More stories

  • in

    The promise and pitfalls of artificial intelligence explored at TEDxMIT event

    Scientists, students, and community members came together last month to discuss the promise and pitfalls of artificial intelligence at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) for the fourth TEDxMIT event held at MIT. 

    Attendees were entertained and challenged as they explored “the good and bad of computing,” explained CSAIL Director Professor Daniela Rus, who organized the event with John Werner, an MIT fellow and managing director of Link Ventures; MIT sophomore Lucy Zhao; and grad student Jessica Karaguesian. “As you listen to the talks today,” Rus told the audience, “consider how our world is made better by AI, and also our intrinsic responsibilities for ensuring that the technology is deployed for the greater good.”

    Rus mentioned some new capabilities that could be enabled by AI: an automated personal assistant that could monitor your sleep phases and wake you at the optimal time, as well as on-body sensors that monitor everything from your posture to your digestive system. “Intelligent assistance can help empower and augment our lives. But these intriguing possibilities should only be pursued if we can simultaneously resolve the challenges that these technologies bring,” said Rus. 

    The next speaker, CSAIL principal investigator and professor of electrical engineering and computer science Manolis Kellis, started off by suggesting what sounded like an unattainable goal — using AI to “put an end to evolution as we know it.” Looking at it from a computer science perspective, he said, what we call evolution is basically a brute force search. “You’re just exploring all of the search space, creating billions of copies of every one of your programs, and just letting them fight against each other. This is just brutal. And it’s also completely slow. It took us billions of years to get here.” Might it be possible, he asked, to speed up evolution and make it less messy?

    The answer, Kellis said, is that we can do better, and that we’re already doing better: “We’re not killing people like Sparta used to, throwing the weaklings off the mountain. We are truly saving diversity.”

    Knowledge, moreover, is now being widely shared, passed on “horizontally” through accessible information sources, he noted, rather than “vertically,” from parent to offspring. “I would like to argue that competition in the human species has been replaced by collaboration. Despite having a fixed cognitive hardware, we have software upgrades that are enabled by culture, by the 20 years that our children spend in school to fill their brains with everything that humanity has learned, regardless of which family came up with it. This is the secret of our great acceleration” — the fact that human advancement in recent centuries has vastly out-clipped evolution’s sluggish pace.

    The next step, Kellis said, is to harness insights about evolution in order to combat an individual’s genetic susceptibility to disease. “Our current approach is simply insufficient,” he added. “We’re treating manifestations of disease, not the causes of disease.” A key element in his lab’s ambitious strategy to transform medicine is to identify “the causal pathways through which genetic predisposition manifests. It’s only by understanding these pathways that we can truly manipulate disease causation and reverse the disease circuitry.” 

    Kellis was followed by Aleksander Madry, MIT professor of electrical engineering and computer science and CSAIL principal investigator, who told the crowd, “progress in AI is happening, and it’s happening fast.” Computer programs can routinely beat humans in games like chess, poker, and Go. So should we be worried about AI surpassing humans? 

    Madry, for one, is not afraid — or at least not yet. And some of that reassurance stems from research that has led him to the following conclusion: Despite its considerable success, AI, especially in the form of machine learning, is lazy. “Think about being lazy as this kind of smart student who doesn’t really want to study for an exam. Instead, what he does is just study all the past years’ exams and just look for patterns. Instead of trying to actually learn, he just tries to pass the test. And this is exactly the same way in which current AI is lazy.”

    A machine-learning model might recognize grazing sheep, for instance, simply by picking out pictures that have green grass in them. If a model is trained to identify fish from photos of anglers proudly displaying their catches, Madry explained, “the model figures out that if there’s a human holding something in the picture, I will just classify it as a fish.” The consequences can be more serious for an AI model intended to pick out malignant tumors. If the model is trained on images containing rulers that indicate the size of tumors, the model may end up selecting only those photos that have rulers in them.

    This leads to Madry’s biggest concerns about AI in its present form. “AI is beating us now,” he noted. “But the way it does it [involves] a little bit of cheating.” He fears that we will apply AI “in some way in which this mismatch between what the model actually does versus what we think it does will have some catastrophic consequences.” People relying on AI, especially in potentially life-or-death situations, need to be much more mindful of its current limitations, Madry cautioned.

    There were 10 speakers altogether, and the last to take the stage was MIT associate professor of electrical engineering and computer science and CSAIL principal investigator Marzyeh Ghassemi, who laid out her vision for how AI could best contribute to general health and well-being. But in order for that to happen, its models must be trained on accurate, diverse, and unbiased medical data.

    It’s important to focus on the data, Ghassemi stressed, because these models are learning from us. “Since our data is human-generated … a neural network is learning how to practice from a doctor. But doctors are human, and humans make mistakes. And if a human makes a mistake, and we train an AI from that, the AI will, too. Garbage in, garbage out. But it’s not like the garbage is distributed equally.”

    She pointed out that many subgroups receive worse care from medical practitioners, and members of these subgroups die from certain conditions at disproportionately high rates. This is an area, Ghassemi said, “where AI can actually help. This is something we can fix.” Her group is developing machine-learning models that are robust, private, and fair. What’s holding them back is neither algorithms nor GPUs. It’s data. Once we collect reliable data from diverse sources, Ghassemi added, we might start reaping the benefits that AI can bring to the realm of health care.

    In addition to CSAIL speakers, there were talks from members across MIT’s Institute for Data, Systems, and Society; the MIT Mobility Initiative; the MIT Media Lab; and the SENSEable City Lab.

    The proceedings concluded on that hopeful note. Rus and Werner then thanked everyone for coming. “Please continue to reflect about the good and bad of computing,” Rus urged. “And we look forward to seeing you back here in May for the next TEDxMIT event.”

    The exact theme of the spring 2022 gathering will have something to do with “superpowers.” But — if December’s mind-bending presentations were any indication — the May offering is almost certain to give its attendees plenty to think about. And maybe provide the inspiration for a startup or two. More

  • in

    Physics and the machine-learning “black box”

    Machine-learning algorithms are often referred to as a “black box.” Once data are put into an algorithm, it’s not always known exactly how the algorithm arrives at its prediction. This can be particularly frustrating when things go wrong. A new mechanical engineering (MechE) course at MIT teaches students how to tackle the “black box” problem, through a combination of data science and physics-based engineering.

