More stories

  • in

    Bridging the gap between preschool policy, practice, and research

    Preschool in the United States has grown dramatically in the past several decades. From 1970 to 2018, preschool enrollment increased from 38 percent to 64 percent of eligible students. Fourteen states are currently discussing preschool expansion, with seven likely to pass some form of universal eligibility within the next calendar year. Amid this expansion, families, policymakers, and practitioners want to better understand preschools’ impacts and the factors driving preschool quality. 

    To address these and other questions, MIT Blueprint Labs recently held a Preschool Research Convening that brought researchers, funders, practitioners, and policymakers to Nashville, Tennessee, to discuss the future of preschool research. Parag Pathak, the Class of 1922 Professor of Economics at MIT and a Blueprint Labs co-founder and director, opened by sharing the goals of the convening: “Our goals for the next two days are to identify pressing, unanswered research questions and connect researchers, practitioners, policymakers, and funders. We also hope to craft a compelling research agenda.”

    Pathak added, “Given preschool expansion nationwide, we believe now is the moment to centralize our efforts and create knowledge to inform pressing decisions. We aim to generate rigorous preschool research that will lead to higher-quality and more equitable preschool.”

    Over 75 participants hailing from universities, early childhood education organizations, school districts, state education departments, and national policy organizations attended the convening, held Nov. 13-14. Through panels, presentations, and conversations, participants discussed essential subjects in the preschool space, built the foundations for valuable partnerships, and formed an actionable and inclusive research agenda.

    Research presented

    Among research works presented was a recent paper by Blueprint Labs affiliate Jesse Bruhn, an assistant professor of economics at Brown University and co-author Emily Emick, also of Brown, reviewing the state of lottery-based preschool research. They found that random evaluations from the past 60 years demonstrate that preschool improves children’s short-run academic outcomes, but those effects fade over time. However, positive impacts re-emerge in the long term through improved outcomes like high school graduation and college enrollment. Limited rigorous research studies children’s behavioral outcomes or the factors that lead to high-quality preschool, though trends from preliminary research suggest that full-day programs, language immersion programs, and specific curricula may benefit children.  

    An earlier Blueprint Labs study that was also presented at the convening is the only recent lottery-based study to provide insight on preschool’s long-term impacts. The work, conducted by Pathak and two others, reveals that enrolling in Boston Public Schools’ universal preschool program boosts children’s likelihood of graduating high school and enrolling in college. Yet, the preschool program had little detectable impact on elementary, middle, and high school state standardized test scores. Students who attended Boston preschool were less likely to be suspended or incarcerated in high school. However, research on preschool’s impacts on behavioral outcomes is limited; it remains an important area for further study. Future work could also fill in other gaps in research, such as access, alternative measures of student success, and variation across geographic contexts and student populations.

    More data sought

    State policy leaders also spoke at the event, including Lisa Roy, executive director of the Colorado Department of Early Childhood, and Sarah Neville-Morgan, deputy superintendent in the Opportunities for All Branch at the California Department of Education. Local practitioners, such as Elsa Holguín, president and CEO of the Denver Preschool Program, and Kristin Spanos, CEO of First 5 Alameda County, as well as national policy leaders including Lauren Hogan, managing director of policy and professional advancement at the National Association for the Education of Young Children, also shared their perspectives. 

    In panel discussions held throughout the kickoff, practitioners, policymakers, and researchers shared their perspectives on pressing questions for future research, including: What practices define high-quality preschool? How does preschool affect family systems and the workforce? How can we expand measures of effectiveness to move beyond traditional assessments? What can we learn from preschool’s differential impacts across time, settings, models, and geographies?

    Panelists also discussed the need for reliable data, sharing that “the absence of data allows the status quo to persist.” Several sessions focused on involving diverse stakeholders in the research process, highlighting the need for transparency, sensitivity to community contexts, and accessible communication about research findings.

    On the second day of the Preschool Research Convening, Pathak shared with attendees, “One of our goals… is to forge connections between all of you in this room and support new partnerships between researchers and practitioners. We hope your conversations are the launching pad for future collaborations.” Jason Sachs, the deputy director of early learning at the Bill and Melinda Gates Foundation and former director of early childhood at Boston Public Schools, provided closing remarks.

    The convening laid the groundwork for a research agenda and new research partnerships that can help answer questions about what works, in what context, for which kids, and under which conditions. Answers to these questions will be fundamental to ensure preschool expands in the most evidence-informed and equitable way possible.

    With this goal in mind, Blueprint Labs aims to create a new Preschool Research Collaborative to equip practitioners, policymakers, funders, and researchers with rigorous, actionable evidence on preschool performance. Pathak states, “We hope this collaborative will foster evidence-based decision-making that improves children’s short- and long-term outcomes.” The connections and research agenda formed at the Preschool Research Convening are the first steps toward achieving that goal. More

  • in

    Co-creating climate futures with real-time data and spatial storytelling

    Virtual story worlds and game engines aren’t just for video games anymore. They are now tools for scientists and storytellers to digitally twin existing physical spaces and then turn them into vessels to dream up speculative climate stories and build collective designs of the future. That’s the theory and practice behind the MIT WORLDING initiative.

