More stories

  • in

    End-to-end supply chain transparency

    For years, companies have managed their extended supply chains with intermittent audits and certifications while attempting to persuade their suppliers to adhere to certain standards and codes of conduct. But they’ve lacked the concrete data necessary to prove their supply chains were working as they should. They most likely had baseline data about their suppliers — what they bought and who they bought it from — but knew little else about the rest of the supply chain.

    With Sourcemap, companies can now trace their supply chains from raw material to finished good with certainty, keeping track of the mines and farms that produce the commodities they rely on to take their goods to market. This unprecedented level of transparency provides Sourcemap’s customers with the assurance that the entire end-to-end supply chain operates within their standards while living up to social and environmental targets.

    And they’re doing it at scale for large multinationals across the food, agricultural, automotive, tech, and apparel industries. Thanks to Sourcemap founder and CEO Leonardo Bonanni MA ’03, SM ’05, PhD ’10, companies like VF Corporation, owner of brands like Timberland, The North Face, Mars, Hershey, and Ferrero, now have enough data to confidently tell the story of how they’re sourcing their raw materials.

    “Coming from the Media Lab, we recognized early on the power of the cloud, the power of social networking-type databases and smartphone diffusion around the world,” says Bonanni of his company’s MIT roots. Rather than providing intermittent glances at the supply chain via an auditor, Sourcemap collects data continuously, in real-time, every step of the way, flagging anything that could indicate counterfeiting, adulteration, fraud, waste, or abuse.

    “We’ve taken our customers from a situation where they had very little control to a world where they have direct visibility over their entire global operations, even allowing them to see ahead of time — before a container reaches the port — whether there is any indication that there might be something wrong with it,” says Bonanni.

    The key problem Sourcemap addresses is a lack of data in companies’ supply chain management databases. According to Bonanni, most Sourcemap customers have invested millions of dollars in enterprise resource planning (ERP) databases, which provide information about internal operations and direct suppliers, but fall short when it comes to global operations, where their secondary and tertiary suppliers operate. Built on relational databases, ERP systems have been around for more than 40 years and work well for simple, static data structures. But they aren’t agile enough to handle big data and rapidly evolving, complex data structures

    Sourcemap, on the other hand, uses NoSQL (non-relational) database technology, which is more flexible, cost-efficient, and scalable. “Our platform is like a LinkedIn for the supply chain,” explains Bonanni. Customers provide information about where they buy their raw materials, the suppliers get invited to the network and provide information to validate those relationships, right down to the farms and the mines where the raw materials are extracted — which is often where the biggest risks lie.

    Initially, the entire supply chain database of a Sourcemap customer might amount to a few megabytes of spreadsheets listing their purchase orders and the names of their suppliers. Sourcemap delivers terabytes of data that paint a detailed picture of the supply chain, capturing everything, right down to the moment a farmer in West Africa delivers cocoa beans to a warehouse, onto a truck heading to a port, to a factory, all the way to the finished goods.

    “We’ve seen the amount of data collected grow by a factor of 1 million, which tells us that the world is finally ready for full visibility of supply chains,” says Bonanni. “The fact is that we’ve seen supply chain transparency go from a fringe concern to a broad-based requirement as a license to operate in most of Europe and North America,” says Bonanni.

    These days, disruptions in supply chains, combined with price volatility and new laws requiring companies to prove that the goods they import were not made illegally (such as by causing deforestation or involving forced or child labor), means that companies are often required to know where they source their raw materials from, even if they only import the materials through an intermediary.

    Sourcemap uses its full suite of tools to walk customers through a step-by-step process that maps their suppliers while measuring performance, ultimately verifying the entire supply chain and providing them with the confidence to import goods while being customs-compliant. At the end of the day, Sourcemap customers can communicate to their stakeholders and the end consumer exactly where their commodities come from while ensuring that social, environmental, and compliance standards are met.

