More stories

  • in

    Improving US air quality, equitably

    Decarbonization of national economies will be key to achieving global net-zero emissions by 2050, a major stepping stone to the Paris Agreement’s long-term goal of keeping global warming well below 2 degrees Celsius (and ideally 1.5 C), and thereby averting the worst consequences of climate change. Toward that end, the United States has pledged to reduce its greenhouse gas emissions by 50-52 percent from 2005 levels by 2030, backed by its implementation of the 2022 Inflation Reduction Act. This strategy is consistent with a 50-percent reduction in carbon dioxide (CO2) by the end of the decade.

    If U.S. federal carbon policy is successful, the nation’s overall air quality will also improve. Cutting CO2 emissions reduces atmospheric concentrations of air pollutants that lead to the formation of fine particulate matter (PM2.5), which causes more than 200,000 premature deaths in the United States each year. But an average nationwide improvement in air quality will not be felt equally; air pollution exposure disproportionately harms people of color and lower-income populations.

    How effective are current federal decarbonization policies in reducing U.S. racial and economic disparities in PM2.5 exposure, and what changes will be needed to improve their performance? To answer that question, researchers at MIT and Stanford University recently evaluated a range of policies which, like current U.S. federal carbon policies, reduce economy-wide CO2 emissions by 40-60 percent from 2005 levels by 2030. Their findings appear in an open-access article in the journal Nature Communications.

    First, they show that a carbon-pricing policy, while effective in reducing PM2.5 exposure for all racial/ethnic groups, does not significantly mitigate relative disparities in exposure. On average, the white population undergoes far less exposure than Black, Hispanic, and Asian populations. This policy does little to reduce exposure disparities because the CO2 emissions reductions that it achieves primarily occur in the coal-fired electricity sector. Other sectors, such as industry and heavy-duty diesel transportation, contribute far more PM2.5-related emissions.

    The researchers then examine thousands of different reduction options through an optimization approach to identify whether any possible combination of carbon dioxide reductions in the range of 40-60 percent can mitigate disparities. They find that that no policy scenario aligned with current U.S. carbon dioxide emissions targets is likely to significantly reduce current PM2.5 exposure disparities.

    “Policies that address only about 50 percent of CO2 emissions leave many polluting sources in place, and those that prioritize reductions for minorities tend to benefit the entire population,” says Noelle Selin, supervising author of the study and a professor at MIT’s Institute for Data, Systems and Society and Department of Earth, Atmospheric and Planetary Sciences. “This means that a large range of policies that reduce CO2 can improve air quality overall, but can’t address long-standing inequities in air pollution exposure.”

    So if climate policy alone cannot adequately achieve equitable air quality results, what viable options remain? The researchers suggest that more ambitious carbon policies could narrow racial and economic PM2.5 exposure disparities in the long term, but not within the next decade. To make a near-term difference, they recommend interventions designed to reduce PM2.5 emissions resulting from non-CO2 sources, ideally at the economic sector or community level.

    “Achieving improved PM2.5 exposure for populations that are disproportionately exposed across the United States will require thinking that goes beyond current CO2 policy strategies, most likely involving large-scale structural changes,” says Selin. “This could involve changes in local and regional transportation and housing planning, together with accelerated efforts towards decarbonization.” More

  • in

    New clean air and water labs to bring together researchers, policymakers to find climate solutions

    MIT’s Abdul Latif Jameel Poverty Action Lab (J-PAL) is launching the Clean Air and Water Labs, with support from Community Jameel, to generate evidence-based solutions aimed at increasing access to clean air and water.

    Led by J-PAL’s Africa, Middle East and North Africa (MENA), and South Asia regional offices, the labs will partner with government agencies to bring together researchers and policymakers in areas where impactful clean air and water solutions are most urgently needed.

    Together, the labs aim to improve clean air and water access by informing the scaling of evidence-based policies and decisions of city, state, and national governments that serve nearly 260 million people combined.

    The Clean Air and Water Labs expand the work of J-PAL’s King Climate Action Initiative, building on the foundational support of King Philanthropies, which significantly expanded J-PAL’s work at the nexus of climate change and poverty alleviation worldwide. 

