. We may need to rethink everything from continuing medical education to the way clinical trials are designed,” says senior author David Sontag, a professor of EECS, a member of the MIT-IBM Watson AI Lab and the MIT Jameel Clinic, and the leader of the Clinical Machine Learning Group of the Computer Science and Artificial Intelligence Laboratory (CSAIL).

    Mozannar, who is also a researcher with the Clinical Machine Learning Group, is joined on the paper by Jimin J. Lee, an undergraduate in electrical engineering and computer science; Dennis Wei, a senior research scientist at IBM Research; and Prasanna Sattigeri and Subhro Das, research staff members at the MIT-IBM Watson AI Lab. The paper will be presented at the Conference on Neural Information Processing Systems.

    Training that evolves

    Existing onboarding methods for human-AI collaboration are often composed of training materials produced by human experts for specific use cases, making them difficult to scale up. Some related techniques rely on explanations, where the AI tells the user its confidence in each decision, but research has shown that explanations are rarely helpful, Mozannar says.

    “The AI model’s capabilities are constantly evolving, so the use cases where the human could potentially benefit from it are growing over time. At the same time, the user’s perception of the model continues changing. So, we need a training procedure that also evolves over time,” he adds.

    To accomplish this, their onboarding method is automatically learned from data. It is built from a dataset that contains many instances of a task, such as detecting the presence of a traffic light from a blurry image.

    The system’s first step is to collect data on the human and AI performing this task. In this case, the human would try to predict, with the help of AI, whether blurry images contain traffic lights.

    The system embeds these data points onto a latent space, which is a representation of data in which similar data points are closer together. It uses an algorithm to discover regions of this space where the human collaborates incorrectly with the AI. These regions capture instances where the human trusted the AI’s prediction but the prediction was wrong, and vice versa.

    Perhaps the human mistakenly trusts the AI when images show a highway at night.

    After discovering the regions, a second algorithm utilizes a large language model to describe each region as a rule, using natural language. The algorithm iteratively fine-tunes that rule by finding contrasting examples. It might describe this region as “ignore AI when it is a highway during the night.”

    These rules are used to build training exercises. The onboarding system shows an example to the human, in this case a blurry highway scene at night, as well as the AI’s prediction, and asks the user if the image shows traffic lights. The user can answer yes, no, or use the AI’s prediction.

    If the human is wrong, they are shown the correct answer and performance statistics for the human and AI on these instances of the task. The system does this for each region, and at the end of the training process, repeats the exercises the human got wrong.

    “After that, the human has learned something about these regions that we hope they will take away in the future to make more accurate predictions,” Mozannar says.

    Onboarding boosts accuracy

    The researchers tested this system with users on two tasks — detecting traffic lights in blurry images and answering multiple choice questions from many domains (such as biology, philosophy, computer science, etc.).

    They first showed users a card with information about the AI model, how it was trained, and a breakdown of its performance on broad categories. Users were split into five groups: Some were only shown the card, some went through the researchers’ onboarding procedure, some went through a baseline onboarding procedure, some went through the researchers’ onboarding procedure and were given recommendations of when they should or should not trust the AI, and others were only given the recommendations.

    Only the researchers’ onboarding procedure without recommendations improved users’ accuracy significantly, boosting their performance on the traffic light prediction task by about 5 percent without slowing them down. However, onboarding was not as effective for the question-answering task. The researchers believe this is because the AI model, ChatGPT, provided explanations with each answer that convey whether it should be trusted.

    But providing recommendations without onboarding had the opposite effect — users not only performed worse, they took more time to make predictions.

    “When you only give someone recommendations, it seems like they get confused and don’t know what to do. It derails their process. People also don’t like being told what to do, so that is a factor as well,” Mozannar says.

    Providing recommendations alone could harm the user if those recommendations are wrong, he adds. With onboarding, on the other hand, the biggest limitation is the amount of available data. If there aren’t enough data, the onboarding stage won’t be as effective, he says.

    In the future, he and his collaborators want to conduct larger studies to evaluate the short- and long-term effects of onboarding. They also want to leverage unlabeled data for the onboarding process, and find methods to effectively reduce the number of regions without omitting important examples.

    “People are adopting AI systems willy-nilly, and indeed AI offers great potential, but these AI agents still sometimes makes mistakes. Thus, it’s crucial for AI developers to devise methods that help humans know when it’s safe to rely on the AI’s suggestions,” says Dan Weld, professor emeritus at the Paul G. Allen School of Computer Science and Engineering at the University of Washington, who was not involved with this research. “Mozannar et al. have created an innovative method for identifying situations where the AI is trustworthy, and (importantly) to describe them to people in a way that leads to better human-AI team interactions.”

    This work is funded, in part, by the MIT-IBM Watson AI Lab. More

  • in

    Meet the 2023-24 Accenture Fellows

    The MIT and Accenture Convergence Initiative for Industry and Technology has selected five new research fellows for 2023-24. Now in its third year, the initiative underscores the ways in which industry and research can collaborate to spur technological innovation.

    Through its partnership with the School of Engineering, Accenture provides five annual fellowships awarded to graduate students with the aim of generating powerful new insights on the convergence of business and technology with the potential to transform society. The 2023-24 fellows will conduct research in areas including artificial intelligence, sustainability, and robotics.