    Twice this year, WORLDING matched world-class climate story teams working in XR (extended reality) with relevant labs and researchers across MIT. One global group returned for a virtual gathering online in partnership with Unity for Humanity, while another met for one weekend in person, hosted at the MIT Media Lab.

    “We are witnessing the birth of an emergent field that fuses climate science, urban planning, real-time 3D engines, nonfiction storytelling, and speculative fiction, and it is all fueled by the urgency of the climate crises,” says Katerina Cizek, lead designer of the WORLDING initiative at the Co-Creation Studio of MIT Open Documentary Lab. “Interdisciplinary teams are forming and blossoming around the planet to collectively imagine and tell stories of healthy, livable worlds in virtual 3D spaces and then finding direct ways to translate that back to earth, literally.”

    At this year’s virtual version of WORLDING, five multidisciplinary teams were selected from an open call. In a week-long series of research and development gatherings, the teams met with MIT scientists, staff, fellows, students, and graduates, as well as other leading figures in the field. Guests ranged from curators at film festivals such as Sundance and Venice, climate policy specialists, and award-winning media creators to software engineers and renowned Earth and atmosphere scientists. The teams heard from MIT scholars in diverse domains, including geomorphology, urban planning as acts of democracy, and climate researchers at MIT Media Lab.

    Mapping climate data

    “We are measuring the Earth’s environment in increasingly data-driven ways. Hundreds of terabytes of data are taken every day about our planet in order to study the Earth as a holistic system, so we can address key questions about global climate change,” explains Rachel Connolly, an MIT Media Lab research scientist focused in the “Future Worlds” research theme, in a talk to the group. “Why is this important for your work and storytelling in general? Having the capacity to understand and leverage this data is critical for those who wish to design for and successfully operate in the dynamic Earth environment.”

    Making sense of billions of data points was a key theme during this year’s sessions. In another talk, Taylor Perron, an MIT professor of Earth, atmospheric and planetary sciences, shared how his team uses computational modeling combined with many other scientific processes to better understand how geology, climate, and life intertwine to shape the surfaces of Earth and other planets. His work resonated with one WORLDING team in particular, one aiming to digitally reconstruct the pre-Hispanic Lake Texcoco — where current day Mexico City is now situated — as a way to contrast and examine the region’s current water crisis.

    Democratizing the future

    While WORLDING approaches rely on rigorous science and the interrogation of large datasets, they are also founded on democratizing community-led approaches.

    MIT Department of Urban Studies and Planning graduate Lafayette Cruise MCP ’19 met with the teams to discuss how he moved his own practice as a trained urban planner to include a futurist component involving participatory methods. “I felt we were asking the same limited questions in regards to the future we were wanting to produce. We’re very limited, very constrained, as to whose values and comforts are being centered. There are so many possibilities for how the future could be.”

    Scaling to reach billions

    This work scales from the very local to massive global populations. Climate policymakers are concerned with reaching billions of people in the line of fire. “We have a goal to reach 1 billion people with climate resilience solutions,” says Nidhi Upadhyaya, deputy director at Atlantic Council’s Adrienne Arsht-Rockefeller Foundation Resilience Center. To get that reach, Upadhyaya is turning to games. “There are 3.3 billion-plus people playing video games across the world. Half of these players are women. This industry is worth $300 billion. Africa is currently among the fastest-growing gaming markets in the world, and 55 percent of the global players are in the Asia Pacific region.” She reminded the group that this conversation is about policy and how formats of mass communication can be used for policymaking, bringing about change, changing behavior, and creating empathy within audiences.

    Socially engaged game development is also connected to education at Unity Technologies, a game engine company. “We brought together our education and social impact work because we really see it as a critical flywheel for our business,” said Jessica Lindl, vice president and global head of social impact/education at Unity Technologies, in the opening talk of WORLDING. “We upscale about 900,000 students, in university and high school programs around the world, and about 800,000 adults who are actively learning and reskilling and upskilling in Unity. Ultimately resulting in our mission of the ‘world is a better place with more creators in it,’ millions of creators who reach billions of consumers — telling the world stories, and fostering a more inclusive, sustainable, and equitable world.”

    Access to these technologies is key, especially the hardware. “Accessibility has been missing in XR,” explains Reginé Gilbert, who studies and teaches accessibility and disability in user experience design at New York University. “XR is being used in artificial intelligence, assistive technology, business, retail, communications, education, empathy, entertainment, recreation, events, gaming, health, rehabilitation meetings, navigation, therapy, training, video programming, virtual assistance wayfinding, and so many other uses. This is a fun fact for folks: 97.8 percent of the world hasn’t tried VR [virtual reality] yet, actually.”

    Meanwhile, new hardware is on its way. The WORLDING group got early insights into the highly anticipated Apple Vision Pro headset, which promises to integrate many forms of XR and personal computing in one device. “They’re really pushing this kind of pass-through or mixed reality,” said Dan Miller, a Unity engineer on the poly spatial team, collaborating with Apple, who described the experience of the device as “You are viewing the real world. You’re pulling up windows, you’re interacting with content. It’s a kind of spatial computing device where you have multiple apps open, whether it’s your email client next to your messaging client with a 3D game in the middle. You’re interacting with all these things in the same space and at different times.”