    In class 2.C161 (Physical Systems Modeling and Design Using Machine Learning), Professor George Barbastathis demonstrates how mechanical engineers can use their unique knowledge of physical systems to keep algorithms in check and develop more accurate predictions.

    “I wanted to take 2.C161 because machine-learning models are usually a “black box,” but this class taught us how to construct a system model that is informed by physics so we can peek inside,” explains Crystal Owens, a mechanical engineering graduate student who took the course in spring 2021.

    As chair of the Committee on the Strategic Integration of Data Science into Mechanical Engineering, Barbastathis has had many conversations with mechanical engineering students, researchers, and faculty to better understand the challenges and successes they’ve had using machine learning in their work.

    “One comment we heard frequently was that these colleagues can see the value of data science methods for problems they are facing in their mechanical engineering-centric research; yet they are lacking the tools to make the most out of it,” says Barbastathis. “Mechanical, civil, electrical, and other types of engineers want a fundamental understanding of data principles without having to convert themselves to being full-time data scientists or AI researchers.”

    Additionally, as mechanical engineering students move on from MIT to their careers, many will need to manage data scientists on their teams someday. Barbastathis hopes to set these students up for success with class 2.C161.

    Bridging MechE and the MIT Schwartzman College of Computing

    Class 2.C161 is part of the MIT Schwartzman College of Computing “Computing Core.” The goal of these classes is to connect data science and physics-based engineering disciplines, like mechanical engineering. Students take the course alongside 6.C402 (Modeling with Machine Learning: from Algorithms to Applications), taught by professors of electrical engineering and computer science Regina Barzilay and Tommi Jaakkola.

    The two classes are taught concurrently during the semester, exposing students to both fundamentals in machine learning and domain-specific applications in mechanical engineering.

    In 2.C161, Barbastathis highlights how complementary physics-based engineering and data science are. Physical laws present a number of ambiguities and unknowns, ranging from temperature and humidity to electromagnetic forces. Data science can be used to predict these physical phenomena. Meanwhile, having an understanding of physical systems helps ensure the resulting output of an algorithm is accurate and explainable.

    “What’s needed is a deeper combined understanding of the associated physical phenomena and the principles of data science, machine learning in particular, to close the gap,” adds Barbastathis. “By combining data with physical principles, the new revolution in physics-based engineering is relatively immune to the “black box” problem facing other types of machine learning.”

    Equipped with a working knowledge of machine-learning topics covered in class 6.C402 and a deeper understanding of how to pair data science with physics, students are charged with developing a final project that solves for an actual physical system.

    Developing solutions for real-world physical systems

    For their final project, students in 2.C161 are asked to identify a real-world problem that requires data science to address the ambiguity inherent in physical systems. After obtaining all relevant data, students are asked to select a machine-learning method, implement their chosen solution, and present and critique the results.

    Topics this past semester ranged from weather forecasting to the flow of gas in combustion engines, with two student teams drawing inspiration from the ongoing Covid-19 pandemic.

    Owens and her teammates, fellow graduate students Arun Krishnadas and Joshua David John Rathinaraj, set out to develop a model for the Covid-19 vaccine rollout.

    “We developed a method of combining a neural network with a susceptible-infected-recovered (SIR) epidemiological model to create a physics-informed prediction system for the spread of Covid-19 after vaccinations started,” explains Owens.

    The team accounted for various unknowns including population mobility, weather, and political climate. This combined approach resulted in a prediction of Covid-19’s spread during the vaccine rollout that was more reliable than using either the SIR model or a neural network alone.

    Another team, including graduate student Yiwen Hu, developed a model to predict mutation rates in Covid-19, a topic that became all too pertinent as the delta variant began its global spread.

    “We used machine learning to predict the time-series-based mutation rate of Covid-19, and then incorporated that as an independent parameter into the prediction of pandemic dynamics to see if it could help us better predict the trend of the Covid-19 pandemic,” says Hu.

    Hu, who had previously conducted research into how vibrations on coronavirus protein spikes affect infection rates, hopes to apply the physics-based machine-learning approaches he learned in 2.C161 to his research on de novo protein design.

    Whatever the physical system students addressed in their final projects, Barbastathis was careful to stress one unifying goal: the need to assess ethical implications in data science. While more traditional computing methods like face or voice recognition have proven to be rife with ethical issues, there is an opportunity to combine physical systems with machine learning in a fair, ethical way.

    “We must ensure that collection and use of data are carried out equitably and inclusively, respecting the diversity in our society and avoiding well-known problems that computer scientists in the past have run into,” says Barbastathis.

    Barbastathis hopes that by encouraging mechanical engineering students to be both ethics-literate and well-versed in data science, they can move on to develop reliable, ethically sound solutions and predictions for physical-based engineering challenges. More

  • in

    Meet the 2021-22 Accenture Fellows

    Launched in October of 2020, the MIT and Accenture Convergence Initiative for Industry and Technology underscores the ways in which industry and technology come together to spur innovation. The five-year initiative aims to achieve its mission through research, education, and fellowships. To that end, Accenture has once again awarded five annual fellowships to MIT graduate students working on research in industry and technology convergence who are underrepresented, including by race, ethnicity, and gender.

    This year’s Accenture Fellows work across disciplines including robotics, manufacturing, artificial intelligence, and biomedicine. Their research covers a wide array of subjects, including: advancing manufacturing through computational design, with the potential to benefit global vaccine production; designing low-energy robotics for both consumer electronics and the aerospace industry; developing robotics and machine learning systems that may aid the elderly in their homes; and creating ingestible biomedical devices that can help gather medical data from inside a patient’s body.

    Student nominations from each unit within the School of Engineering, as well as from the four other MIT schools and the MIT Schwarzman College of Computing, were invited as part of the application process. Five exceptional students were selected as fellows in the initiative’s second year.

    Xinming (Lily) Liu is a PhD student in operations research at MIT Sloan School of Management. Her work is focused on behavioral and data-driven operations for social good, incorporating human behaviors into traditional optimization models, designing incentives, and analyzing real-world data. Her current research looks at the convergence of social media, digital platforms, and agriculture, with particular attention to expanding technological equity and economic opportunity in developing countries. Liu earned her BS from Cornell University, with a double major in operations research and computer science.