    The 2023-24 Accenture Fellows are:

    Yiyue Luo

    Yiyue Luo is a PhD candidate who is developing innovative integrations of tactile sensing and haptics, interactive sensing and AI, digital fabrication, and smart wearables. Her work takes advantage of recent advances in digital manufacturing and AI, and the convergence in advanced sensing and actuation mechanisms, scalable digital manufacturing, and emerging computational techniques, with the goal of creating novel sensing and actuation devices that revolutionize interactions between people and their environments. In past projects, Luo has developed tactile sensing apparel including socks, gloves, and vests, as well as a workflow for computationally designing and digitally fabricating soft textiles-based pneumatic actuators. With the support of an Accenture Fellowship, she will advance her work of combining sensing and actuating devices and explore the development of haptic devices that simulate tactile cues captured by tactile sensors. Her ultimate aim is to build a scalable, textile-based, closed-loop human-machine interface. Luo’s research holds exciting potential to advance ground-breaking applications for smart textiles, health care, artificial and virtual reality, human-machine interactions, and robotics.

    Zanele Munyikwa is a PhD candidate whose research explores foundation models, a class of models that forms the basis of transformative general-purpose technologies (GPTs) such as GPT4. An Accenture Fellowship will enable Munyikwa to conduct research aimed at illuminating the current and potential impact of foundation models (including large language models) on work and tasks common to “high-skilled” knowledge workers in industries such as marketing, legal services, and medicine, in which foundation models are expected to have significant economic and social impacts. A primary goal of her project is to observe the impact of AI augmentation on tasks like copywriting and long-form writing. A second aim is to explore two primary ways that foundation models are driving the convergence of creative and technological industries, namely: reducing the cost of content generation and enabling the development of tools and platforms for education and training. Munyikwa’s work has important implications for the use of foundation models in many fields, from health care and education to legal services, business, and technology.

    Michelle Vaccaro is a PhD candidate in social engineering systems whose research explores human-AI collaboration with the goals of developing a deeper understanding of AI-based technologies (including ChatGPT and DALL-E), evaluating their performance and evolution, and steering their development toward societally beneficial applications, like climate change mitigation. An Accenture Fellowship will support Vaccaro’s current work toward two key objectives: identifying synergies between humans and AI-based software to help design human-AI systems that address persistent problems better than existing approaches; and investigating applications of human-AI collaboration for forecasting technological change, specifically for renewable energy technologies. By integrating the historically distinct domains of AI, systems engineering, and cognitive science with a wide range of industries, technical fields, and social applications, Vaccaro’s work has the potential to advance individual and collective productivity and creativity in all these areas.

    Chonghuan Wang is a PhD candidate in computational science and engineering whose research employs statistical learning, econometrics theory, and experimental design to create efficient, reliable, and sustainable field experiments in various domains. In his current work, Wang is applying statistical learning techniques such as online learning and bandit theory to test the effectiveness of new treatments, vaccinations, and health care interventions. With the support of an Accenture Fellowship, he will design experiments with the specific aim of understanding the trade-off between the loss of a patient’s welfare and the accuracy of estimating the treatment effect. The results of this research could help to save lives and contain disease outbreaks during pandemics like Covid-19. The benefits of enhanced experiment design and the collection of high-quality data extend well beyond health care; for example, these tools could help businesses optimize user engagement, test pricing impacts, and increase the usage of platforms and services. Wang’s research holds exciting potential to harness statistical learning, econometrics theory, and experimental design in support of strong businesses and the greater social good.

    Aaron Michael West Jr. is a PhD candidate whose research seeks to enhance our knowledge of human motor control and robotics. His work aims to advance rehabilitation technologies and prosthetic devices, as well as improve robot dexterity. His previous work has yielded valuable insights into the human ability to extract information solely from visual displays. Specifically, he demonstrated humans’ ability to estimate stiffness based solely on the visual observation of motion. These insights could advance the development of software applications with the same capability (e.g., using machine learning methods applied to video data) and may enable roboticists to develop enhanced motion control such that a robot’s intention is perceivable by humans. An Accenture Fellowship will enable West to continue this work, as well as new investigations into the functionality of the human hand to aid in the design of a prosthetic hand that better replicates human dexterity. By advancing understandings of human bio- and neuro-mechanics, West’s work has the potential to support major advances in robotics and rehabilitation technologies, with profound impacts on human health and well-being. More

  • in

    M’Care and MIT students join forces to improve child health in Nigeria

    Through a collaboration between M’Care, a 2021 Health Security and Pandemics Solver team, and students from MIT, the landscape of child health care in Nigeria could undergo a transformative change, wherein the power of data is harnessed to improve child health outcomes in economically disadvantaged communities. 

    M’Care is a mobile application of Promane and Promade Limited, developed by Opeoluwa Ashimi, which gives community health workers in Nigeria real-time diagnostic and treatment support. The application also creates a dashboard that is available to government health officials to help identify disease trends and deploy timely interventions. As part of its work, M’Care is working to mitigate malnutrition by providing micronutrient powder, vitamin A, and zinc to children below the age of 5. To help deepen its impact, Ashimi decided to work with students in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) course 6.S897 (Machine Learning for Healthcare) — instructed by professors Peter Szolovits and Manolis Kellis — to leverage data in order to improve nutrient delivery to children across Nigeria. The collaboration also enabled students to see real-world applications for data analysis in the health care space.