    The company was recently named to the newest cohort of firms honored by the MIT Startup Exchange (STEX) as STEX25 startups. Bonanni is quick to point out the benefits of STEX and of MIT’s Industrial Liaison Program (ILP): “Our best feedback and our most constructive relationships have been with companies that sponsored our research early on at the Media Lab and ILP,” he says. “The innovative exchange of ideas inherent in the MIT startup ecosystem has helped to build up Sourcemap as a company and to grow supply chain transparency as a future-facing technology that more and more companies are now scrambling to adopt.” More

  • in

    Helping companies optimize their websites and mobile apps

    Creating a good customer experience increasingly means creating a good digital experience. But metrics like pageviews and clicks offer limited insight into how much customers actually like a digital product.

    That’s the problem the digital optimization company Amplitude is solving. Amplitude gives companies a clearer picture into how users interact with their digital products to help them understand exactly which features to promote or improve.

    “It’s all about using product data to drive your business,” says Amplitude CEO Spenser Skates ’10, who co-founded the company with Curtis Liu ’10 and Stanford University graduate Jeffrey Wang. “Mobile apps and websites are really complex. The average app or website will have thousands of things you can do with it. The question is how you know which of those things are driving a great user experience and which parts are really frustrating for users.”

    Amplitude’s database can gather millions of details about how users behave inside an app or website and allow customers to explore that information without needing data science degrees.

    “It provides an interface for very easy, accessible ways of looking at your data, understanding your data, and asking questions of that data,” Skates says.

    Amplitude, which recently announced it will be going public, is already helping 23 of the 100 largest companies in the U.S. Customers include media companies like NBC, tech companies like Twitter, and retail companies like Walmart.

    “Our platform helps businesses understand how people are using their apps and websites so they can create better versions of their products,” Skates says. “It’s all about creating a really compelling product.”

    Learning entrepreneurship

    The founders say their years at MIT were among the best of their lives. Skates and Liu were undergraduates from 2006 to 2010. Skates majored in biological engineering while Liu majored in mathematics and electrical engineering and computer science. The two first met as opponents in MIT’s Battlecode competition, in which students use artificial intelligence algorithms to control teams of robots that compete in a strategy game against other teams. The following year they teamed up.

    “There are a lot of parallels between what you’re trying to do in Battlecode and what you end up having to do in the early stages of a startup,” Liu says. “You have limited resources, limited time, and you’re trying to accomplish a goal. What we found is trying a lot of different things, putting our ideas out there and testing them with real data, really helped us focus on the things that actually mattered. That method of iteration and continual improvement set the foundation for how we approach building products and startups.”

    Liu and Skates next participated in the MIT $100K Entrepreneurship Competition with an idea for a cloud-based music streaming service. After graduation, Skates began working in finance and Liu got a job at Google, but they continued pursuing startup ideas on the side, including a website that let alumni see where their classmates ended up and a marketplace for finding photographers.

    A year after graduation, the founders decided to quit their jobs and work on a startup full time. Skates moved into Liu’s apartment in San Francisco, setting up a mattress on the floor, and they began working on a project that became Sonalight, a voice recognition app. As part of the project, the founders built an internal system to understand where users got stuck in the app and what features were used the most.

    Despite getting over 100,000 downloads, the founders decided Sonalight was a little too early for its time and started thinking their analytics feature could be useful to other companies. They spoke with about 30 different product teams to learn more about what companies wanted from their digital analytics. Amplitude was officially founded in 2012.

    Amplitude gathers fine details about digital product usage, parsing out individual features and actions to give customers a better view of how their products are being used. Using the data in Amplitude’s intuitive, no-code interface, customers can make strategic decisions like whether to launch a feature or change a distribution channel.

    The platform is designed to ease the bottlenecks that arise when executives, product teams, salespeople, and marketers want to answer questions about customer experience or behavior but need the data science team to crunch the numbers for them.

    “It’s a very collaborative interface to encourage customers to work together to understand how users are engaging with their apps,” Skates says.