    “WORLDING combines our passion for social-impact storytelling and incredible innovative storytelling,” said Paisley Smith of the Unity for Humanity Program at Unity Technologies. She added, “This is an opportunity for creators to incubate their game-changing projects and connect with experts across climate, story, and technology.”

    Meeting at MIT

    In a new in-person iteration of WORLDING this year, organizers collaborated closely with Connolly at the MIT Media Lab to co-design an in-person weekend conference Oct. 25 – Nov. 7 with 45 scholars and professionals who visualize climate data at NASA, the National Oceanic and Atmospheric Administration, planetariums, and museums across the United States.

    A participant said of the event, “An incredible workshop that had had a profound effect on my understanding of climate data storytelling and how to combine different components together for a more [holistic] solution.”

    “With this gathering under our new Future Worlds banner,” says Dava Newman, director of the MIT Media Lab and Apollo Program Professor of Astronautics chair, “the Media Lab seeks to affect human behavior and help societies everywhere to improve life here on Earth and in worlds beyond, so that all — the sentient, natural, and cosmic — worlds may flourish.” 

    “WORLDING’s virtual-only component has been our biggest strength because it has enabled a true, international cohort to gather, build, and create together. But this year, an in-person version showed broader opportunities that spatial interactivity generates — informal Q&As, physical worksheets, and larger-scale ideation, all leading to deeper trust-building,” says WORLDING producer Srushti Kamat SM ’23.

    The future and potential of WORLDING lies in the ongoing dialogue between the virtual and physical, both in the work itself and in the format of the workshops. More

  • in

    Leveraging language to understand machines

    Natural language conveys ideas, actions, information, and intent through context and syntax; further, there are volumes of it contained in databases. This makes it an excellent source of data to train machine-learning systems on. Two master’s of engineering students in the 6A MEng Thesis Program at MIT, Irene Terpstra ’23 and Rujul Gandhi ’22, are working with mentors in the MIT-IBM Watson AI Lab to use this power of natural language to build AI systems.

    As computing is becoming more advanced, researchers are looking to improve the hardware that they run on; this means innovating to create new computer chips. And, since there is literature already available on modifications that can be made to achieve certain parameters and performance, Terpstra and her mentors and advisors Anantha Chandrakasan, MIT School of Engineering dean and the Vannevar Bush Professor of Electrical Engineering and Computer Science, and IBM’s researcher Xin Zhang, are developing an AI algorithm that assists in chip design.

    “I’m creating a workflow to systematically analyze how these language models can help the circuit design process. What reasoning powers do they have, and how can it be integrated into the chip design process?” says Terpstra. “And then on the other side, if that proves to be useful enough, [we’ll] see if they can automatically design the chips themselves, attaching it to a reinforcement learning algorithm.”

    To do this, Terpstra’s team is creating an AI system that can iterate on different designs. It means experimenting with various pre-trained large language models (like ChatGPT, Llama 2, and Bard), using an open-source circuit simulator language called NGspice, which has the parameters of the chip in code form, and a reinforcement learning algorithm. With text prompts, researchers will be able to query how the physical chip should be modified to achieve a certain goal in the language model and produced guidance for adjustments. This is then transferred into a reinforcement learning algorithm that updates the circuit design and outputs new physical parameters of the chip.

    “The final goal would be to combine the reasoning powers and the knowledge base that is baked into these large language models and combine that with the optimization power of the reinforcement learning algorithms and have that design the chip itself,” says Terpstra.

    Rujul Gandhi works with the raw language itself. As an undergraduate at MIT, Gandhi explored linguistics and computer sciences, putting them together in her MEng work. “I’ve been interested in communication, both between just humans and between humans and computers,” Gandhi says.

    Robots or other interactive AI systems are one area where communication needs to be understood by both humans and machines. Researchers often write instructions for robots using formal logic. This helps ensure that commands are being followed safely and as intended, but formal logic can be difficult for users to understand, while natural language comes easily. To ensure this smooth communication, Gandhi and her advisors Yang Zhang of IBM and MIT assistant professor Chuchu Fan are building a parser that converts natural language instructions into a machine-friendly form. Leveraging the linguistic structure encoded by the pre-trained encoder-decoder model T5, and a dataset of annotated, basic English commands for performing certain tasks, Gandhi’s system identifies the smallest logical units, or atomic propositions, which are present in a given instruction.

    “Once you’ve given your instruction, the model identifies all the smaller sub-tasks you want it to carry out,” Gandhi says. “Then, using a large language model, each sub-task can be compared against the available actions and objects in the robot’s world, and if any sub-task can’t be carried out because a certain object is not recognized, or an action is not possible, the system can stop right there to ask the user for help.”

    This approach of breaking instructions into sub-tasks also allows her system to understand logical dependencies expressed in English, like, “do task X until event Y happens.” Gandhi uses a dataset of step-by-step instructions across robot task domains like navigation and manipulation, with a focus on household tasks. Using data that are written just the way humans would talk to each other has many advantages, she says, because it means a user can be more flexible about how they phrase their instructions.