    A meeting of minds: M’Care, MIT, and national health authorities

    “Our primary goal for collaborating with the ML for Health team was to spot the missing link in the continuum of care. With over 1 million cumulative consultations that qualify for a continuum of care evaluation, it was important to spot why patients could be lost to followup, prevent this, and ensure completion of care to successfully address the health needs of our patients,” says Ashimi, founder and CEO of M’Care.

    In May 2023, Ashimi attended a meeting that brought together key national stakeholders, including the representatives of the National Ministry of Health in Nigeria. This gathering served as a platform to discuss the profound impact of M’Care’s and ML for Health team’s collaboration — bolstered by data analysis provided on dosage regimens and a child’s age to enhance continuum of care with its attendant impact on children’s health, particularly in relation to brain development with regards to the use of essential micronutrients. The data analyzed by the students using ML methods that were shared during the meeting provided strong supporting evidence to individualize dosage regimens for children based on their age in months for the ANRIN project — a national nutrition project supported by the World Bank — as well as policy decisions to extend months of coverage for children, redefining health care practices in Nigeria.

    MIT students drive change by harnessing the power of data

    At the heart of this collaboration lies the contribution of MIT students. Armed with their dedication and skill in data analysis and machine learning, they played a pivotal role in helping M’Care analyze their data and prepare for their meeting with the Ministry of Health. Their most significant findings included ways to identify patients at risk of not completing their full course of micronutrient powder and/or vitamin A, and identifying gaps in M’Care’s data, such as postdated delivery dates and community demographics. These findings are already helping M’Care better plan its resources and adjust the scope of its program to ensure more children complete the intervention.

    Darcy Kim, an undergraduate at Wellesley College studying math and computer science, who is cross-registered for the MIT machine learning course, expresses enthusiasm about the practical applications found within the project: “To me, data and math is storytelling, and the story is why I love studying it. … I learned that data exploration involves asking questions about how the data is collected, and that surprising patterns that arise often have a qualitative explanation. Impactful research requires radical collaboration with the people the research intends to help. Otherwise, these qualitative explanations get lost in the numbers.”

    Joyce Luo, a first-year operations research PhD student at the Operations Research Center at MIT, shares similar thoughts about the project: “I learned the importance of understanding the context behind data to figure out what kind of analysis might be most impactful. This involves being in frequent contact with the company or organization who provides the data to learn as much as you can about how the data was collected and the people the analysis could help. Stepping back and looking at the bigger picture, rather than just focusing on accuracy or metrics, is extremely important.”

    Insights to implementation: A new era for micronutrient dosing

    As a direct result of M’Care’s collaboration with MIT, policymakers revamped the dosing scheme for essential micronutrient administration for children in Nigeria to prevent malnutrition. M’Care and MIT’s data analysis unearthed critical insights into the limited frequency of medical visits caused by late-age enrollment. 

    “One big takeaway for me was that the data analysis portion of the project — doing a deep dive into the data; understanding, analyzing, visualizing, and summarizing the data — can be just as important as building the machine learning models. M’Care shared our data analysis with the National Ministry of Health, and the insights from it drove them to change their dosing scheme and schedule for delivering micronutrient powder to young children. This really showed us the value of understanding and knowing your data before modeling,” shares Angela Lin, a second-year PhD student at the Operations Research Center.

    Armed with this knowledge, policymakers are eager to develop an optimized dosing scheme that caters to the unique needs of children in disadvantaged communities, ensuring maximum impact on their brain development and overall well-being.

    Siddharth Srivastava, M’Care’s corporate technology liaison, shares his gratitude for the MIT student’s input. “Collaborating with enthusiastic and driven students was both empowering and inspiring. Each of them brought unique perspectives and technical skills to the table. Their passion for applying machine learning to health care was evident in their unwavering dedication and proactive approach to problem-solving.”

    Forging a path to impact

    The collaboration between M’Care and MIT exemplifies the remarkable achievements that arise when academia, innovative problem-solvers, and policy authorities unite. By merging academic rigor with real-world expertise, this partnership has the potential to revolutionize child health care not only in Nigeria but also in similar contexts worldwide.

    “I believe applying innovative methods of machine learning, data gathering, instrumentation, and planning to real problems in the developing world can be highly effective for those countries and highly motivating for our students. I was happy to have such a project in our class portfolio this year and look forward to future opportunities,” says Peter Szolovits, professor of computer science and engineering at MIT.

    By harnessing the power of data, innovation, and collective expertise, this collaboration between M’Care and MIT has the potential to improve equitable child health care in Nigeria. “It has been so fulfilling to see how our team’s work has been able to create even the smallest positive impact in such a short period of time, and it has been amazing to work with a company like Promane and Promade Limited that is so knowledgeable and caring for the communities that they serve,” shares Elizabeth Whittier, a second-year PhD electrical engineering student at MIT. More

  • in

    How machine learning models can amplify inequities in medical diagnosis and treatment

    Prior to receiving a PhD in computer science from MIT in 2017, Marzyeh Ghassemi had already begun to wonder whether the use of AI techniques might enhance the biases that already existed in health care. She was one of the early researchers to take up this issue, and she’s been exploring it ever since. In a new paper, Ghassemi, now an assistant professor in MIT’s Department of Electrical Science and Engineering (EECS), and three collaborators based at the Computer Science and Artificial Intelligence Laboratory, have probed the roots of the disparities that can arise in machine learning, often causing models that perform well overall to falter when it comes to subgroups for which relatively few data have been collected and utilized in the training process. The paper — written by two MIT PhD students, Yuzhe Yang and Haoran Zhang, EECS computer scientist Dina Katabi (the Thuan and Nicole Pham Professor), and Ghassemi — was presented last month at the 40th International Conference on Machine Learning in Honolulu, Hawaii.