    Amplitude’s database also uses machine learning to segment users, predict user outcomes, and uncover novel correlations. Earlier this year, the company unveiled a service called Recommend that helps companies create personalized user experiences across their entire platform in minutes. The service goes beyond demographics to personalize customer experiences based on what users have done or seen before within the product.

    “We’re very conscious on the privacy front,” Skates says. “A lot of analytics companies will resell your data to third parties or use it for advertising purposes. We don’t do any of that. We’re only here to provide product insights to our customers. We’re not using data to track you across the web. Everyone expects Netflix to use the data on what you’ve watched before to recommend what to watch next. That’s effectively what we’re helping other companies do.”

    Optimizing digital experiences

    The meditation app Calm is on a mission to help users build habits that improve their mental wellness. Using Amplitude, the company learned that users most often use the app to get better sleep and reduce stress. The insights helped Calm’s team double down on content geared toward those goals, launching “sleep stories” to help users unwind at the end of each day and adding content around anxiety relief and relaxation. Sleep stories are now Calm’s most popular type of content, and Calm has grown rapidly to millions of people around the world.

    Calm’s story shows the power of letting user behavior drive product decisions. Amplitude has also helped the online fundraising site GoFundMe increase donations by showing users more compelling campaigns and the exercise bike company Peloton realize the importance of social features like leaderboards.

    Moving forward, the founders believe Amplitude’s platform will continue helping companies adapt to an increasingly digital world in which users expect more compelling, personalized experiences.

    “If you think about the online experience for companies today compared to 10 years ago, now [digital] is the main point of contact, whether you’re a media company streaming content, a retail company, or a finance company,” Skates says. “That’s only going to continue. That’s where we’re trying to help.” More

  • in

    “AI for Impact” lives up to its name

    For entrepreneurial MIT students looking to put their skills to work for a greater good, the Media Arts and Sciences class MAS.664 (AI for Impact) has been a destination point. With the onset of the pandemic, that goal came into even sharper focus. Just weeks before the campus shut down in 2020, a team of students from the class launched a project that would make significant strides toward an open-source platform to identify coronavirus exposures without compromising personal privacy.

    Their work was at the heart of Safe Paths, one of the earliest contact tracing apps in the United States. The students joined with volunteers from other universities, medical centers, and companies to publish their code, alongside a well-received white paper describing the privacy-preserving, decentralized protocol, all while working with organizations wishing to launch the app within their communities. The app and related software eventually got spun out into the nonprofit PathCheck Foundation, which today engages with public health entities and is providing exposure notifications in Guam, Cyprus, Hawaii, Minnesota, Alabama, and Louisiana.

    The formation of Safe Paths demonstrates the special sense among MIT researchers that “we can launch something that can help people around the world,” notes Media Lab Associate Professor Ramesh Raskar, who teaches the class together with Media Lab Professor Alex “Sandy” Pentland and Media Lab Lecturer Joost Bonsen. “To have that kind of passion and ambition — but also the confidence that what you create here can actually be deployed globally — is kind of amazing.”

    AI for Impact, created by Pentland, began meeting two decades ago under the course name Development Ventures, and has nurtured multiple thriving businesses. Examples of class ventures that Pentland incubated or co-founded include Dimagi, Cogito, Ginger, Prosperia, and Sanergy.

    The aim-high challenge posed to each class is to come up with a business plan that touches a billion people, and it can’t all be in one country, Pentland explains. Not every class effort becomes a business, “but 20 percent to 30 percent of students start something, which is great for an entrepreneur class,” says Pentland.

    Opportunities for Impact

    The numbers behind Dimagi, for instance, are striking. Its core product CommCare has helped front-line health workers provide care for more than 400 million people in more than 130 countries around the world. When it comes to maternal and child care, Dimagi’s platform has registered one in every 110 pregnancies worldwide. This past year, several governments around the world deployed CommCare applications for Covid-19 response — from Sierra Leone and Somalia to New York and Colorado.