    Another of Gandhi’s projects involves developing speech models. In the context of speech recognition, some languages are considered “low resource” since they might not have a lot of transcribed speech available, or might not have a written form at all. “One of the reasons I applied to this internship at the MIT-IBM Watson AI Lab was an interest in language processing for low-resource languages,” she says. “A lot of language models today are very data-driven, and when it’s not that easy to acquire all of that data, that’s when you need to use the limited data efficiently.” 

    Speech is just a stream of sound waves, but humans having a conversation can easily figure out where words and thoughts start and end. In speech processing, both humans and language models use their existing vocabulary to recognize word boundaries and understand the meaning. In low- or no-resource languages, a written vocabulary might not exist at all, so researchers can’t provide one to the model. Instead, the model can make note of what sound sequences occur together more frequently than others, and infer that those might be individual words or concepts. In Gandhi’s research group, these inferred words are then collected into a pseudo-vocabulary that serves as a labeling method for the low-resource language, creating labeled data for further applications.

    The applications for language technology are “pretty much everywhere,” Gandhi says. “You could imagine people being able to interact with software and devices in their native language, their native dialect. You could imagine improving all the voice assistants that we use. You could imagine it being used for translation or interpretation.” More

  • in

    Forging climate connections across the Institute

    Climate change is the ultimate cross-cutting issue: Not limited to any one discipline, it ranges across science, technology, policy, culture, human behavior, and well beyond. The response to it likewise requires an all-of-MIT effort.

    Now, to strengthen such an effort, a new grant program spearheaded by the Climate Nucleus, the faculty committee charged with the oversight and implementation of Fast Forward: MIT’s Climate Action Plan for the Decade, aims to build up MIT’s climate leadership capacity while also supporting innovative scholarship on diverse climate-related topics and forging new connections across the Institute.

    Called the Fast Forward Faculty Fund (F^4 for short), the program has named its first cohort of six faculty members after issuing its inaugural call for proposals in April 2023. The cohort will come together throughout the year for climate leadership development programming and networking. The program provides financial support for graduate students who will work with the faculty members on the projects — the students will also participate in leadership-building activities — as well as $50,000 in flexible, discretionary funding to be used to support related activities. 

    “Climate change is a crisis that truly touches every single person on the planet,” says Noelle Selin, co-chair of the nucleus and interim director of the Institute for Data, Systems, and Society. “It’s therefore essential that we build capacity for every member of the MIT community to make sense of the problem and help address it. Through the Fast Forward Faculty Fund, our aim is to have a cohort of climate ambassadors who can embed climate everywhere at the Institute.”

    F^4 supports both faculty who would like to begin doing climate-related work, as well as faculty members who are interested in deepening their work on climate. The program has the core goal of developing cohorts of F^4 faculty and graduate students who, in addition to conducting their own research, will become climate leaders at MIT, proactively looking for ways to forge new climate connections across schools, departments, and disciplines.

    One of the projects, “Climate Crisis and Real Estate: Science-based Mitigation and Adaptation Strategies,” led by Professor Siqi Zheng of the MIT Center for Real Estate in collaboration with colleagues from the MIT Sloan School of Management, focuses on the roughly 40 percent of carbon dioxide emissions that come from the buildings and real estate sector. Zheng notes that this sector has been slow to respond to climate change, but says that is starting to change, thanks in part to the rising awareness of climate risks and new local regulations aimed at reducing emissions from buildings.

    Using a data-driven approach, the project seeks to understand the efficient and equitable market incentives, technology solutions, and public policies that are most effective at transforming the real estate industry. Johnattan Ontiveros, a graduate student in the Technology and Policy Program, is working with Zheng on the project.

    “We were thrilled at the incredible response we received from the MIT faculty to our call for proposals, which speaks volumes about the depth and breadth of interest in climate at MIT,” says Anne White, nucleus co-chair and vice provost and associate vice president for research. “This program makes good on key commitments of the Fast Forward plan, supporting cutting-edge new work by faculty and graduate students while helping to deepen the bench of climate leaders at MIT.”

    During the 2023-24 academic year, the F^4 faculty and graduate student cohorts will come together to discuss their projects, explore opportunities for collaboration, participate in climate leadership development, and think proactively about how to deepen interdisciplinary connections among MIT community members interested in climate change.

    The six inaugural F^4 awardees are:

    Professor Tristan Brown, History Section: Humanistic Approaches to the Climate Crisis  

    With this project, Brown aims to create a new community of practice around narrative-centric approaches to environmental and climate issues. Part of a broader humanities initiative at MIT, it brings together a global working group of interdisciplinary scholars, including Serguei Saavedra (Department of Civil and Environmental Engineering) and Or Porath (Tel Aviv University; Religion), collectively focused on examining the historical and present links between sacred places and biodiversity for the purposes of helping governments and nongovernmental organizations formulate better sustainability goals. Boyd Ruamcharoen, a PhD student in the History, Anthropology, and Science, Technology, and Society (HASTS) program, will work with Brown on this project.

    Professor Kerri Cahoy, departments of Aeronautics and Astronautics and Earth, Atmospheric, and Planetary Sciences (AeroAstro): Onboard Autonomous AI-driven Satellite Sensor Fusion for Coastal Region Monitoring

    The motivation for this project is the need for much better data collection from satellites, where technology can be “20 years behind,” says Cahoy. As part of this project, Cahoy will pursue research in the area of autonomous artificial intelligence-enabled rapid sensor fusion (which combines data from different sensors, such as radar and cameras) onboard satellites to improve understanding of the impacts of climate change, specifically sea-level rise and hurricanes and flooding in coastal regions. Graduate students Madeline Anderson, a PhD student in electrical engineering and computer science (EECS), and Mary Dahl, a PhD student in AeroAstro, will work with Cahoy on this project.