    Air pollution, water scarcity and the need for evidence 

    Africa, MENA, and South Asia are on the front lines of global air and water crises. 

    “There is no time to waste investing in solutions that do not achieve their desired effects,” says Iqbal Dhaliwal, global executive director of J-PAL. “By co-generating rigorous real-world evidence with researchers, policymakers can have the information they need to dedicate resources to scaling up solutions that have been shown to be effective.”

    In India, about 75 percent of households did not have drinking water on premises in 2018. In MENA, nearly 90 percent of children live in areas facing high or extreme water stress. Across Africa, almost 400 million people lack access to safe drinking water. 

    Simultaneously, air pollution is one of the greatest threats to human health globally. In India, extraordinary levels of air pollution are shortening the average life expectancy by five years. In Africa, rising indoor and ambient air pollution contributed to 1.1 million premature deaths in 2019. 

    There is increasing urgency to find high-impact and cost-effective solutions to the worsening threats to human health and resources caused by climate change. However, data and evidence on potential solutions are limited.

    Fostering collaboration to generate policy-relevant evidence 

    The Clean Air and Water Labs will foster deep collaboration between government stakeholders, J-PAL regional offices, and researchers in the J-PAL network. 

    Through the labs, J-PAL will work with policymakers to:

    co-diagnose the most pressing air and water challenges and opportunities for policy innovation;
    expand policymakers’ access to and use of high-quality air and water data;
    co-design potential solutions informed by existing evidence;
    co-generate evidence on promising solutions through rigorous evaluation, leveraging existing and new data sources; and
    support scaling of air and water policies and programs that are found to be effective through evaluation. 
    A research and scaling fund for each lab will prioritize resources for co-generated pilot studies, randomized evaluations, and scaling projects. 

    The labs will also collaborate with C40 Cities, a global network of mayors of the world’s leading cities that are united in action to confront the climate crisis, to share policy-relevant evidence and identify opportunities for potential new connections and research opportunities within India and across Africa.

    This model aims to strengthen the use of evidence in decision-making to ensure solutions are highly effective and to guide research to answer policymakers’ most urgent questions. J-PAL Africa, MENA, and South Asia’s strong on-the-ground presence will further bridge research and policy work by anchoring activities within local contexts. 

    “Communities across the world continue to face challenges in accessing clean air and water, a threat to human safety that has only been exacerbated by the climate crisis, along with rising temperatures and other hazards,” says George Richards, director of Community Jameel. “Through our collaboration with J-PAL and C40 in creating climate policy labs embedded in city, state, and national governments in Africa and South Asia, we are committed to innovative and science-based approaches that can help hundreds of millions of people enjoy healthier lives.”

    J-PAL Africa, MENA, and South Asia will formally launch Clean Air and Water Labs with government partners over the coming months. J-PAL is housed in the MIT Department of Economics, within the School of Humanities, Arts, and Social Sciences. More

  • in

    M’Care and MIT students join forces to improve child health in Nigeria

    Through a collaboration between M’Care, a 2021 Health Security and Pandemics Solver team, and students from MIT, the landscape of child health care in Nigeria could undergo a transformative change, wherein the power of data is harnessed to improve child health outcomes in economically disadvantaged communities. 

    M’Care is a mobile application of Promane and Promade Limited, developed by Opeoluwa Ashimi, which gives community health workers in Nigeria real-time diagnostic and treatment support. The application also creates a dashboard that is available to government health officials to help identify disease trends and deploy timely interventions. As part of its work, M’Care is working to mitigate malnutrition by providing micronutrient powder, vitamin A, and zinc to children below the age of 5. To help deepen its impact, Ashimi decided to work with students in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) course 6.S897 (Machine Learning for Healthcare) — instructed by professors Peter Szolovits and Manolis Kellis — to leverage data in order to improve nutrient delivery to children across Nigeria. The collaboration also enabled students to see real-world applications for data analysis in the health care space.

    A meeting of minds: M’Care, MIT, and national health authorities

    “Our primary goal for collaborating with the ML for Health team was to spot the missing link in the continuum of care. With over 1 million cumulative consultations that qualify for a continuum of care evaluation, it was important to spot why patients could be lost to followup, prevent this, and ensure completion of care to successfully address the health needs of our patients,” says Ashimi, founder and CEO of M’Care.