    In their analysis, the researchers focused on “subpopulation shifts” — differences in the way machine learning models perform for one subgroup as compared to another. “We want the models to be fair and work equally well for all groups, but instead we consistently observe the presence of shifts among different groups that can lead to inferior medical diagnosis and treatment,” says Yang, who along with Zhang are the two lead authors on the paper. The main point of their inquiry is to determine the kinds of subpopulation shifts that can occur and to uncover the mechanisms behind them so that, ultimately, more equitable models can be developed.

    The new paper “significantly advances our understanding” of the subpopulation shift phenomenon, claims Stanford University computer scientist Sanmi Koyejo. “This research contributes valuable insights for future advancements in machine learning models’ performance on underrepresented subgroups.”

    Camels and cattle

    The MIT group has identified four principal types of shifts — spurious correlations, attribute imbalance, class imbalance, and attribute generalization — which, according to Yang, “have never been put together into a coherent and unified framework. We’ve come up with a single equation that shows you where biases can come from.”

    Biases can, in fact, stem from what the researchers call the class, or from the attribute, or both. To pick a simple example, suppose the task assigned to the machine learning model is to sort images of objects — animals in this case — into two classes: cows and camels. Attributes are descriptors that don’t specifically relate to the class itself. It might turn out, for instance, that all the images used in the analysis show cows standing on grass and camels on sand — grass and sand serving as the attributes here. Given the data available to it, the machine could reach an erroneous conclusion — namely that cows can only be found on grass, not on sand, with the opposite being true for camels. Such a finding would be incorrect, however, giving rise to a spurious correlation, which, Yang explains, is a “special case” among subpopulation shifts — “one in which you have a bias in both the class and the attribute.”

    In a medical setting, one could rely on machine learning models to determine whether a person has pneumonia or not based on an examination of X-ray images. There would be two classes in this situation, one consisting of people who have the lung ailment, another for those who are infection-free. A relatively straightforward case would involve just two attributes: the people getting X-rayed are either female or male. If, in this particular dataset, there were 100 males diagnosed with pneumonia for every one female diagnosed with pneumonia, that could lead to an attribute imbalance, and the model would likely do a better job of correctly detecting pneumonia for a man than for a woman. Similarly, having 1,000 times more healthy (pneumonia-free) subjects than sick ones would lead to a class imbalance, with the model biased toward healthy cases. Attribute generalization is the last shift highlighted in the new study. If your sample contained 100 male patients with pneumonia and zero female subjects with the same illness, you still would like the model to be able to generalize and make predictions about female subjects even though there are no samples in the training data for females with pneumonia.

    The team then took 20 advanced algorithms, designed to carry out classification tasks, and tested them on a dozen datasets to see how they performed across different population groups. They reached some unexpected conclusions: By improving the “classifier,” which is the last layer of the neural network, they were able to reduce the occurrence of spurious correlations and class imbalance, but the other shifts were unaffected. Improvements to the “encoder,” one of the uppermost layers in the neural network, could reduce the problem of attribute imbalance. “However, no matter what we did to the encoder or classifier, we did not see any improvements in terms of attribute generalization,” Yang says, “and we don’t yet know how to address that.”

    Precisely accurate

    There is also the question of assessing how well your model actually works in terms of evenhandedness among different population groups. The metric normally used, called worst-group accuracy or WGA, is based on the assumption that if you can improve the accuracy — of, say, medical diagnosis — for the group that has the worst model performance, you would have improved the model as a whole. “The WGA is considered the gold standard in subpopulation evaluation,” the authors contend, but they made a surprising discovery: boosting worst-group accuracy results in a decrease in what they call “worst-case precision.” In medical decision-making of all sorts, one needs both accuracy — which speaks to the validity of the findings — and precision, which relates to the reliability of the methodology. “Precision and accuracy are both very important metrics in classification tasks, and that is especially true in medical diagnostics,” Yang explains. “You should never trade precision for accuracy. You always need to balance the two.”

    The MIT scientists are putting their theories into practice. In a study they’re conducting with a medical center, they’re looking at public datasets for tens of thousands of patients and hundreds of thousands of chest X-rays, trying to see whether it’s possible for machine learning models to work in an unbiased manner for all populations. That’s still far from the case, even though more awareness has been drawn to this problem, Yang says. “We are finding many disparities across different ages, gender, ethnicity, and intersectional groups.”