    Professor Priya Donti, Department of Electrical Engineering and Computer Science: Robust Reinforcement Learning for High-Renewables Power Grids 

    With renewables like wind and solar making up a growing share of electricity generation on power grids, Donti’s project focuses on improving control methods for these distributed sources of electricity. The research will aim to create a realistic representation of the characteristics of power grid operations, and eventually inform scalable operational improvements in power systems. It will “give power systems operators faith that, OK, this conceptually is good, but it also actually works on this grid,” says Donti. PhD candidate Ana Rivera from EECS is the F^4 graduate student on the project.

    Professor Jason Jackson, Department of Urban Studies and Planning (DUSP): Political Economy of the Climate Crisis: Institutions, Power and Global Governance

    This project takes a political economy approach to the climate crisis, offering a distinct lens to examine, first, the political governance challenge of mobilizing climate action and designing new institutional mechanisms to address the global and intergenerational distributional aspects of climate change; second, the economic challenge of devising new institutional approaches to equitably finance climate action; and third, the cultural challenge — and opportunity — of empowering an adaptive socio-cultural ecology through traditional knowledge and local-level social networks to achieve environmental resilience. Graduate students Chen Chu and Mrinalini Penumaka, both PhD students in DUSP, are working with Jackson on the project.

    Professor Haruko Wainwright, departments of Nuclear Science and Engineering (NSE) and Civil and Environmental Engineering: Low-cost Environmental Monitoring Network Technologies in Rural Communities for Addressing Climate Justice 

    This project will establish a community-based climate and environmental monitoring network in addition to a data visualization and analysis infrastructure in rural marginalized communities to better understand and address climate justice issues. The project team plans to work with rural communities in Alaska to install low-cost air and water quality, weather, and soil sensors. Graduate students Kay Whiteaker, an MS candidate in NSE, and Amandeep Singh, and MS candidate in System Design and Management at Sloan, are working with Wainwright on the project, as is David McGee, professor in earth, atmospheric, and planetary sciences.

    Professor Siqi Zheng, MIT Center for Real Estate and DUSP: Climate Crisis and Real Estate: Science-based Mitigation and Adaptation Strategies 

    See the text above for the details on this project. More

  • in

    J-PAL North America and Results for America announce 18 collaborations with state and local governments

    J-PAL North America and Results for America have announced 18 new partnerships with state and local governments across the country through their Leveraging Evidence and Evaluation for Equitable Recovery (LEVER) programming, which launched in April of this year. 

    As state and local leaders leverage federal relief funding to invest in their communities, J-PAL North America and Results for America are providing in-depth support to agencies in using data, evaluation, and evidence to advance effective and equitable government programming for generations to come. The 18 new collaborators span the contiguous United States and represent a wide range of pressing and innovative uses of federal Covid-19 recovery funding.

    These partnerships are a key component of the LEVER program, run by J-PAL North America — a regional office of MIT’s Abdul Latif Jameel Poverty Action Lab (J-PAL) — and Results for America — a nonprofit organization that helps government agencies harness the power of evidence and data. Through 2024, LEVER will continue to provide a suite of resources, training, and evaluation design services to prepare state and local government agencies to rigorously evaluate their own programs and to harness existing evidence in developing programs and policies using federal recovery dollars.

    J-PAL North America is working with four leading government agencies following a call for proposals to the LEVER Evaluation Incubator in June. These agencies will work with J-PAL staff to design randomized evaluations to understand the causal impact of important programs that contribute to their jurisdictions’ recovery from Covid-19.

    Connecticut’s Medicaid office, operating out of the state’s Department of Social Services, is working to improve vaccine access and awareness among youth. “Connecticut Medicaid is thrilled to work with J-PAL North America. The technical expertise and training that we receive will expand our knowledge during ‘testing and learning’ interventions that improve the health of our members,” says Gui Woolston, the director of Medicaid and Division of Health Services. 

    Athens-Clarke County Unified Government is invested in evaluating programming for youth development and violence prevention implemented by the Boys and Girls Club of Athens. Their goal is “to measure and transparently communicate program impact,” explains Paige Seago, the data and outcomes coordinator for the American Rescue Plan Act. “The ability to continually iterate and tailor programs to better meet community goals is crucial to long-term success.”

    The County of San Diego’s newly formed Office of Evaluation, Performance, and Analytics is evaluating a pilot program providing rental subsidies for older adults. “Randomized evaluation can help us understand if rent subsidies will help prevent seniors from becoming homeless and will give us useful information about how to move forward,” says Chief Evaluation Officer Ricardo Basurto-Dávila. 

    In King County, Washington, the Executive Climate Office is planning to evaluate efforts to increase equitable access to household energy efficiency programs. “Because of J-PAL’s support, we have confidence that we can reduce climate impacts and extend home electrification benefits to lower-income homeowners in King County — homeowners who otherwise may not have the ability to participate in the clean energy transition,” says King County Climate Director Marissa Aho.