    In May 2023, Ashimi attended a meeting that brought together key national stakeholders, including the representatives of the National Ministry of Health in Nigeria. This gathering served as a platform to discuss the profound impact of M’Care’s and ML for Health team’s collaboration — bolstered by data analysis provided on dosage regimens and a child’s age to enhance continuum of care with its attendant impact on children’s health, particularly in relation to brain development with regards to the use of essential micronutrients. The data analyzed by the students using ML methods that were shared during the meeting provided strong supporting evidence to individualize dosage regimens for children based on their age in months for the ANRIN project — a national nutrition project supported by the World Bank — as well as policy decisions to extend months of coverage for children, redefining health care practices in Nigeria.

    MIT students drive change by harnessing the power of data

    At the heart of this collaboration lies the contribution of MIT students. Armed with their dedication and skill in data analysis and machine learning, they played a pivotal role in helping M’Care analyze their data and prepare for their meeting with the Ministry of Health. Their most significant findings included ways to identify patients at risk of not completing their full course of micronutrient powder and/or vitamin A, and identifying gaps in M’Care’s data, such as postdated delivery dates and community demographics. These findings are already helping M’Care better plan its resources and adjust the scope of its program to ensure more children complete the intervention.

    Darcy Kim, an undergraduate at Wellesley College studying math and computer science, who is cross-registered for the MIT machine learning course, expresses enthusiasm about the practical applications found within the project: “To me, data and math is storytelling, and the story is why I love studying it. … I learned that data exploration involves asking questions about how the data is collected, and that surprising patterns that arise often have a qualitative explanation. Impactful research requires radical collaboration with the people the research intends to help. Otherwise, these qualitative explanations get lost in the numbers.”

    Joyce Luo, a first-year operations research PhD student at the Operations Research Center at MIT, shares similar thoughts about the project: “I learned the importance of understanding the context behind data to figure out what kind of analysis might be most impactful. This involves being in frequent contact with the company or organization who provides the data to learn as much as you can about how the data was collected and the people the analysis could help. Stepping back and looking at the bigger picture, rather than just focusing on accuracy or metrics, is extremely important.”

    Insights to implementation: A new era for micronutrient dosing

    As a direct result of M’Care’s collaboration with MIT, policymakers revamped the dosing scheme for essential micronutrient administration for children in Nigeria to prevent malnutrition. M’Care and MIT’s data analysis unearthed critical insights into the limited frequency of medical visits caused by late-age enrollment. 

    “One big takeaway for me was that the data analysis portion of the project — doing a deep dive into the data; understanding, analyzing, visualizing, and summarizing the data — can be just as important as building the machine learning models. M’Care shared our data analysis with the National Ministry of Health, and the insights from it drove them to change their dosing scheme and schedule for delivering micronutrient powder to young children. This really showed us the value of understanding and knowing your data before modeling,” shares Angela Lin, a second-year PhD student at the Operations Research Center.

    Armed with this knowledge, policymakers are eager to develop an optimized dosing scheme that caters to the unique needs of children in disadvantaged communities, ensuring maximum impact on their brain development and overall well-being.

    Siddharth Srivastava, M’Care’s corporate technology liaison, shares his gratitude for the MIT student’s input. “Collaborating with enthusiastic and driven students was both empowering and inspiring. Each of them brought unique perspectives and technical skills to the table. Their passion for applying machine learning to health care was evident in their unwavering dedication and proactive approach to problem-solving.”

    Forging a path to impact

    The collaboration between M’Care and MIT exemplifies the remarkable achievements that arise when academia, innovative problem-solvers, and policy authorities unite. By merging academic rigor with real-world expertise, this partnership has the potential to revolutionize child health care not only in Nigeria but also in similar contexts worldwide.

    “I believe applying innovative methods of machine learning, data gathering, instrumentation, and planning to real problems in the developing world can be highly effective for those countries and highly motivating for our students. I was happy to have such a project in our class portfolio this year and look forward to future opportunities,” says Peter Szolovits, professor of computer science and engineering at MIT.