    Caris Moses is a PhD student in electrical engineering and computer science specializing inartificial intelligence. Moses’ research focuses on using machine learning, optimization, and electromechanical engineering to build robotics systems that are robust, flexible, intelligent, and can learn on the job. The technology she is developing holds promise for industries including flexible, small-batch manufacturing; robots to assist the elderly in their households; and warehouse management and fulfillment. Moses earned her BS in mechanical engineering from Cornell University and her MS in computer science from Northeastern University.

    Sergio Rodriguez Aponte is a PhD student in biological engineering. He is working on the convergence of computational design and manufacturing practices, which have the potential to impact industries such as biopharmaceuticals, food, and wellness/nutrition. His current research aims to develop strategies for applying computational tools, such as multiscale modeling and machine learning, to the design and production of manufacturable and accessible vaccine candidates that could eventually be available globally. Rodriguez Aponte earned his BS in industrial biotechnology from the University of Puerto Rico at Mayaguez.

    Soumya Sudhakar SM ’20 is a PhD student in aeronautics and astronautics. Her work is focused on theco-design of new algorithms and integrated circuits for autonomous low-energy robotics that could have novel applications in aerospace and consumer electronics. Her contributions bring together the emerging robotics industry, integrated circuits industry, aerospace industry, and consumer electronics industry. Sudhakar earned her BSE in mechanical and aerospace engineering from Princeton University and her MS in aeronautics and astronautics from MIT.

    So-Yoon Yang is a PhD student in electrical engineering and computer science. Her work on the development of low-power, wireless, ingestible biomedical devices for health care is at the intersection of the medical device, integrated circuit, artificial intelligence, and pharmaceutical fields. Currently, the majority of wireless biomedical devices can only provide a limited range of medical data measured from outside the body. Ingestible devices hold promise for the next generation of personal health care because they do not require surgical implantation, can be useful for detecting physiological and pathophysiological signals, and can also function as therapeutic alternatives when treatment cannot be done externally. Yang earned her BS in electrical and computer engineering from Seoul National University in South Korea and her MS in electrical engineering from Caltech. More

  • in

    Q&A: Cathy Wu on developing algorithms to safely integrate robots into our world

    Cathy Wu is the Gilbert W. Winslow Assistant Professor of Civil and Environmental Engineering and a member of the MIT Institute for Data, Systems, and Society. As an undergraduate, Wu won MIT’s toughest robotics competition, and as a graduate student took the University of California at Berkeley’s first-ever course on deep reinforcement learning. Now back at MIT, she’s working to improve the flow of robots in Amazon warehouses under the Science Hub, a new collaboration between the tech giant and the MIT Schwarzman College of Computing. Outside of the lab and classroom, Wu can be found running, drawing, pouring lattes at home, and watching YouTube videos on math and infrastructure via 3Blue1Brown and Practical Engineering. She recently took a break from all of that to talk about her work.

    Q: What put you on the path to robotics and self-driving cars?

    A: My parents always wanted a doctor in the family. However, I’m bad at following instructions and became the wrong kind of doctor! Inspired by my physics and computer science classes in high school, I decided to study engineering. I wanted to help as many people as a medical doctor could.

    At MIT, I looked for applications in energy, education, and agriculture, but the self-driving car was the first to grab me. It has yet to let go! Ninety-four percent of serious car crashes are caused by human error and could potentially be prevented by self-driving cars. Autonomous vehicles could also ease traffic congestion, save energy, and improve mobility.

    I first learned about self-driving cars from Seth Teller during his guest lecture for the course Mobile Autonomous Systems Lab (MASLAB), in which MIT undergraduates compete to build the best full-functioning robot from scratch. Our ball-fetching bot, Putzputz, won first place. From there, I took more classes in machine learning, computer vision, and transportation, and joined Teller’s lab. I also competed in several mobility-related hackathons, including one sponsored by Hubway, now known as Blue Bike.

    Q: You’ve explored ways to help humans and autonomous vehicles interact more smoothly. What makes this problem so hard?

    A: Both systems are highly complex, and our classical modeling tools are woefully insufficient. Integrating autonomous vehicles into our existing mobility systems is a huge undertaking. For example, we don’t know whether autonomous vehicles will cut energy use by 40 percent, or double it. We need more powerful tools to cut through the uncertainty. My PhD thesis at Berkeley tried to do this. I developed scalable optimization methods in the areas of robot control, state estimation, and system design. These methods could help decision-makers anticipate future scenarios and design better systems to accommodate both humans and robots.

    Q: How is deep reinforcement learning, combining deep and reinforcement learning algorithms, changing robotics?

    A: I took John Schulman and Pieter Abbeel’s reinforcement learning class at Berkeley in 2015 shortly after Deepmind published their breakthrough paper in Nature. They had trained an agent via deep learning and reinforcement learning to play “Space Invaders” and a suite of Atari games at superhuman levels. That created quite some buzz. A year later, I started to incorporate reinforcement learning into problems involving mixed traffic systems, in which only some cars are automated. I realized that classical control techniques couldn’t handle the complex nonlinear control problems I was formulating.

    Deep RL is now mainstream but it’s by no means pervasive in robotics, which still relies heavily on classical model-based control and planning methods. Deep learning continues to be important for processing raw sensor data like camera images and radio waves, and reinforcement learning is gradually being incorporated. I see traffic systems as gigantic multi-robot systems. I’m excited for an upcoming collaboration with Utah’s Department of Transportation to apply reinforcement learning to coordinate cars with traffic signals, reducing congestion and thus carbon emissions.

    Q: You’ve talked about the MIT course, 6.007 (Signals and Systems), and its impact on you. What about it spoke to you?

    A: The mindset. That problems that look messy can be analyzed with common, and sometimes simple, tools. Signals are transformed by systems in various ways, but what do these abstract terms mean, anyway? A mechanical system can take a signal like gears turning at some speed and transform it into a lever turning at another speed. A digital system can take binary digits and turn them into other binary digits or a string of letters or an image. Financial systems can take news and transform it via millions of trading decisions into stock prices. People take in signals every day through advertisements, job offers, gossip, and so on, and translate them into actions that in turn influence society and other people. This humble class on signals and systems linked mechanical, digital, and societal systems and showed me how foundational tools can cut through the noise.

    Q: In your project with Amazon you’re training warehouse robots to pick up, sort, and deliver goods. What are the technical challenges?

    A: This project involves assigning robots to a given task and routing them there. [Professor] Cynthia Barnhart’s team is focused on task assignment, and mine, on path planning. Both problems are considered combinatorial optimization problems because the solution involves a combination of choices. As the number of tasks and robots increases, the number of possible solutions grows exponentially. It’s called the curse of dimensionality. Both problems are what we call NP Hard; there may not be an efficient algorithm to solve them. Our goal is to devise a shortcut.