    Fourteen additional state and local agencies are working with Results for America as part of the LEVER Training Sprint. Together, they will develop policies that catalyze sustainable evidence building within government. 

    Jurisdictions selected for the Training Sprint represent government leaders at the city, county, and state levels — all of whom are committed to creating an evaluation framework for policy that will prioritize evidence-based decision-making across the country. Over the course of 10 weeks, with access to tools and coaching, each team will develop an internal implementation policy by embedding key evaluation and evidence practices into their jurisdiction’s decision-making processes. Participants will finish the Training Sprint with a robust decision-making framework that translates their LEVER implementation policies into actionable planning guidance. 

    Government leaders will utilize the LEVER Training Sprint to build a culture of data and evidence focused on leveraging evaluation policies to invest in delivering tangible results for their residents. About their participation in the LEVER Training Sprint, Dana Williams from Denver, Colorado says, “Impact evaluation is such an integral piece to understanding the past, present, and future. I’m excited to participate in the LEVER Training Sprint to better inform and drive evidence-based programming in Denver.”

    The Training Sprint is a part of a growing movement to ground government innovation in data and evidence. Kermina Hanna from the State of New Jersey notes, “It’s vital that we cement a data-driven commitment to equity in government operations, and I’m really excited for this opportunity to develop a national network of colleagues in government who share this passion and dedication to responsive public service.”

    Jurisdictions selected for the Training Sprint are: 

    Boston, Massachusetts;
    Carlsbad, California;
    Connecticut;
    Dallas, Texas;
    Denver City/County, Colorado;
    Fort Collins, Colorado;
    Guilford County, North Carolina;
    King County, Washington;
    Long Beach, California;
    Los Angeles, California;
    New Jersey;
    New Mexico;
    Pittsburgh, Pennsylvania; and
    Washington County, Oregon.
    Those interested in learning more can fill out the LEVER intake form. Please direct any questions about the Evaluation Incubator to Louise Geraghty and questions about the Training Sprint to Chelsea Powell. More

  • in

    MIT welcomes nine MLK Visiting Professors and Scholars for 2023-24

    Established in 1990, the MLK Visiting Professors and Scholars Program at MIT welcomes outstanding scholars to the Institute for visiting appointments. MIT aspires to attract candidates who are, in the words of Martin Luther King Jr., “trailblazers in human, academic, scientific and religious freedom.” The program honors King’s life and legacy by expanding and extending the reach of our community. 

    The MLK Scholars Program has welcomed more than 140 professors, practitioners, and professionals at the forefront of their respective fields to MIT. They contribute to the growth and enrichment of the community through their interactions with students, staff, and faculty. They pay tribute to Martin Luther King Jr.’s life and legacy of service and social justice, and they embody MIT’s values: excellence and curiosity, openness and respect, and belonging and community.  

    Each new cohort of scholars actively participates in community engagement and supports MIT’s mission of “advancing knowledge and educating students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.” 

    The 2023-2024 MLK Scholars:

    Tawanna Dillahunt is an associate professor at the University of Michigan’s School of Information with a joint appointment in their electrical engineering and computer science department. She is joining MIT at the end of a one-year visiting appointment as a Harvard Radcliffe Fellow. Her faculty hosts at the Institute are Catherine D’Ignazio in the Department of Urban Studies and Planning and Fotini Christia in the Institute for Data, Systems, and Society (IDSS). Dillahunt’s research focuses on equitable and inclusive computing. During her appointment, she will host a podcast to explore ethical and socially responsible ways to engage with communities, with a special emphasis on technology. 

    Kwabena Donkor is an assistant professor of marketing at Stanford Graduate School of Business; he is hosted by Dean Eckles, an associate professor of marketing at MIT Sloan School of Management. Donkor’s work bridges economics, psychology, and marketing. His scholarship combines insights from behavioral economics with data and field experiments to study social norms, identity, and how these constructs interact with policy in the marketplace.

    Denise Frazier joins MIT from Tulane University, where she is an assistant director in the New Orleans Center for the Gulf South. She is a researcher and performer and brings a unique interdisciplinary approach to her work at the intersection of cultural studies, environmental justice, and music. Frazier is hosted by Christine Ortiz, the Morris Cohen Professor in the Department of Materials Science and Engineering. 

    Wasalu Jaco, an accomplished performer and artist, is renewing his appointment at MIT for a second year; he is hosted jointly by Nick Montfort, a professor of digital media in the Comparative Media Studies Program/Writing, and Mary Fuller, a professor in the Literature Section and the current chair of the MIT faculty. In his second year, Jaco will work on Cyber/Cypher Rapper, a research project to develop a computational system that participates in responsive and improvisational rap.

    Morgane Konig first joined the Center for Theoretical Physics at MIT in December 2021 as a postdoc. Now a member of the 2023–24 MLK Visiting Scholars Program cohort, she will deepen her ties with scholars and research groups working in cosmology, primarily on early-universe inflation and late-universe signatures that could enable the scientific community to learn more about the mysterious nature of dark matter and dark energy. Her faculty hosts are David Kaiser, the Germeshausen Professor of the History of Science and professor of physics, and Alan Guth, the Victor F. Weisskopf Professor of Physics, both from the Department of Physics.