    Spinoffs like Cogito, Prosperia, and Ginger have likewise grown into highly successful companies. Cogito helps a million people a day gain access to the health care they need; Prosperia helps manage social support payments to 80 million people in Latin America; and Ginger handles mental health services for over 1 million people.

    The passion behind these and other class ventures points to a central idea of the class, Pentland notes: MIT students are often looking for ways to build entrepreneurial businesses that enable positive social change.

    During the spring 2021 class, for example, a number of promising student projects included tools to help residents of poor communities transition to owning their homes rather than renting, and to take better control of their community health.

    “It’s clear that the people who are graduating from here want to do something significant with their lives … they want to have an impact on their world,” Pentland says. “This class enables them to meet other people who are interested in doing the same thing, and offers them some help in starting a company to do it.”

    Many of the students who join the class come in with a broad set of interests. Guest lectures, case studies of other social entrepreneurship projects, and an introduction to a broad ecosystem of expertise and funding, then helps students to refine their general ideas into specific and viable projects.

    A path toward confronting a pandemic 

    Raskar began co-teaching the class in 2019, and brought a “Big AI” focus to the Development Ventures class, inspired by an AI for Impact team he had set up at his former employer, Facebook. “What I realized is that companies like Google or Facebook or Amazon actually have enough data about all of us that they can solve major problems in our society — climate, transportation, health, and so on,” he says. “This is something we should think about more seriously: how to use AI and data for positive social impact, while protecting privacy.”

    Early into the spring 2020 class, as students were beginning to consider their own projects, Raskar approached the class about the emerging coronavirus outbreak. Students like Kristen Vilcans recognized the urgency, and the opportunity. She and 10 other students joined forces to work on a project that would focus on Covid-19.

    “Students felt empowered to do something to help tackle the spread of this alarming new virus,” Raskar recalls. “They immediately began to develop data- and AI-based solutions to one of the most critical pieces of addressing a pandemic: halting the chain of infections. They created and launched one of the first digital contact tracing and exposure notification solutions in the U.S., developing an early alert system that engaged the public and protected privacy.” 

    Raskar looks back on the moment when a core group of students coalesced into a team. “It was very rare for a significant part of the class to just come together saying, ‘let’s do this, right away.’ It became as much a movement as a venture.”

    Group discussions soon began to center around an open-source, privacy-first digital set of tools for Covid-19 contact tracing. For the next two weeks, right up to the campus shutdown in March 2020, the team took over two adjacent conference rooms in the Media Lab, and started a Slack messaging channel devoted to the project. As the team members reached out to an ever-wider circle of friends, colleagues, and mentors, the number of participants grew to nearly 1,600 people, coming together virtually from all corners of the world.

    Kaushal Jain, a Harvard Business School student who had cross-registered for the spring 2020 class to get to know the MIT ecosystem, was also an early participant in Safe Paths. He wrote up an initial plan for the venture and began working with external organizations to figure out how to structure it into a nonprofit company. Jain eventually became the project’s lead for funding and partnerships.

    Vilcans, a graduate student in system design and management, served as Safe Paths’ communications lead through July 2020, while still working a part-time job at Draper Laboratory and taking classes.

    “There are these moments when you want to dive in, you want to contribute and you want to work nonstop,” she says, adding that the experience was also a wake-up call on how to manage burnout, and how to balance what you need as a person while contributing to a high-impact team. “That’s important to understand as a leader for the future.”

    MIT recognized Vilcan’s contributions later that year with the 2020 SDM Student Award for Leadership, Innovation, and Systems Thinking. 

    Jain, too, says the class gave him more than he could have expected.