    He and his colleagues agree on the eventual goal, which is to achieve fairness in health care among all populations. But before we can reach that point, they maintain, we still need a better understanding of the sources of unfairness and how they permeate our current system. Reforming the system as a whole will not be easy, they acknowledge. In fact, the title of the paper they introduced at the Honolulu conference, “Change is Hard,” gives some indications as to the challenges that they and like-minded researchers face. More

  • in

    Novo Nordisk to support MIT postdocs working at the intersection of AI and life sciences

    MIT’s School of Engineering and global health care company Novo Nordisk has announced the launch of a multi-year program to support postdoctoral fellows conducting research at the intersection of artificial intelligence and data science with life sciences. The MIT-Novo Nordisk Artificial Intelligence Postdoctoral Fellows Program will welcome its first cohort of up to 10 postdocs for a two-year term this fall. The program will provide up to $10 million for an annual cohort of up to 10 postdoc for two-year terms.

    “The research being conducted at the intersection of AI and life sciences has the potential to transform health care as we know it,” says Anantha Chandrakasan, dean of the School of Engineering and Vannevar Bush Professor of Electrical Engineering and Computer Science. “I am thrilled that the MIT-Novo Nordisk Program will support early-career researchers who work in this space.”

    The launch of the MIT-Novo Nordisk Program coincides with the 100th anniversary celebration of Novo Nordisk. The company was founded in 1923 and treated its first patients with insulin, which had recently been discovered in March of that year.

    “The use of AI in the health care industry presents a massive opportunity to improve the lives of people living with chronic diseases,” says Thomas Senderovitz, senior vice president for data science at Novo Nordisk. “Novo Nordisk is committed to the development of new, innovative solutions, and MIT hosts some of the most outstanding researchers in the field. We are therefore excited to support postdocs working on the cutting edge of AI and life sciences.”

    The MIT-Novo Nordisk Program will support postdocs advancing the use of AI in life science and health. Postdocs will join an annual cohort that participates in frequent events and gatherings. The cohort will meet regularly to exchange ideas about their work and discuss ways to amplify their impact.

    “We are excited to welcome postdocs working on AI, data science, health, and life sciences — research areas of strategic importance across MIT,” adds Chandrakasan.

    A central focus of the program will be offering postdocs professional development and mentorship opportunities. Fellows will be invited to entrepreneurship-focused workshops that enable them to learn from company founders, venture capitalists, and other entrepreneurial leaders. Fellows will also have the opportunity to receive mentorship from experts in life sciences and data science.

    “MIT is always exploring opportunities to innovate and enhance the postdoctoral experience,” adds MIT Provost Cynthia Barnhart. “The MIT-Novo Nordisk Program has been thoughtfully designed to introduce fellows to a wealth of experiences, skill sets, and perspectives that support their professional growth while prioritizing a sense of community with their cohort.”

    Angela Belcher, head of the Department of Biological Engineering, the James Mason Crafts Professor of Biological Engineering and Materials Science, and member of the Koch Institute for Integrative Cancer Research, and Asu Ozdaglar, deputy dean of academics for the MIT Schwarzman College of Computing and head of the Department of Electrical Engineering and Computer Science, will serve as co-faculty leads for the program.

    The new program complements a separate postdoctoral fellowship program at MIT supported by the Novo Nordisk Foundation that focuses on enabling interdisciplinary research. More

  • in

    Bringing the social and ethical responsibilities of computing to the forefront

    There has been a remarkable surge in the use of algorithms and artificial intelligence to address a wide range of problems and challenges. While their adoption, particularly with the rise of AI, is reshaping nearly every industry sector, discipline, and area of research, such innovations often expose unexpected consequences that involve new norms, new expectations, and new rules and laws.

    To facilitate deeper understanding, the Social and Ethical Responsibilities of Computing (SERC), a cross-cutting initiative in the MIT Schwarzman College of Computing, recently brought together social scientists and humanists with computer scientists, engineers, and other computing faculty for an exploration of the ways in which the broad applicability of algorithms and AI has presented both opportunities and challenges in many aspects of society.

    “The very nature of our reality is changing. AI has the ability to do things that until recently were solely the realm of human intelligence — things that can challenge our understanding of what it means to be human,” remarked Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing, in his opening address at the inaugural SERC Symposium. “This poses philosophical, conceptual, and practical questions on a scale not experienced since the start of the Enlightenment. In the face of such profound change, we need new conceptual maps for navigating the change.”

    The symposium offered a glimpse into the vision and activities of SERC in both research and education. “We believe our responsibility with SERC is to educate and equip our students and enable our faculty to contribute to responsible technology development and deployment,” said Georgia Perakis, the William F. Pounds Professor of Management in the MIT Sloan School of Management, co-associate dean of SERC, and the lead organizer of the symposium. “We’re drawing from the many strengths and diversity of disciplines across MIT and beyond and bringing them together to gain multiple viewpoints.”

    Through a succession of panels and sessions, the symposium delved into a variety of topics related to the societal and ethical dimensions of computing. In addition, 37 undergraduate and graduate students from a range of majors, including urban studies and planning, political science, mathematics, biology, electrical engineering and computer science, and brain and cognitive sciences, participated in a poster session to exhibit their research in this space, covering such topics as quantum ethics, AI collusion in storage markets, computing waste, and empowering users on social platforms for better content credibility.

    Showcasing a diversity of work

    In three sessions devoted to themes of beneficent and fair computing, equitable and personalized health, and algorithms and humans, the SERC Symposium showcased work by 12 faculty members across these domains.