    The former minister of culture for Colombia and a transformational leader dedicated to environmental protection, Angelica Mayolo-Obregon joins MIT from Buenaventura, Colombia. During her time at MIT, she will serve as an advisor and guest speaker, and help MIT facilitate gatherings of environmental leaders committed to addressing climate action and conserving biodiversity across the Americas, with a special emphasis on Afro-descendant communities. Mayolo-Obregon is hosted by John Fernandez, a professor of building technology in the Department of Architecture and director of MIT’s Environmental Solutions Initiative, and by J. Phillip Thompson, an associate professor in the Department of Urban Studies and Planning (and a former MLK Scholar).

    Jean-Luc Pierite is a member of the Tunica-Biloxi Tribe of Louisiana and the president of the board of directors of North American Indian Center of Boston. While at MIT, Pierite will build connections between MIT and the local Indigenous communities. His research focuses on enhancing climate resilience planning by infusing Indigenous knowledge and ecological practices into scientific and other disciplines. His faculty host is Janelle Knox-Hayes, the Lister Brothers Professor of Economic Geography and Planning in the Department of Urban Studies and Planning.

    Christine Taylor-Butler ’81 is a children’s book author who has written over 90 books; she is hosted by Graham Jones, an associate professor of anthropology. An advocate for literacy and STEAM education in underserved urban and rural schools, Taylor-Butler will partner with community organizations in the Boston area. She is also completing the fourth installment of her middle-grade series, “The Lost Tribe.” These books follow a team of five kids as they use science and technology to crack codes and solve mysteries.

    Angelino Viceisza, a professor of economics at Spelman College, joins MIT Sloan as an MLK Visiting Professor and the Phyllis Wallace Visiting Professor; he is hosted by Robert Gibbons, Sloan Distinguished Professor of Management, and Ray Reagans, Alfred P. Sloan Professor of Management, professor of organization studies, and associate dean for diversity, equity, and inclusion at MIT Sloan. Viceisza has strong, ongoing connections with MIT. His research focuses on remittances, retirement, and household finance in low-income countries and is relevant to public finance and financial economics, as well as the development and organizational economics communities at MIT. 

    Javit Drake, Moriba Jah, and Louis Massiah, members of last year’s cohort of MLK Scholars, will remain at MIT through the end of 2023.

    There are multiple opportunities throughout the year to meet our MLK Visiting Scholars and learn more about their research projects and their social impact. 

    For more information about the MLK Visiting Professors and Scholars Program and upcoming events, visit the website. More

  • in

    New clean air and water labs to bring together researchers, policymakers to find climate solutions

    MIT’s Abdul Latif Jameel Poverty Action Lab (J-PAL) is launching the Clean Air and Water Labs, with support from Community Jameel, to generate evidence-based solutions aimed at increasing access to clean air and water.

    Led by J-PAL’s Africa, Middle East and North Africa (MENA), and South Asia regional offices, the labs will partner with government agencies to bring together researchers and policymakers in areas where impactful clean air and water solutions are most urgently needed.

    Together, the labs aim to improve clean air and water access by informing the scaling of evidence-based policies and decisions of city, state, and national governments that serve nearly 260 million people combined.

    The Clean Air and Water Labs expand the work of J-PAL’s King Climate Action Initiative, building on the foundational support of King Philanthropies, which significantly expanded J-PAL’s work at the nexus of climate change and poverty alleviation worldwide. 

    Air pollution, water scarcity and the need for evidence 

    Africa, MENA, and South Asia are on the front lines of global air and water crises. 

    “There is no time to waste investing in solutions that do not achieve their desired effects,” says Iqbal Dhaliwal, global executive director of J-PAL. “By co-generating rigorous real-world evidence with researchers, policymakers can have the information they need to dedicate resources to scaling up solutions that have been shown to be effective.”

    In India, about 75 percent of households did not have drinking water on premises in 2018. In MENA, nearly 90 percent of children live in areas facing high or extreme water stress. Across Africa, almost 400 million people lack access to safe drinking water. 

    Simultaneously, air pollution is one of the greatest threats to human health globally. In India, extraordinary levels of air pollution are shortening the average life expectancy by five years. In Africa, rising indoor and ambient air pollution contributed to 1.1 million premature deaths in 2019. 

    There is increasing urgency to find high-impact and cost-effective solutions to the worsening threats to human health and resources caused by climate change. However, data and evidence on potential solutions are limited.

    Fostering collaboration to generate policy-relevant evidence 

    The Clean Air and Water Labs will foster deep collaboration between government stakeholders, J-PAL regional offices, and researchers in the J-PAL network. 

    Through the labs, J-PAL will work with policymakers to:

    co-diagnose the most pressing air and water challenges and opportunities for policy innovation;
    expand policymakers’ access to and use of high-quality air and water data;
    co-design potential solutions informed by existing evidence;
    co-generate evidence on promising solutions through rigorous evaluation, leveraging existing and new data sources; and
    support scaling of air and water policies and programs that are found to be effective through evaluation. 
    A research and scaling fund for each lab will prioritize resources for co-generated pilot studies, randomized evaluations, and scaling projects. 