    Routing a single robot for a single task isn’t difficult. It’s like using Google Maps to find the shortest path home. It can be solved efficiently with several algorithms, including Dijkstra’s. But warehouses resemble small cities with hundreds of robots. When traffic jams occur, customers can’t get their packages as quickly. Our goal is to develop algorithms that find the most efficient paths for all of the robots.

    Q: Are there other applications?

    A: Yes. The algorithms we test in Amazon warehouses might one day help to ease congestion in real cities. Other potential applications include controlling planes on runways, swarms of drones in the air, and even characters in video games. These algorithms could also be used for other robotic planning tasks like scheduling and routing.

    Q: AI is evolving rapidly. Where do you hope to see the big breakthroughs coming?

    A: I’d like to see deep learning and deep RL used to solve societal problems involving mobility, infrastructure, social media, health care, and education. Deep RL now has a toehold in robotics and industrial applications like chip design, but we still need to be careful in applying it to systems with humans in the loop. Ultimately, we want to design systems for people. Currently, we simply don’t have the right tools.

    Q: What worries you most about AI taking on more and more specialized tasks?

    A: AI has the potential for tremendous good, but it could also help to accelerate the widening gap between the haves and the have-nots. Our political and regulatory systems could help to integrate AI into society and minimize job losses and income inequality, but I worry that they’re not equipped yet to handle the firehose of AI.

    Q: What’s the last great book you read?

    A: “How to Avoid a Climate Disaster,” by Bill Gates. I absolutely loved the way that Gates was able to take an overwhelmingly complex topic and distill it down into words that everyone can understand. His optimism inspires me to keep pushing on applications of AI and robotics to help avoid a climate disaster. More

  • in

    Nonsense can make sense to machine-learning models

    For all that neural networks can accomplish, we still don’t really understand how they operate. Sure, we can program them to learn, but making sense of a machine’s decision-making process remains much like a fancy puzzle with a dizzying, complex pattern where plenty of integral pieces have yet to be fitted. 

    If a model was trying to classify an image of said puzzle, for example, it could encounter well-known, but annoying adversarial attacks, or even more run-of-the-mill data or processing issues. But a new, more subtle type of failure recently identified by MIT scientists is another cause for concern: “overinterpretation,” where algorithms make confident predictions based on details that don’t make sense to humans, like random patterns or image borders. 

    This could be particularly worrisome for high-stakes environments, like split-second decisions for self-driving cars, and medical diagnostics for diseases that need more immediate attention. Autonomous vehicles in particular rely heavily on systems that can accurately understand surroundings and then make quick, safe decisions. The network used specific backgrounds, edges, or particular patterns of the sky to classify traffic lights and street signs — irrespective of what else was in the image. 

    The team found that neural networks trained on popular datasets like CIFAR-10 and ImageNet suffered from overinterpretation. Models trained on CIFAR-10, for example, made confident predictions even when 95 percent of input images were missing, and the remainder is senseless to humans. 

    “Overinterpretation is a dataset problem that’s caused by these nonsensical signals in datasets. Not only are these high-confidence images unrecognizable, but they contain less than 10 percent of the original image in unimportant areas, such as borders. We found that these images were meaningless to humans, yet models can still classify them with high confidence,” says Brandon Carter, MIT Computer Science and Artificial Intelligence Laboratory PhD student and lead author on a paper about the research. 

    Deep-image classifiers are widely used. In addition to medical diagnosis and boosting autonomous vehicle technology, there are use cases in security, gaming, and even an app that tells you if something is or isn’t a hot dog, because sometimes we need reassurance. The tech in discussion works by processing individual pixels from tons of pre-labeled images for the network to “learn.” 

    Image classification is hard, because machine-learning models have the ability to latch onto these nonsensical subtle signals. Then, when image classifiers are trained on datasets such as ImageNet, they can make seemingly reliable predictions based on those signals. 

    Although these nonsensical signals can lead to model fragility in the real world, the signals are actually valid in the datasets, meaning overinterpretation can’t be diagnosed using typical evaluation methods based on that accuracy. 

    To find the rationale for the model’s prediction on a particular input, the methods in the present study start with the full image and repeatedly ask, what can I remove from this image? Essentially, it keeps covering up the image, until you’re left with the smallest piece that still makes a confident decision. 

    To that end, it could also be possible to use these methods as a type of validation criteria. For example, if you have an autonomously driving car that uses a trained machine-learning method for recognizing stop signs, you could test that method by identifying the smallest input subset that constitutes a stop sign. If that consists of a tree branch, a particular time of day, or something that’s not a stop sign, you could be concerned that the car might come to a stop at a place it’s not supposed to.

    While it may seem that the model is the likely culprit here, the datasets are more likely to blame. “There’s the question of how we can modify the datasets in a way that would enable models to be trained to more closely mimic how a human would think about classifying images and therefore, hopefully, generalize better in these real-world scenarios, like autonomous driving and medical diagnosis, so that the models don’t have this nonsensical behavior,” says Carter. 

    This may mean creating datasets in more controlled environments. Currently, it’s just pictures that are extracted from public domains that are then classified. But if you want to do object identification, for example, it might be necessary to train models with objects with an uninformative background. 

    This work was supported by Schmidt Futures and the National Institutes of Health. Carter wrote the paper alongside Siddhartha Jain and Jonas Mueller, scientists at Amazon, and MIT Professor David Gifford. They are presenting the work at the 2021 Conference on Neural Information Processing Systems. More

  • in

    Machine learning speeds up vehicle routing

    Waiting for a holiday package to be delivered? There’s a tricky math problem that needs to be solved before the delivery truck pulls up to your door, and MIT researchers have a strategy that could speed up the solution.

    The approach applies to vehicle routing problems such as last-mile delivery, where the goal is to deliver goods from a central depot to multiple cities while keeping travel costs down. While there are algorithms designed to solve this problem for a few hundred cities, these solutions become too slow when applied to a larger set of cities.

    To remedy this, Cathy Wu, the Gilbert W. Winslow Career Development Assistant Professor in Civil and Environmental Engineering and the Institute for Data, Systems, and Society, and her students have come up with a machine-learning strategy that accelerates some of the strongest algorithmic solvers by 10 to 100 times.