    One such project from a multidisciplinary team of archaeologists, architects, digital artists, and computational social scientists aimed to preserve endangered heritage sites in Afghanistan with digital twins. The project team produced highly detailed interrogable 3D models of the heritage sites, in addition to extended reality and virtual reality experiences, as learning resources for audiences that cannot access these sites.

    In a project for the United Network for Organ Sharing, researchers showed how they used applied analytics to optimize various facets of an organ allocation system in the United States that is currently undergoing a major overhaul in order to make it more efficient, equitable, and inclusive for different racial, age, and gender groups, among others.

    Another talk discussed an area that has not yet received adequate public attention: the broader implications for equity that biased sensor data holds for the next generation of models in computing and health care.

    A talk on bias in algorithms considered both human bias and algorithmic bias, and the potential for improving results by taking into account differences in the nature of the two kinds of bias.

    Other highlighted research included the interaction between online platforms and human psychology; a study on whether decision-makers make systemic prediction mistakes on the available information; and an illustration of how advanced analytics and computation can be leveraged to inform supply chain management, operations, and regulatory work in the food and pharmaceutical industries.

    Improving the algorithms of tomorrow

    “Algorithms are, without question, impacting every aspect of our lives,” said Asu Ozdaglar, deputy dean of academics for the MIT Schwarzman College of Computing and head of the Department of Electrical Engineering and Computer Science, in kicking off a panel she moderated on the implications of data and algorithms.

    “Whether it’s in the context of social media, online commerce, automated tasks, and now a much wider range of creative interactions with the advent of generative AI tools and large language models, there’s little doubt that much more is to come,” Ozdaglar said. “While the promise is evident to all of us, there’s a lot to be concerned as well. This is very much time for imaginative thinking and careful deliberation to improve the algorithms of tomorrow.”

    Turning to the panel, Ozdaglar asked experts from computing, social science, and data science for insights on how to understand what is to come and shape it to enrich outcomes for the majority of humanity.

    Sarah Williams, associate professor of technology and urban planning at MIT, emphasized the critical importance of comprehending the process of how datasets are assembled, as data are the foundation for all models. She also stressed the need for research to address the potential implication of biases in algorithms that often find their way in through their creators and the data used in their development. “It’s up to us to think about our own ethical solutions to these problems,” she said. “Just as it’s important to progress with the technology, we need to start the field of looking at these questions of what biases are in the algorithms? What biases are in the data, or in that data’s journey?”

    Shifting focus to generative models and whether the development and use of these technologies should be regulated, the panelists — which also included MIT’s Srini Devadas, professor of electrical engineering and computer science, John Horton, professor of information technology, and Simon Johnson, professor of entrepreneurship — all concurred that regulating open-source algorithms, which are publicly accessible, would be difficult given that regulators are still catching up and struggling to even set guardrails for technology that is now 20 years old.

    Returning to the question of how to effectively regulate the use of these technologies, Johnson proposed a progressive corporate tax system as a potential solution. He recommends basing companies’ tax payments on their profits, especially for large corporations whose massive earnings go largely untaxed due to offshore banking. By doing so, Johnson said that this approach can serve as a regulatory mechanism that discourages companies from trying to “own the entire world” by imposing disincentives.

    The role of ethics in computing education

    As computing continues to advance with no signs of slowing down, it is critical to educate students to be intentional in the social impact of the technologies they will be developing and deploying into the world. But can one actually be taught such things? If so, how?

    Caspar Hare, professor of philosophy at MIT and co-associate dean of SERC, posed this looming question to faculty on a panel he moderated on the role of ethics in computing education. All experienced in teaching ethics and thinking about the social implications of computing, each panelist shared their perspective and approach.

    A strong advocate for the importance of learning from history, Eden Medina, associate professor of science, technology, and society at MIT, said that “often the way we frame computing is that everything is new. One of the things that I do in my teaching is look at how people have confronted these issues in the past and try to draw from them as a way to think about possible ways forward.” Medina regularly uses case studies in her classes and referred to a paper written by Yale University science historian Joanna Radin on the Pima Indian Diabetes Dataset that raised ethical issues on the history of that particular collection of data that many don’t consider as an example of how decisions around technology and data can grow out of very specific contexts.

    Milo Phillips-Brown, associate professor of philosophy at Oxford University, talked about the Ethical Computing Protocol that he co-created while he was a SERC postdoc at MIT. The protocol, a four-step approach to building technology responsibly, is designed to train computer science students to think in a better and more accurate way about the social implications of technology by breaking the process down into more manageable steps. “The basic approach that we take very much draws on the fields of value-sensitive design, responsible research and innovation, participatory design as guiding insights, and then is also fundamentally interdisciplinary,” he said.

    Fields such as biomedicine and law have an ethics ecosystem that distributes the function of ethical reasoning in these areas. Oversight and regulation are provided to guide front-line stakeholders and decision-makers when issues arise, as are training programs and access to interdisciplinary expertise that they can draw from. “In this space, we have none of that,” said John Basl, associate professor of philosophy at Northeastern University. “For current generations of computer scientists and other decision-makers, we’re actually making them do the ethical reasoning on their own.” Basl commented further that teaching core ethical reasoning skills across the curriculum, not just in philosophy classes, is essential, and that the goal shouldn’t be for every computer scientist be a professional ethicist, but for them to know enough of the landscape to be able to ask the right questions and seek out the relevant expertise and resources that exists.