    “I made strong friendships with like-minded people from very different backgrounds,” he says. “One key thing that I learned was to be flexible about the kind of work you want to do. Be open and see if there’s an opportunity, either through crisis or through something that you believe could really change a lot of things in the world. And then just go for it.” More

  • in

    A comprehensive study of technological change

    The societal impacts of technological change can be seen in many domains, from messenger RNA vaccines and automation to drones and climate change. The pace of that technological change can affect its impact, and how quickly a technology improves in performance can be an indicator of its future importance. For decision-makers like investors, entrepreneurs, and policymakers, predicting which technologies are fast improving (and which are overhyped) can mean the difference between success and failure.

    New research from MIT aims to assist in the prediction of technology performance improvement using U.S. patents as a dataset. The study describes 97 percent of the U.S. patent system as a set of 1,757 discrete technology domains, and quantitatively assesses each domain for its improvement potential.

    “The rate of improvement can only be empirically estimated when substantial performance measurements are made over long time periods,” says Anuraag Singh SM ’20, lead author of the paper. “In some large technological fields, including software and clinical medicine, such measures have rarely, if ever, been made.”

    A previous MIT study provided empirical measures for 30 technological domains, but the patent sets identified for those technologies cover less than 15 percent of the patents in the U.S. patent system. The major purpose of this new study is to provide predictions of the performance improvement rates for the thousands of domains not accessed by empirical measurement. To accomplish this, the researchers developed a method using a new probability-based algorithm, machine learning, natural language processing, and patent network analytics.

    Overlap and centrality

    A technology domain, as the researchers define it, consists of sets of artifacts fulfilling a specific function using a specific branch of scientific knowledge. To find the patents that best represent a domain, the team built on previous research conducted by co-author Chris Magee, a professor of the practice of engineering systems within the Institute for Data, Systems, and Society (IDSS). Magee and his colleagues found that by looking for patent overlap between the U.S. and international patent-classification systems, they could quickly identify patents that best represent a technology. The researchers ultimately created a correspondence of all patents within the U.S. patent system to a set of 1,757 technology domains.

    To estimate performance improvement, Singh employed a method refined by co-authors Magee and Giorgio Triulzi, a researcher with the Sociotechnical Systems Research Center (SSRC) within IDSS and an assistant professor at Universidad de los Andes in Colombia. Their method is based on the average “centrality” of patents in the patent citation network. Centrality refers to multiple criteria for determining the ranking or importance of nodes within a network.

    “Our method provides predictions of performance improvement rates for nearly all definable technologies for the first time,” says Singh.

    Those rates vary — from a low of 2 percent per year for the “Mechanical skin treatment — Hair removal and wrinkles” domain to a high of 216 percent per year for the “Dynamic information exchange and support systems integrating multiple channels” domain. The researchers found that most technologies improve slowly; more than 80 percent of technologies improve at less than 25 percent per year. Notably, the number of patents in a technological area was not a strong indicator of a higher improvement rate.

    “Fast-improving domains are concentrated in a few technological areas,” says Magee. “The domains that show improvement rates greater than the predicted rate for integrated chips — 42 percent, from Moore’s law — are predominantly based upon software and algorithms.”

    TechNext Inc.

    The researchers built an online interactive system where domains corresponding to technology-related keywords can be found along with their improvement rates. Users can input a keyword describing a technology and the system returns a prediction of improvement for the technological domain, an automated measure of the quality of the match between the keyword and the domain, and patent sets so that the reader can judge the semantic quality of the match.

    Moving forward, the researchers have founded a new MIT spinoff called TechNext Inc. to further refine this technology and use it to help leaders make better decisions, from budgets to investment priorities to technology policy. Like any inventors, Magee and his colleagues want to protect their intellectual property rights. To that end, they have applied for a patent for their novel system and its unique methodology.

    “Technologies that improve faster win the market,” says Singh. “Our search system enables technology managers, investors, policymakers, and entrepreneurs to quickly look up predictions of improvement rates for specific technologies.”

    Adds Magee: “Our goal is to bring greater accuracy, precision, and repeatability to the as-yet fuzzy art of technology forecasting.” More