    By harnessing the power of data, innovation, and collective expertise, this collaboration between M’Care and MIT has the potential to improve equitable child health care in Nigeria. “It has been so fulfilling to see how our team’s work has been able to create even the smallest positive impact in such a short period of time, and it has been amazing to work with a company like Promane and Promade Limited that is so knowledgeable and caring for the communities that they serve,” shares Elizabeth Whittier, a second-year PhD electrical engineering student at MIT. More

  • in

    Educating national security leaders on artificial intelligence

    Understanding artificial intelligence and how it relates to matters of national security has become a top priority for military and government leaders in recent years. A new three-day custom program entitled “Artificial Intelligence for National Security Leaders” — AI4NSL for short — aims to educate leaders who may not have a technical background on the basics of AI, machine learning, and data science, and how these topics intersect with national security.

    “National security fundamentally is about two things: getting information out of sensors and processing that information. These are two things that AI excels at. The AI4NSL class engages national security leaders in understanding how to navigate the benefits and opportunities that AI affords, while also understanding its potential negative consequences,” says Aleksander Madry, the Cadence Design Systems Professor at MIT and one of the course’s faculty directors.

    Organized jointly by MIT’s School of Engineering, MIT Stephen A. Schwarzman College of Computing, and MIT Sloan Executive Education, AI4NSL wrapped up its fifth cohort in April. The course brings leaders from every branch of the U.S. military, as well as some foreign military leaders from NATO, to MIT’s campus, where they learn from faculty experts on a variety of technical topics in AI, as well as how to navigate organizational challenges that arise in this context.

    Play video

    AI for National Security Leaders | MIT Sloan Executive Education

    “We set out to put together a real executive education class on AI for senior national security leaders,” says Madry. “For three days, we are teaching these leaders not only an understanding of what this technology is about, but also how to best adopt these technologies organizationally.”

    The original idea sprang from discussions with senior U.S. Air Force (USAF) leaders and members of the Department of the Air Force (DAF)-MIT AI Accelerator in 2019.

    According to Major John Radovan, deputy director of the DAF-MIT AI Accelerator, in recent years it has become clear that national security leaders needed a deeper understanding of AI technologies and its implications on security, warfare, and military operations. In February 2020, Radovan and his team at the DAF-MIT AI Accelerator started building a custom course to help guide senior leaders in their discussions about AI.

    “This is the only course out there that is focused on AI specifically for national security,” says Radovan. “We didn’t want to make this course just for members of the Air Force — it had to be for all branches of the military. If we are going to operate as a joint force, we need to have the same vocabulary and the same mental models about how to use this technology.”

    After a pilot program in collaboration with MIT Open Learning and the MIT Computer Science and Artificial Intelligence Laboratory, Radovan connected with faculty at the School of Engineering and MIT Schwarzman College of Computing, including Madry, to refine the course’s curriculum. They enlisted the help of colleagues and faculty at MIT Sloan Executive Education to refine the class’s curriculum and cater the content to its audience. The result of this cross-school collaboration was a new iteration of AI4NSL, which was launched last summer.

    In addition to providing participants with a basic overview of AI technologies, the course places a heavy emphasis on organizational planning and implementation.

    “What we wanted to do was to create smart consumers at the command level. The idea was to present this content at a higher level so that people could understand the key frameworks, which will guide their thinking around the use and adoption of this material,” says Roberto Fernandez, the William F. Pounds Professor of Management and one of the AI4NSL instructors, as well as the other course’s faculty director.

    During the three-day course, instructors from MIT’s Department of Electrical Engineering and Computer Science, Department of Aeronautics and Astronautics, and MIT Sloan School of Management cover a wide range of topics.

    The first half of the course starts with a basic overview of concepts including AI, machine learning, deep learning, and the role of data. Instructors also present the problems and pitfalls of using AI technologies, including the potential for adversarial manipulation of machine learning systems, privacy challenges, and ethical considerations.

    In the middle of day two, the course shifts to examine the organizational perspective, encouraging participants to consider how to effectively implement these technologies in their own units.

    “What’s exciting about this course is the way it is formatted first in terms of understanding AI, machine learning, what data is, and how data feeds AI, and then giving participants a framework to go back to their units and build a strategy to make this work,” says Colonel Michelle Goyette, director of the Army Strategic Education Program at the Army War College and an AI4NSL participant.