    After the final session, interdisciplinary groups of faculty, students, and researchers engaged in animated discussions related to the issues covered throughout the day during a reception that marked the conclusion of the symposium. More

  • in

    Joining the battle against health care bias

    Medical researchers are awash in a tsunami of clinical data. But we need major changes in how we gather, share, and apply this data to bring its benefits to all, says Leo Anthony Celi, principal research scientist at the MIT Laboratory for Computational Physiology (LCP). 

    One key change is to make clinical data of all kinds openly available, with the proper privacy safeguards, says Celi, a practicing intensive care unit (ICU) physician at the Beth Israel Deaconess Medical Center (BIDMC) in Boston. Another key is to fully exploit these open data with multidisciplinary collaborations among clinicians, academic investigators, and industry. A third key is to focus on the varying needs of populations across every country, and to empower the experts there to drive advances in treatment, says Celi, who is also an associate professor at Harvard Medical School. 

    In all of this work, researchers must actively seek to overcome the perennial problem of bias in understanding and applying medical knowledge. This deeply damaging problem is only heightened with the massive onslaught of machine learning and other artificial intelligence technologies. “Computers will pick up all our unconscious, implicit biases when we make decisions,” Celi warns.

    Play video

    Sharing medical data 

    Founded by the LCP, the MIT Critical Data consortium builds communities across disciplines to leverage the data that are routinely collected in the process of ICU care to understand health and disease better. “We connect people and align incentives,” Celi says. “In order to advance, hospitals need to work with universities, who need to work with industry partners, who need access to clinicians and data.” 

    The consortium’s flagship project is the MIMIC (medical information marked for intensive care) ICU database built at BIDMC. With about 35,000 users around the world, the MIMIC cohort is the most widely analyzed in critical care medicine. 

    International collaborations such as MIMIC highlight one of the biggest obstacles in health care: most clinical research is performed in rich countries, typically with most clinical trial participants being white males. “The findings of these trials are translated into treatment recommendations for every patient around the world,” says Celi. “We think that this is a major contributor to the sub-optimal outcomes that we see in the treatment of all sorts of diseases in Africa, in Asia, in Latin America.” 

    To fix this problem, “groups who are disproportionately burdened by disease should be setting the research agenda,” Celi says. 

    That’s the rule in the “datathons” (health hackathons) that MIT Critical Data has organized in more than two dozen countries, which apply the latest data science techniques to real-world health data. At the datathons, MIT students and faculty both learn from local experts and share their own skill sets. Many of these several-day events are sponsored by the MIT Industrial Liaison Program, the MIT International Science and Technology Initiatives program, or the MIT Sloan Latin America Office. 

    Datathons are typically held in that country’s national language or dialect, rather than English, with representation from academia, industry, government, and other stakeholders. Doctors, nurses, pharmacists, and social workers join up with computer science, engineering, and humanities students to brainstorm and analyze potential solutions. “They need each other’s expertise to fully leverage and discover and validate the knowledge that is encrypted in the data, and that will be translated into the way they deliver care,” says Celi. 

    “Everywhere we go, there is incredible talent that is completely capable of designing solutions to their health-care problems,” he emphasizes. The datathons aim to further empower the professionals and students in the host countries to drive medical research, innovation, and entrepreneurship.

    Play video

    Fighting built-in bias 

    Applying machine learning and other advanced data science techniques to medical data reveals that “bias exists in the data in unimaginable ways” in every type of health product, Celi says. Often this bias is rooted in the clinical trials required to approve medical devices and therapies. 

    One dramatic example comes from pulse oximeters, which provide readouts on oxygen levels in a patient’s blood. It turns out that these devices overestimate oxygen levels for people of color. “We have been under-treating individuals of color because the nurses and the doctors have been falsely assured that their patients have adequate oxygenation,” he says. “We think that we have harmed, if not killed, a lot of individuals in the past, especially during Covid, as a result of a technology that was not designed with inclusive test subjects.” 

    Such dangers only increase as the universe of medical data expands. “The data that we have available now for research is maybe two or three levels of magnitude more than what we had even 10 years ago,” Celi says. MIMIC, for example, now includes terabytes of X-ray, echocardiogram, and electrocardiogram data, all linked with related health records. Such enormous sets of data allow investigators to detect health patterns that were previously invisible. 

    “But there is a caveat,” Celi says. “It is trivial for computers to learn sensitive attributes that are not very obvious to human experts.” In a study released last year, for instance, he and his colleagues showed that algorithms can tell if a chest X-ray image belongs to a white patient or person of color, even without looking at any other clinical data. 

    “More concerningly, groups including ours have demonstrated that computers can learn easily if you’re rich or poor, just from your imaging alone,” Celi says. “We were able to train a computer to predict if you are on Medicaid, or if you have private insurance, if you feed them with chest X-rays without any abnormality. So again, computers are catching features that are not visible to the human eye.” And these features may lead algorithms to advise against therapies for people who are Black or poor, he says. 

    Opening up industry opportunities 

    Every stakeholder stands to benefit when pharmaceutical firms and other health-care corporations better understand societal needs and can target their treatments appropriately, Celi says. 