    The solver algorithms work by breaking up the problem of delivery into smaller subproblems to solve — say, 200 subproblems for routing vehicles between 2,000 cities. Wu and her colleagues augment this process with a new machine-learning algorithm that identifies the most useful subproblems to solve, instead of solving all the subproblems, to increase the quality of the solution while using orders of magnitude less compute.

    Their approach, which they call “learning-to-delegate,” can be used across a variety of solvers and a variety of similar problems, including scheduling and pathfinding for warehouse robots, the researchers say.

    The work pushes the boundaries on rapidly solving large-scale vehicle routing problems, says Marc Kuo, founder and CEO of Routific, a smart logistics platform for optimizing delivery routes. Some of Routific’s recent algorithmic advances were inspired by Wu’s work, he notes.

    “Most of the academic body of research tends to focus on specialized algorithms for small problems, trying to find better solutions at the cost of processing times. But in the real-world, businesses don’t care about finding better solutions, especially if they take too long for compute,” Kuo explains. “In the world of last-mile logistics, time is money, and you cannot have your entire warehouse operations wait for a slow algorithm to return the routes. An algorithm needs to be hyper-fast for it to be practical.”

    Wu, social and engineering systems doctoral student Sirui Li, and electrical engineering and computer science doctoral student Zhongxia Yan presented their research this week at the 2021 NeurIPS conference.

    Selecting good problems

    Vehicle routing problems are a class of combinatorial problems, which involve using heuristic algorithms to find “good-enough solutions” to the problem. It’s typically not possible to come up with the one “best” answer to these problems, because the number of possible solutions is far too huge.

    “The name of the game for these types of problems is to design efficient algorithms … that are optimal within some factor,” Wu explains. “But the goal is not to find optimal solutions. That’s too hard. Rather, we want to find as good of solutions as possible. Even a 0.5% improvement in solutions can translate to a huge revenue increase for a company.”

    Over the past several decades, researchers have developed a variety of heuristics to yield quick solutions to combinatorial problems. They usually do this by starting with a poor but valid initial solution and then gradually improving the solution — by trying small tweaks to improve the routing between nearby cities, for example. For a large problem like a 2,000-plus city routing challenge, however, this approach just takes too much time.

    More recently, machine-learning methods have been developed to solve the problem, but while faster, they tend to be more inaccurate, even at the scale of a few dozen cities. Wu and her colleagues decided to see if there was a beneficial way to combine the two methods to find speedy but high-quality solutions.

    “For us, this is where machine learning comes in,” Wu says. “Can we predict which of these subproblems, that if we were to solve them, would lead to more improvement in the solution, saving computing time and expense?”

    Traditionally, a large-scale vehicle routing problem heuristic might choose the subproblems to solve in which order either randomly or by applying yet another carefully devised heuristic. In this case, the MIT researchers ran sets of subproblems through a neural network they created to automatically find the subproblems that, when solved, would lead to the greatest gain in quality of the solutions. This process sped up subproblem selection process by 1.5 to 2 times, Wu and colleagues found.

    “We don’t know why these subproblems are better than other subproblems,” Wu notes. “It’s actually an interesting line of future work. If we did have some insights here, these could lead to designing even better algorithms.”

    Surprising speed-up

    Wu and colleagues were surprised by how well the approach worked. In machine learning, the idea of garbage-in, garbage-out applies — that is, the quality of a machine-learning approach relies heavily on the quality of the data. A combinatorial problem is so difficult that even its subproblems can’t be optimally solved. A neural network trained on the “medium-quality” subproblem solutions available as the input data “would typically give medium-quality results,” says Wu. In this case, however, the researchers were able to leverage the medium-quality solutions to achieve high-quality results, significantly faster than state-of-the-art methods.

    For vehicle routing and similar problems, users often must design very specialized algorithms to solve their specific problem. Some of these heuristics have been in development for decades.

    The learning-to-delegate method offers an automatic way to accelerate these heuristics for large problems, no matter what the heuristic or — potentially — what the problem.

    Since the method can work with a variety of solvers, it may be useful for a variety of resource allocation problems, says Wu. “We may unlock new applications that now will be possible because the cost of solving the problem is 10 to 100 times less.”

    The research was supported by MIT Indonesia Seed Fund, U.S. Department of Transportation Dwight David Eisenhower Transportation Fellowship Program, and the MIT-IBM Watson AI Lab. More

  • in

    Q&A: More-sustainable concrete with machine learning

    As a building material, concrete withstands the test of time. Its use dates back to early civilizations, and today it is the most popular composite choice in the world. However, it’s not without its faults. Production of its key ingredient, cement, contributes 8-9 percent of the global anthropogenic CO2 emissions and 2-3 percent of energy consumption, which is only projected to increase in the coming years. With aging United States infrastructure, the federal government recently passed a milestone bill to revitalize and upgrade it, along with a push to reduce greenhouse gas emissions where possible, putting concrete in the crosshairs for modernization, too.

    Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in the MIT Department of Materials Science and Engineering, and Jie Chen, MIT-IBM Watson AI Lab research scientist and manager, think artificial intelligence can help meet this need by designing and formulating new, more sustainable concrete mixtures, with lower costs and carbon dioxide emissions, while improving material performance and reusing manufacturing byproducts in the material itself. Olivetti’s research improves environmental and economic sustainability of materials, and Chen develops and optimizes machine learning and computational techniques, which he can apply to materials reformulation. Olivetti and Chen, along with their collaborators, have recently teamed up for an MIT-IBM Watson AI Lab project to make concrete more sustainable for the benefit of society, the climate, and the economy.

    Q: What applications does concrete have, and what properties make it a preferred building material?

    Olivetti: Concrete is the dominant building material globally with an annual consumption of 30 billion metric tons. That is over 20 times the next most produced material, steel, and the scale of its use leads to considerable environmental impact, approximately 5-8 percent of global greenhouse gas (GHG) emissions. It can be made locally, has a broad range of structural applications, and is cost-effective. Concrete is a mixture of fine and coarse aggregate, water, cement binder (the glue), and other additives.

    Q: Why isn’t it sustainable, and what research problems are you trying to tackle with this project?

    Olivetti: The community is working on several ways to reduce the impact of this material, including alternative fuels use for heating the cement mixture, increasing energy and materials efficiency and carbon sequestration at production facilities, but one important opportunity is to develop an alternative to the cement binder.