    Throughout the course, breakout sessions provide participants with an opportunity to collaborate and problem-solve on an exercise together. These breakout sessions build upon one another as the participants are exposed to new concepts related to AI.

    “The breakout sessions have been distinctive because they force you to establish relationships with people you don’t know, so the networking aspect is key. Any time you can do more than receive information and actually get into the application of what you were taught, that really enhances the learning environment,” says Lieutenant General Brian Robinson, the commander of Air Education and Training Command for the USAF and an AI4NSL participant.

    This spirit of teamwork, collaboration, and bringing together individuals from different backgrounds permeates the three-day program. The AI4NSL classroom not only brings together national security leaders from all branches of the military, it also brings together faculty from three schools across MIT.

    “One of the things that’s most exciting about this program is the kind of overarching theme of collaboration,” says Rob Dietel, director of executive programs at Sloan School of Management. “We’re not drawing just from the MIT Sloan faculty, we’re bringing in top faculty from the Schwarzman College of Computing and the School of Engineering. It’s wonderful to be able to tap into those resources that are here on MIT’s campus to really make it the most impactful program that we can.”

    As new developments in generative AI, such as ChatGPT, and machine learning alter the national security landscape, the organizers at AI4NSL will continue to update the curriculum to ensure it is preparing leaders to understand the implications for their respective units.

    “The rate of change for AI and national security is so fast right now that it’s challenging to keep up, and that’s part of the reason we’ve designed this program. We’ve brought in some of our world-class faculty from different parts of MIT to really address the changing dynamic of AI,” adds Dietel. More

  • in

    Day of AI curriculum meets the moment

    MIT Responsible AI for Social Empowerment and Education (RAISE) recently celebrated the second annual Day of AI with two flagship local events. The Edward M. Kennedy Institute for the U.S. Senate in Boston hosted a human rights and data policy-focused event that was streamed worldwide. Dearborn STEM Academy in Roxbury, Massachusetts, hosted a student workshop in collaboration with Amazon Future Engineer. With over 8,000 registrations across all 50 U.S. states and 108 countries in 2023, participation in Day of AI has more than doubled since its inaugural year.

    Day of AI is a free curriculum of lessons and hands-on activities designed to teach kids of all ages and backgrounds the basics and responsible use of artificial intelligence, designed by researchers at MIT RAISE. This year, resources were available for educators to run at any time and in any increments they chose. The curriculum included five new modules to address timely topics like ChatGPT in School, Teachable Machines, AI and Social Media, Data Science and Me, and more. A collaboration with the International Society for Technology in Education also introduced modules for early elementary students. Educators across the world shared photos, videos, and stories of their students’ engagement, expressing excitement and even relief over the accessible lessons.

    Professor Cynthia Breazeal, director of RAISE, dean for digital learning at MIT, and head of the MIT Media Lab’s Personal Robots research group, said, “It’s been a year of extraordinary advancements in AI, and with that comes necessary conversations and concerns about who and what this technology is for. With our Day of AI events, we want to celebrate the teachers and students who are putting in the work to make sure that AI is for everyone.”

    Reflecting community values and protecting digital citizens

    Play video

    On May 18, 2023, MIT RAISE hosted a global Day of AI celebration featuring a flagship local event focused on human rights and data policy at the Edward M. Kennedy Institute for the U.S. Senate. Students from the Warren Prescott Middle School and New Mission High School heard from speakers the City of Boston, Liberty Mutual, and MIT to discuss the many benefits and challenges of artificial intelligence education. Video: MIT Open Learning

    MIT President Sally Kornbluth welcomed students from Warren Prescott Middle School and New Mission High School to the Day of AI program at the Edward M. Kennedy Institute. Kornbluth reflected on the exciting potential of AI, along with the ethical considerations society needs to be responsible for.

    “AI has the potential to do all kinds of fantastic things, including driving a car, helping us with the climate crisis, improving health care, and designing apps that we can’t even imagine yet. But what we have to make sure it doesn’t do is cause harm to individuals, to communities, to us — society as a whole,” she said.