    The labs will also collaborate with C40 Cities, a global network of mayors of the world’s leading cities that are united in action to confront the climate crisis, to share policy-relevant evidence and identify opportunities for potential new connections and research opportunities within India and across Africa.

    This model aims to strengthen the use of evidence in decision-making to ensure solutions are highly effective and to guide research to answer policymakers’ most urgent questions. J-PAL Africa, MENA, and South Asia’s strong on-the-ground presence will further bridge research and policy work by anchoring activities within local contexts. 

    “Communities across the world continue to face challenges in accessing clean air and water, a threat to human safety that has only been exacerbated by the climate crisis, along with rising temperatures and other hazards,” says George Richards, director of Community Jameel. “Through our collaboration with J-PAL and C40 in creating climate policy labs embedded in city, state, and national governments in Africa and South Asia, we are committed to innovative and science-based approaches that can help hundreds of millions of people enjoy healthier lives.”

    J-PAL Africa, MENA, and South Asia will formally launch Clean Air and Water Labs with government partners over the coming months. J-PAL is housed in the MIT Department of Economics, within the School of Humanities, Arts, and Social Sciences. More

  • in

    Artificial intelligence for augmentation and productivity

    The MIT Stephen A. Schwarzman College of Computing has awarded seed grants to seven projects that are exploring how artificial intelligence and human-computer interaction can be leveraged to enhance modern work spaces to achieve better management and higher productivity.

    Funded by Andrew W. Houston ’05 and Dropbox Inc., the projects are intended to be interdisciplinary and bring together researchers from computing, social sciences, and management.

    The seed grants can enable the project teams to conduct research that leads to bigger endeavors in this rapidly evolving area, as well as build community around questions related to AI-augmented management.

    The seven selected projects and research leads include:

    “LLMex: Implementing Vannevar Bush’s Vision of the Memex Using Large Language Models,” led by Patti Maes of the Media Lab and David Karger of the Department of Electrical Engineering and Computer Science (EECS) and the Computer Science and Artificial Intelligence Laboratory (CSAIL). Inspired by Vannevar Bush’s Memex, this project proposes to design, implement, and test the concept of memory prosthetics using large language models (LLMs). The AI-based system will intelligently help an individual keep track of vast amounts of information, accelerate productivity, and reduce errors by automatically recording their work actions and meetings, supporting retrieval based on metadata and vague descriptions, and suggesting relevant, personalized information proactively based on the user’s current focus and context.

    “Using AI Agents to Simulate Social Scenarios,” led by John Horton of the MIT Sloan School of Management and Jacob Andreas of EECS and CSAIL. This project imagines the ability to easily simulate policies, organizational arrangements, and communication tools with AI agents before implementation. Tapping into the capabilities of modern LLMs to serve as a computational model of humans makes this vision of social simulation more realistic, and potentially more predictive.

    “Human Expertise in the Age of AI: Can We Have Our Cake and Eat it Too?” led by Manish Raghavan of MIT Sloan and EECS, and Devavrat Shah of EECS and the Laboratory for Information and Decision Systems. Progress in machine learning, AI, and in algorithmic decision aids has raised the prospect that algorithms may complement human decision-making in a wide variety of settings. Rather than replacing human professionals, this project sees a future where AI and algorithmic decision aids play a role that is complementary to human expertise.

    “Implementing Generative AI in U.S. Hospitals,” led by Julie Shah of the Department of Aeronautics and Astronautics and CSAIL, Retsef Levi of MIT Sloan and the Operations Research Center, Kate Kellog of MIT Sloan, and Ben Armstrong of the Industrial Performance Center. In recent years, studies have linked a rise in burnout from doctors and nurses in the United States with increased administrative burdens associated with electronic health records and other technologies. This project aims to develop a holistic framework to study how generative AI technologies can both increase productivity for organizations and improve job quality for workers in health care settings.

    “Generative AI Augmented Software Tools to Democratize Programming,” led by Harold Abelson of EECS and CSAIL, Cynthia Breazeal of the Media Lab, and Eric Klopfer of the Comparative Media Studies/Writing. Progress in generative AI over the past year is fomenting an upheaval in assumptions about future careers in software and deprecating the role of coding. This project will stimulate a similar transformation in computing education for those who have no prior technical training by creating a software tool that could eliminate much of the need for learners to deal with code when creating applications.

    “Acquiring Expertise and Societal Productivity in a World of Artificial Intelligence,” led by David Atkin and Martin Beraja of the Department of Economics, and Danielle Li of MIT Sloan. Generative AI is thought to augment the capabilities of workers performing cognitive tasks. This project seeks to better understand how the arrival of AI technologies may impact skill acquisition and productivity, and to explore complementary policy interventions that will allow society to maximize the gains from such technologies.

    “AI Augmented Onboarding and Support,” led by Tim Kraska of EECS and CSAIL, and Christoph Paus of the Department of Physics. While LLMs have made enormous leaps forward in recent years and are poised to fundamentally change the way students and professionals learn about new tools and systems, there is often a steep learning curve which people have to climb in order to make full use of the resource. To help mitigate the issue, this project proposes the development of new LLM-powered onboarding and support systems that will positively impact the way support teams operate and improve the user experience. More