    While cement is 10 percent of the concrete mass, it accounts for 80 percent of the GHG footprint. This impact is derived from the fuel burned to heat and run the chemical reaction required in manufacturing, but also the chemical reaction itself releases CO2 from the calcination of limestone. Therefore, partially replacing the input ingredients to cement (traditionally ordinary Portland cement or OPC) with alternative materials from waste and byproducts can reduce the GHG footprint. But use of these alternatives is not inherently more sustainable because wastes might have to travel long distances, which adds to fuel emissions and cost, or might require pretreatment processes. The optimal way to make use of these alternate materials will be situation-dependent. But because of the vast scale, we also need solutions that account for the huge volumes of concrete needed. This project is trying to develop novel concrete mixtures that will decrease the GHG impact of the cement and concrete, moving away from the trial-and-error processes towards those that are more predictive.

    Chen: If we want to fight climate change and make our environment better, are there alternative ingredients or a reformulation we could use so that less greenhouse gas is emitted? We hope that through this project using machine learning we’ll be able to find a good answer.

    Q: Why is this problem important to address now, at this point in history?

    Olivetti: There is urgent need to address greenhouse gas emissions as aggressively as possible, and the road to doing so isn’t necessarily straightforward for all areas of industry. For transportation and electricity generation, there are paths that have been identified to decarbonize those sectors. We need to move much more aggressively to achieve those in the time needed; further, the technological approaches to achieve that are more clear. However, for tough-to-decarbonize sectors, such as industrial materials production, the pathways to decarbonization are not as mapped out.

    Q: How are you planning to address this problem to produce better concrete?

    Olivetti: The goal is to predict mixtures that will both meet performance criteria, such as strength and durability, with those that also balance economic and environmental impact. A key to this is to use industrial wastes in blended cements and concretes. To do this, we need to understand the glass and mineral reactivity of constituent materials. This reactivity not only determines the limit of the possible use in cement systems but also controls concrete processing, and the development of strength and pore structure, which ultimately control concrete durability and life-cycle CO2 emissions.

    Chen: We investigate using waste materials to replace part of the cement component. This is something that we’ve hypothesized would be more sustainable and economic — actually waste materials are common, and they cost less. Because of the reduction in the use of cement, the final concrete product would be responsible for much less carbon dioxide production. Figuring out the right concrete mixture proportion that makes endurable concretes while achieving other goals is a very challenging problem. Machine learning is giving us an opportunity to explore the advancement of predictive modeling, uncertainty quantification, and optimization to solve the issue. What we are doing is exploring options using deep learning as well as multi-objective optimization techniques to find an answer. These efforts are now more feasible to carry out, and they will produce results with reliability estimates that we need to understand what makes a good concrete.

    Q: What kinds of AI and computational techniques are you employing for this?

    Olivetti: We use AI techniques to collect data on individual concrete ingredients, mix proportions, and concrete performance from the literature through natural language processing. We also add data obtained from industry and/or high throughput atomistic modeling and experiments to optimize the design of concrete mixtures. Then we use this information to develop insight into the reactivity of possible waste and byproduct materials as alternatives to cement materials for low-CO2 concrete. By incorporating generic information on concrete ingredients, the resulting concrete performance predictors are expected to be more reliable and transformative than existing AI models.

    Chen: The final objective is to figure out what constituents, and how much of each, to put into the recipe for producing the concrete that optimizes the various factors: strength, cost, environmental impact, performance, etc. For each of the objectives, we need certain models: We need a model to predict the performance of the concrete (like, how long does it last and how much weight does it sustain?), a model to estimate the cost, and a model to estimate how much carbon dioxide is generated. We will need to build these models by using data from literature, from industry, and from lab experiments.

    We are exploring Gaussian process models to predict the concrete strength, going forward into days and weeks. This model can give us an uncertainty estimate of the prediction as well. Such a model needs specification of parameters, for which we will use another model to calculate. At the same time, we also explore neural network models because we can inject domain knowledge from human experience into them. Some models are as simple as multi-layer perceptions, while some are more complex, like graph neural networks. The goal here is that we want to have a model that is not only accurate but also robust — the input data is noisy, and the model must embrace the noise, so that its prediction is still accurate and reliable for the multi-objective optimization.

    Once we have built models that we are confident with, we will inject their predictions and uncertainty estimates into the optimization of multiple objectives, under constraints and under uncertainties.

    Q: How do you balance cost-benefit trade-offs?

    Chen: The multiple objectives we consider are not necessarily consistent, and sometimes they are at odds with each other. The goal is to identify scenarios where the values for our objectives cannot be further pushed simultaneously without compromising one or a few. For example, if you want to further reduce the cost, you probably have to suffer the performance or suffer the environmental impact. Eventually, we will give the results to policymakers and they will look into the results and weigh the options. For example, they may be able to tolerate a slightly higher cost under a significant reduction in greenhouse gas. Alternatively, if the cost varies little but the concrete performance changes drastically, say, doubles or triples, then this is definitely a favorable outcome.

    Q: What kinds of challenges do you face in this work?

    Chen: The data we get either from industry or from literature are very noisy; the concrete measurements can vary a lot, depending on where and when they are taken. There are also substantial missing data when we integrate them from different sources, so, we need to spend a lot of effort to organize and make the data usable for building and training machine learning models. We also explore imputation techniques that substitute missing features, as well as models that tolerate missing features, in our predictive modeling and uncertainty estimate.

    Q: What do you hope to achieve through this work?

    Chen: In the end, we are suggesting either one or a few concrete recipes, or a continuum of recipes, to manufacturers and policymakers. We hope that this will provide invaluable information for both the construction industry and for the effort of protecting our beloved Earth.

    Olivetti: We’d like to develop a robust way to design cements that make use of waste materials to lower their CO2 footprint. Nobody is trying to make waste, so we can’t rely on one stream as a feedstock if we want this to be massively scalable. We have to be flexible and robust to shift with feedstocks changes, and for that we need improved understanding. Our approach to develop local, dynamic, and flexible alternatives is to learn what makes these wastes reactive, so we know how to optimize their use and do so as broadly as possible. We do that through predictive model development through software we have developed in my group to automatically extract data from literature on over 5 million texts and patents on various topics. We link this to the creative capabilities of our IBM collaborators to design methods that predict the final impact of new cements. If we are successful, we can lower the emissions of this ubiquitous material and play our part in achieving carbon emissions mitigation goals.