    This theme resonated with each of the event speakers, whose jobs spanned the sectors of education, government, and business. Yo Deshpande, technologist for the public realm, and Michael Lawrence Evans, program director of new urban mechanics from the Boston Mayor’s Office, shared how Boston thinks about using AI to improve city life in ways that are “equitable, accessible, and delightful.” Deshpande said, “We have the opportunity to explore not only how AI works, but how using AI can line up with our values, the way we want to be in the world, and the way we want to be in our community.”

    Adam L’Italien, chief innovation officer at Liberty Mutual Insurance (one of Day of AI’s founding sponsors), compared our present moment with AI technologies to the early days of personal computers and internet connection. “Exposure to emerging technologies can accelerate progress in the world and in your own lives,” L’Italien said, while recognizing that the AI development process needs to be inclusive and mitigate biases.

    Human policies for artificial intelligence

    So how does society address these human rights concerns about AI? Marc Aidinoff ’21, former White House Office of Science and Technology Policy chief of staff, led a discussion on how government policy can influence the parameters of how technology is developed and used, like the Blueprint for an AI Bill of Rights. Aidinoff said, “The work of building the world you want to see is far harder than building the technical AI system … How do you work with other people and create a collective vision for what we want to do?” Warren Prescott Middle School students described how AI could be used to solve problems that humans couldn’t. But they also shared their concerns that AI could affect data privacy, learning deficits, social media addiction, job displacement, and propaganda.

    In a mock U.S. Senate trial activity designed by Daniella DiPaola, PhD student at the MIT Media Lab, the middle schoolers investigated what rights might be undermined by AI in schools, hospitals, law enforcement, and corporations. Meanwhile, New Mission High School students workshopped the ideas behind bill S.2314, the Social Media Addiction Reduction Technology (SMART) Act, in an activity designed by Raechel Walker, graduate research assistant in the Personal Robots Group, and Matt Taylor, research assistant at the Media Lab. They discussed what level of control could or should be introduced at the parental, educational, and governmental levels to reduce the risks of internet addiction.

    “Alexa, how do I program AI?”

    Play video

    The 2023 Day of AI celebration featured a flagship local event at the Dearborn STEM Academy in Roxbury in collaboration with Amazon Future Engineer. Students participated in a hands-on activity using MIT App Inventor as part of Day of AI’s Alexa lesson. Video: MIT Open Learning

    At Dearborn STEM Academy, Amazon Future Engineer helped students work through the Intro to Voice AI curriculum module in real-time. Students used MIT App Inventor to code basic commands for Alexa. In an interview with WCVB, Principal Darlene Marcano said, “It’s important that we expose our students to as many different experiences as possible. The students that are participating are on track to be future computer scientists and engineers.”

    Breazeal told Dearborn students, “We want you to have an informed voice about how you want AI to be used in society. We want you to feel empowered that you can shape the world. You can make things with AI to help make a better world and a better community.”

    Rohit Prasad ’08, senior vice president and head scientist for Alexa at Amazon, and Victor Reinoso ’97, global director of philanthropic education initiatives at Amazon, also joined the event. “Amazon and MIT share a commitment to helping students discover a world of possibilities through STEM and AI education,” said Reinoso. “There’s a lot of current excitement around the technological revolution with generative AI and large language models, so we’re excited to help students explore careers of the future and navigate the pathways available to them.” To highlight their continued investment in the local community and the school program, Amazon donated a $25,000 Innovation and Early College Pathways Program Grant to the Boston Public School system.

    Day of AI down under

    Not only was the Day of AI program widely adopted across the globe, Australian educators were inspired to adapt their own regionally specific curriculum. An estimated 161,000 AI professionals will be needed in Australia by 2030, according to the National Artificial Intelligence Center in the Commonwealth Scientific and Industrial Research Organization (CSIRO), an Australian government agency and Day of AI Australia project partner. CSIRO worked with the University of New South Wales to develop supplementary educational resources on AI ethics and machine learning. Day of AI Australia reached 85,000 students at 400-plus secondary schools this year, sparking curiosity in the next generation of AI experts.

    The interest in AI is accelerating as fast as the technology is being developed. Day of AI offers a unique opportunity for K-12 students to shape our world’s digital future and their own.