    “We need to bring to the table the vendors of electronic health records and the medical device manufacturers, as well as the pharmaceutical companies,” he explains. “They need to be more aware of the disparities in the way that they perform their research. They need to have more investigators representing underrepresented groups of people, to provide that lens to come up with better designs of health products.” 

    Corporations could benefit by sharing results from their clinical trials, and could immediately see these potential benefits by participating in datathons, Celi says. “They could really witness the magic that happens when that data is curated and analyzed by students and clinicians with different backgrounds from different countries. So we’re calling out our partners in the pharmaceutical industry to organize these events with us!”  More

  • in

    Researchers develop novel AI-based estimator for manufacturing medicine

    When medical companies manufacture the pills and tablets that treat any number of illnesses, aches, and pains, they need to isolate the active pharmaceutical ingredient from a suspension and dry it. The process requires a human operator to monitor an industrial dryer, agitate the material, and watch for the compound to take on the right qualities for compressing into medicine. The job depends heavily on the operator’s observations.   

    Methods for making that process less subjective and a lot more efficient are the subject of a recent Nature Communications paper authored by researchers at MIT and Takeda. The paper’s authors devise a way to use physics and machine learning to categorize the rough surfaces that characterize particles in a mixture. The technique, which uses a physics-enhanced autocorrelation-based estimator (PEACE), could change pharmaceutical manufacturing processes for pills and powders, increasing efficiency and accuracy and resulting in fewer failed batches of pharmaceutical products.  

    “Failed batches or failed steps in the pharmaceutical process are very serious,” says Allan Myerson, a professor of practice in the MIT Department of Chemical Engineering and one of the study’s authors. “Anything that improves the reliability of the pharmaceutical manufacturing, reduces time, and improves compliance is a big deal.”

    The team’s work is part of an ongoing collaboration between Takeda and MIT, launched in 2020. The MIT-Takeda Program aims to leverage the experience of both MIT and Takeda to solve problems at the intersection of medicine, artificial intelligence, and health care.

    In pharmaceutical manufacturing, determining whether a compound is adequately mixed and dried ordinarily requires stopping an industrial-sized dryer and taking samples off the manufacturing line for testing. Researchers at Takeda thought artificial intelligence could improve the task and reduce stoppages that slow down production. Originally the research team planned to use videos to train a computer model to replace a human operator. But determining which videos to use to train the model still proved too subjective. Instead, the MIT-Takeda team decided to illuminate particles with a laser during filtration and drying, and measure particle size distribution using physics and machine learning. 

    “We just shine a laser beam on top of this drying surface and observe,” says Qihang Zhang, a doctoral student in MIT’s Department of Electrical Engineering and Computer Science and the study’s first author. 

    Play video

    A physics-derived equation describes the interaction between the laser and the mixture, while machine learning characterizes the particle sizes. The process doesn’t require stopping and starting the process, which means the entire job is more secure and more efficient than standard operating procedure, according to George Barbastathis, professor of mechanical engineering at MIT and corresponding author of the study.

    The machine learning algorithm also does not require many datasets to learn its job, because the physics allows for speedy training of the neural network.

    “We utilize the physics to compensate for the lack of training data, so that we can train the neural network in an efficient way,” says Zhang. “Only a tiny amount of experimental data is enough to get a good result.”

    Today, the only inline processes used for particle measurements in the pharmaceutical industry are for slurry products, where crystals float in a liquid. There is no method for measuring particles within a powder during mixing. Powders can be made from slurries, but when a liquid is filtered and dried its composition changes, requiring new measurements. In addition to making the process quicker and more efficient, using the PEACE mechanism makes the job safer because it requires less handling of potentially highly potent materials, the authors say. 

    The ramifications for pharmaceutical manufacturing could be significant, allowing drug production to be more efficient, sustainable, and cost-effective, by reducing the number of experiments companies need to conduct when making products. Monitoring the characteristics of a drying mixture is an issue the industry has long struggled with, according to Charles Papageorgiou, the director of Takeda’s Process Chemistry Development group and one of the study’s authors. 

    “It is a problem that a lot of people are trying to solve, and there isn’t a good sensor out there,” says Papageorgiou. “This is a pretty big step change, I think, with respect to being able to monitor, in real time, particle size distribution.”

    Papageorgiou said that the mechanism could have applications in other industrial pharmaceutical operations. At some point, the laser technology may be able to train video imaging, allowing manufacturers to use a camera for analysis rather than laser measurements. The company is now working to assess the tool on different compounds in its lab. 

    The results come directly from collaboration between Takeda and three MIT departments: Mechanical Engineering, Chemical Engineering, and Electrical Engineering and Computer Science. Over the last three years, researchers at MIT and Takeda have worked together on 19 projects focused on applying machine learning and artificial intelligence to problems in the health-care and medical industry as part of the MIT-Takeda Program. 

    Often, it can take years for academic research to translate to industrial processes. But researchers are hopeful that direct collaboration could shorten that timeline. Takeda is a walking distance away from MIT’s campus, which allowed researchers to set up tests in the company’s lab, and real-time feedback from Takeda helped MIT researchers structure their research based on the company’s equipment and operations. 

    Combining the expertise and mission of both entities helps researchers ensure their experimental results will have real-world implications. The team has already filed for two patents and has plans to file for a third.   More