    Other researchers involved with this project include Stefanie Jegelka, the X-Window Consortium Career Development Associate Professor in the MIT Department of Electrical Engineering and Computer Science; Richard Goodwin, IBM principal researcher; Soumya Ghosh, MIT-IBM Watson AI Lab research staff member; and Kristen Severson, former research staff member. Collaborators included Nghia Hoang, former research staff member with MIT-IBM Watson AI Lab and IBM Research; and Jeremy Gregory, research scientist in the MIT Department of Civil and Environmental Engineering and executive director of the MIT Concrete Sustainability Hub.

    This research is supported by the MIT-IBM Watson AI Lab. More

  • in

    Design’s new frontier

    In the 1960s, the advent of computer-aided design (CAD) sparked a revolution in design. For his PhD thesis in 1963, MIT Professor Ivan Sutherland developed Sketchpad, a game-changing software program that enabled users to draw, move, and resize shapes on a computer. Over the course of the next few decades, CAD software reshaped how everything from consumer products to buildings and airplanes were designed.

    “CAD was part of the first wave in computing in design. The ability of researchers and practitioners to represent and model designs using computers was a major breakthrough and still is one of the biggest outcomes of design research, in my opinion,” says Maria Yang, Gail E. Kendall Professor and director of MIT’s Ideation Lab.

    Innovations in 3D printing during the 1980s and 1990s expanded CAD’s capabilities beyond traditional injection molding and casting methods, providing designers even more flexibility. Designers could sketch, ideate, and develop prototypes or models faster and more efficiently. Meanwhile, with the push of a button, software like that developed by Professor Emeritus David Gossard of MIT’s CAD Lab could solve equations simultaneously to produce a new geometry on the fly.

    In recent years, mechanical engineers have expanded the computing tools they use to ideate, design, and prototype. More sophisticated algorithms and the explosion of machine learning and artificial intelligence technologies have sparked a second revolution in design engineering.

    Researchers and faculty at MIT’s Department of Mechanical Engineering are utilizing these technologies to re-imagine how the products, systems, and infrastructures we use are designed. These researchers are at the forefront of the new frontier in design.

    Computational design

    Faez Ahmed wants to reinvent the wheel, or at least the bicycle wheel. He and his team at MIT’s Design Computation & Digital Engineering Lab (DeCoDE) use an artificial intelligence-driven design method that can generate entirely novel and improved designs for a range of products — including the traditional bicycle. They create advanced computational methods to blend human-driven design with simulation-based design.

    “The focus of our DeCoDE lab is computational design. We are looking at how we can create machine learning and AI algorithms to help us discover new designs that are optimized based on specific performance parameters,” says Ahmed, an assistant professor of mechanical engineering at MIT.

    For their work using AI-driven design for bicycles, Ahmed and his collaborator Professor Daniel Frey wanted to make it easier to design customizable bicycles, and by extension, encourage more people to use bicycles over transportation methods that emit greenhouse gases.

    To start, the group gathered a dataset of 4,500 bicycle designs. Using this massive dataset, they tested the limits of what machine learning could do. First, they developed algorithms to group bicycles that looked similar together and explore the design space. They then created machine learning models that could successfully predict what components are key in identifying a bicycle style, such as a road bike versus a mountain bike.

    Once the algorithms were good enough at identifying bicycle designs and parts, the team proposed novel machine learning tools that could use this data to create a unique and creative design for a bicycle based on certain performance parameters and rider dimensions.

    Ahmed used a generative adversarial network — or GAN — as the basis of this model. GAN models utilize neural networks that can create new designs based on vast amounts of data. However, using GAN models alone would result in homogeneous designs that lack novelty and can’t be assessed in terms of performance. To address these issues in design problems, Ahmed has developed a new method which he calls “PaDGAN,” performance augmented diverse GAN.

    “When we apply this type of model, what we see is that we can get large improvements in the diversity, quality, as well as novelty of the designs,” Ahmed explains.

    Using this approach, Ahmed’s team developed an open-source computational design tool for bicycles freely available on their lab website. They hope to further develop a set of generalizable tools that can be used across industries and products.

    Longer term, Ahmed has his sights set on loftier goals. He hopes the computational design tools he develops could lead to “design democratization,” putting more power in the hands of the end user.

    “With these algorithms, you can have more individualization where the algorithm assists a customer in understanding their needs and helps them create a product that satisfies their exact requirements,” he adds.

    Using algorithms to democratize the design process is a goal shared by Stefanie Mueller, an associate professor in electrical engineering and computer science and mechanical engineering.

    Personal fabrication

    Platforms like Instagram give users the freedom to instantly edit their photographs or videos using filters. In one click, users can alter the palette, tone, and brightness of their content by applying filters that range from bold colors to sepia-toned or black-and-white. Mueller, X-Window Consortium Career Development Professor, wants to bring this concept of the Instagram filter to the physical world.

    “We want to explore how digital capabilities can be applied to tangible objects. Our goal is to bring reprogrammable appearance to the physical world,” explains Mueller, director of the HCI Engineering Group based out of MIT’s Computer Science and Artificial Intelligence Laboratory.

    Mueller’s team utilizes a combination of smart materials, optics, and computation to advance personal fabrication technologies that would allow end users to alter the design and appearance of the products they own. They tested this concept in a project they dubbed “Photo-Chromeleon.”

    First, a mix of photochromic cyan, magenta, and yellow dies are airbrushed onto an object — in this instance, a 3D sculpture of a chameleon. Using software they developed, the team sketches the exact color pattern they want to achieve on the object itself. An ultraviolet light shines on the object to activate the dyes.

    To actually create the physical pattern on the object, Mueller has developed an optimization algorithm to use alongside a normal office projector outfitted with red, green, and blue LED lights. These lights shine on specific pixels on the object for a given period of time to physically change the makeup of the photochromic pigments.

    “This fancy algorithm tells us exactly how long we have to shine the red, green, and blue light on every single pixel of an object to get the exact pattern we’ve programmed in our software,” says Mueller.

    Giving this freedom to the end user enables limitless possibilities. Mueller’s team has applied this technology to iPhone cases, shoes, and even cars. In the case of shoes, Mueller envisions a shoebox embedded with UV and LED light projectors. Users could put their shoes in the box overnight and the next day have a pair of shoes in a completely new pattern.