    “I hope that some of you will decide to be part of this bigger effort to help us figure out the best possible answers to questions that are raised by AI,” Kornbluth told students at the Edward M. Kennedy Institute. “We’re counting on you, the next generation, to learn how AI works and help make sure it’s for everyone.” More

  • in

    Bringing the social and ethical responsibilities of computing to the forefront

    There has been a remarkable surge in the use of algorithms and artificial intelligence to address a wide range of problems and challenges. While their adoption, particularly with the rise of AI, is reshaping nearly every industry sector, discipline, and area of research, such innovations often expose unexpected consequences that involve new norms, new expectations, and new rules and laws.

    To facilitate deeper understanding, the Social and Ethical Responsibilities of Computing (SERC), a cross-cutting initiative in the MIT Schwarzman College of Computing, recently brought together social scientists and humanists with computer scientists, engineers, and other computing faculty for an exploration of the ways in which the broad applicability of algorithms and AI has presented both opportunities and challenges in many aspects of society.

    “The very nature of our reality is changing. AI has the ability to do things that until recently were solely the realm of human intelligence — things that can challenge our understanding of what it means to be human,” remarked Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing, in his opening address at the inaugural SERC Symposium. “This poses philosophical, conceptual, and practical questions on a scale not experienced since the start of the Enlightenment. In the face of such profound change, we need new conceptual maps for navigating the change.”

    The symposium offered a glimpse into the vision and activities of SERC in both research and education. “We believe our responsibility with SERC is to educate and equip our students and enable our faculty to contribute to responsible technology development and deployment,” said Georgia Perakis, the William F. Pounds Professor of Management in the MIT Sloan School of Management, co-associate dean of SERC, and the lead organizer of the symposium. “We’re drawing from the many strengths and diversity of disciplines across MIT and beyond and bringing them together to gain multiple viewpoints.”

    Through a succession of panels and sessions, the symposium delved into a variety of topics related to the societal and ethical dimensions of computing. In addition, 37 undergraduate and graduate students from a range of majors, including urban studies and planning, political science, mathematics, biology, electrical engineering and computer science, and brain and cognitive sciences, participated in a poster session to exhibit their research in this space, covering such topics as quantum ethics, AI collusion in storage markets, computing waste, and empowering users on social platforms for better content credibility.

    Showcasing a diversity of work

    In three sessions devoted to themes of beneficent and fair computing, equitable and personalized health, and algorithms and humans, the SERC Symposium showcased work by 12 faculty members across these domains.

    One such project from a multidisciplinary team of archaeologists, architects, digital artists, and computational social scientists aimed to preserve endangered heritage sites in Afghanistan with digital twins. The project team produced highly detailed interrogable 3D models of the heritage sites, in addition to extended reality and virtual reality experiences, as learning resources for audiences that cannot access these sites.

    In a project for the United Network for Organ Sharing, researchers showed how they used applied analytics to optimize various facets of an organ allocation system in the United States that is currently undergoing a major overhaul in order to make it more efficient, equitable, and inclusive for different racial, age, and gender groups, among others.

    Another talk discussed an area that has not yet received adequate public attention: the broader implications for equity that biased sensor data holds for the next generation of models in computing and health care.

    A talk on bias in algorithms considered both human bias and algorithmic bias, and the potential for improving results by taking into account differences in the nature of the two kinds of bias.

    Other highlighted research included the interaction between online platforms and human psychology; a study on whether decision-makers make systemic prediction mistakes on the available information; and an illustration of how advanced analytics and computation can be leveraged to inform supply chain management, operations, and regulatory work in the food and pharmaceutical industries.

    Improving the algorithms of tomorrow

    “Algorithms are, without question, impacting every aspect of our lives,” said Asu Ozdaglar, deputy dean of academics for the MIT Schwarzman College of Computing and head of the Department of Electrical Engineering and Computer Science, in kicking off a panel she moderated on the implications of data and algorithms.

    “Whether it’s in the context of social media, online commerce, automated tasks, and now a much wider range of creative interactions with the advent of generative AI tools and large language models, there’s little doubt that much more is to come,” Ozdaglar said. “While the promise is evident to all of us, there’s a lot to be concerned as well. This is very much time for imaginative thinking and careful deliberation to improve the algorithms of tomorrow.”