    Mueller wants to expand her personal fabrication methods to the clothes we wear. Rather than utilize the light projection technique developed in the PhotoChromeleon project, her team is exploring the possibility of weaving LEDs directly into clothing fibers, allowing people to change their shirt’s appearance as they wear it. These personal fabrication technologies could completely alter consumer habits.

    “It’s very interesting for me to think about how these computational techniques will change product design on a high level,” adds Mueller. “In the future, a consumer could buy a blank iPhone case and update the design on a weekly or daily basis.”

    Computational fluid dynamics and participatory design

    Another team of mechanical engineers, including Sili Deng, the Brit (1961) & Alex (1949) d’Arbeloff Career Development Professor, are developing a different kind of design tool that could have a large impact on individuals in low- and middle-income countries across the world.

    As Deng walked down the hallway of Building 1 on MIT’s campus, a monitor playing a video caught her eye. The video featured work done by mechanical engineers and MIT D-Lab on developing cleaner burning briquettes for cookstoves in Uganda. Deng immediately knew she wanted to get involved.

    “As a combustion scientist, I’ve always wanted to work on such a tangible real-world problem, but the field of combustion tends to focus more heavily on the academic side of things,” explains Deng.

    After reaching out to colleagues in MIT D-Lab, Deng joined a collaborative effort to develop a new cookstove design tool for the 3 billion people across the world who burn solid fuels to cook and heat their homes. These stoves often emit soot and carbon monoxide, leading not only to millions of deaths each year, but also worsening the world’s greenhouse gas emission problem.

    The team is taking a three-pronged approach to developing this solution, using a combination of participatory design, physical modeling, and experimental validation to create a tool that will lead to the production of high-performing, low-cost energy products.

    Deng and her team in the Deng Energy and Nanotechnology Group use physics-based modeling for the combustion and emission process in cookstoves.

    “My team is focused on computational fluid dynamics. We use computational and numerical studies to understand the flow field where the fuel is burned and releases heat,” says Deng.

    These flow mechanics are crucial to understanding how to minimize heat loss and make cookstoves more efficient, as well as learning how dangerous pollutants are formed and released in the process.

    Using computational methods, Deng’s team performs three-dimensional simulations of the complex chemistry and transport coupling at play in the combustion and emission processes. They then use these simulations to build a combustion model for how fuel is burned and a pollution model that predicts carbon monoxide emissions.

    Deng’s models are used by a group led by Daniel Sweeney in MIT D-Lab to test the experimental validation in prototypes of stoves. Finally, Professor Maria Yang uses participatory design methods to integrate user feedback, ensuring the design tool can actually be used by people across the world.

    The end goal for this collaborative team is to not only provide local manufacturers with a prototype they could produce themselves, but to also provide them with a tool that can tweak the design based on local needs and available materials.

    Deng sees wide-ranging applications for the computational fluid dynamics her team is developing.

    “We see an opportunity to use physics-based modeling, augmented with a machine learning approach, to come up with chemical models for practical fuels that help us better understand combustion. Therefore, we can design new methods to minimize carbon emissions,” she adds.

    While Deng is utilizing simulations and machine learning at the molecular level to improve designs, others are taking a more macro approach.

    Designing intelligent systems

    When it comes to intelligent design, Navid Azizan thinks big. He hopes to help create future intelligent systems that are capable of making decisions autonomously by using the enormous amounts of data emerging from the physical world. From smart robots and autonomous vehicles to smart power grids and smart cities, Azizan focuses on the analysis, design, and control of intelligent systems.

    Achieving such massive feats takes a truly interdisciplinary approach that draws upon various fields such as machine learning, dynamical systems, control, optimization, statistics, and network science, among others.

    “Developing intelligent systems is a multifaceted problem, and it really requires a confluence of disciplines,” says Azizan, assistant professor of mechanical engineering with a dual appointment in MIT’s Institute for Data, Systems, and Society (IDSS). “To create such systems, we need to go beyond standard approaches to machine learning, such as those commonly used in computer vision, and devise algorithms that can enable safe, efficient, real-time decision-making for physical systems.”

    For robot control to work in the complex dynamic environments that arise in the real world, real-time adaptation is key. If, for example, an autonomous vehicle is going to drive in icy conditions or a drone is operating in windy conditions, they need to be able to adapt to their new environment quickly.

    To address this challenge, Azizan and his collaborators at MIT and Stanford University have developed a new algorithm that combines adaptive control, a powerful methodology from control theory, with meta learning, a new machine learning paradigm.

    “This ‘control-oriented’ learning approach outperforms the existing ‘regression-oriented’ methods, which are mostly focused on just fitting the data, by a wide margin,” says Azizan.

    Another critical aspect of deploying machine learning algorithms in physical systems that Azizan and his team hope to address is safety. Deep neural networks are a crucial part of autonomous systems. They are used for interpreting complex visual inputs and making data-driven predictions of future behavior in real time. However, Azizan urges caution.

    “These deep neural networks are only as good as their training data, and their predictions can often be untrustworthy in scenarios not covered by their training data,” he says. Making decisions based on such untrustworthy predictions could lead to fatal accidents in autonomous vehicles or other safety-critical systems.

    To avoid these potentially catastrophic events, Azizan proposes that it is imperative to equip neural networks with a measure of their uncertainty. When the uncertainty is high, they can then be switched to a “safe policy.”

    In pursuit of this goal, Azizan and his collaborators have developed a new algorithm known as SCOD — Sketching Curvature of Out-of-Distribution Detection. This framework could be embedded within any deep neural network to equip them with a measure of their uncertainty.

    “This algorithm is model-agnostic and can be applied to neural networks used in various kinds of autonomous systems, whether it’s drones, vehicles, or robots,” says Azizan.

    Azizan hopes to continue working on algorithms for even larger-scale systems. He and his team are designing efficient algorithms to better control supply and demand in smart energy grids. According to Azizan, even if we create the most efficient solar panels and batteries, we can never achieve a sustainable grid powered by renewable resources without the right control mechanisms.

    Mechanical engineers like Ahmed, Mueller, Deng, and Azizan serve as the key to realizing the next revolution of computing in design.

    “MechE is in a unique position at the intersection of the computational and physical worlds,” Azizan says. “Mechanical engineers build a bridge between theoretical, algorithmic tools and real, physical world applications.”

    Sophisticated computational tools, coupled with the ground truth mechanical engineers have in the physical world, could unlock limitless possibilities for design engineering, well beyond what could have been imagined in those early days of CAD. More