    Turning to the panel, Ozdaglar asked experts from computing, social science, and data science for insights on how to understand what is to come and shape it to enrich outcomes for the majority of humanity.

    Sarah Williams, associate professor of technology and urban planning at MIT, emphasized the critical importance of comprehending the process of how datasets are assembled, as data are the foundation for all models. She also stressed the need for research to address the potential implication of biases in algorithms that often find their way in through their creators and the data used in their development. “It’s up to us to think about our own ethical solutions to these problems,” she said. “Just as it’s important to progress with the technology, we need to start the field of looking at these questions of what biases are in the algorithms? What biases are in the data, or in that data’s journey?”

    Shifting focus to generative models and whether the development and use of these technologies should be regulated, the panelists — which also included MIT’s Srini Devadas, professor of electrical engineering and computer science, John Horton, professor of information technology, and Simon Johnson, professor of entrepreneurship — all concurred that regulating open-source algorithms, which are publicly accessible, would be difficult given that regulators are still catching up and struggling to even set guardrails for technology that is now 20 years old.

    Returning to the question of how to effectively regulate the use of these technologies, Johnson proposed a progressive corporate tax system as a potential solution. He recommends basing companies’ tax payments on their profits, especially for large corporations whose massive earnings go largely untaxed due to offshore banking. By doing so, Johnson said that this approach can serve as a regulatory mechanism that discourages companies from trying to “own the entire world” by imposing disincentives.

    The role of ethics in computing education

    As computing continues to advance with no signs of slowing down, it is critical to educate students to be intentional in the social impact of the technologies they will be developing and deploying into the world. But can one actually be taught such things? If so, how?

    Caspar Hare, professor of philosophy at MIT and co-associate dean of SERC, posed this looming question to faculty on a panel he moderated on the role of ethics in computing education. All experienced in teaching ethics and thinking about the social implications of computing, each panelist shared their perspective and approach.

    A strong advocate for the importance of learning from history, Eden Medina, associate professor of science, technology, and society at MIT, said that “often the way we frame computing is that everything is new. One of the things that I do in my teaching is look at how people have confronted these issues in the past and try to draw from them as a way to think about possible ways forward.” Medina regularly uses case studies in her classes and referred to a paper written by Yale University science historian Joanna Radin on the Pima Indian Diabetes Dataset that raised ethical issues on the history of that particular collection of data that many don’t consider as an example of how decisions around technology and data can grow out of very specific contexts.

    Milo Phillips-Brown, associate professor of philosophy at Oxford University, talked about the Ethical Computing Protocol that he co-created while he was a SERC postdoc at MIT. The protocol, a four-step approach to building technology responsibly, is designed to train computer science students to think in a better and more accurate way about the social implications of technology by breaking the process down into more manageable steps. “The basic approach that we take very much draws on the fields of value-sensitive design, responsible research and innovation, participatory design as guiding insights, and then is also fundamentally interdisciplinary,” he said.

    Fields such as biomedicine and law have an ethics ecosystem that distributes the function of ethical reasoning in these areas. Oversight and regulation are provided to guide front-line stakeholders and decision-makers when issues arise, as are training programs and access to interdisciplinary expertise that they can draw from. “In this space, we have none of that,” said John Basl, associate professor of philosophy at Northeastern University. “For current generations of computer scientists and other decision-makers, we’re actually making them do the ethical reasoning on their own.” Basl commented further that teaching core ethical reasoning skills across the curriculum, not just in philosophy classes, is essential, and that the goal shouldn’t be for every computer scientist be a professional ethicist, but for them to know enough of the landscape to be able to ask the right questions and seek out the relevant expertise and resources that exists.

    After the final session, interdisciplinary groups of faculty, students, and researchers engaged in animated discussions related to the issues covered throughout the day during a reception that marked the conclusion of the symposium. More

  • in

    Illuminating the money trail

    You may not know this, but the U.S. imposes a 12.5 percent import tariff on imported flashlights. However, for a product category the federal government describes as “portable electric lamps designed to function by their own source of energy, other than flashlights,” the import tariff is just 3.5 percent.

    At a glance, this seems inexplicable. Why is one kind of self-powered portable light taxed more heavily than another? According to MIT political science professor In Song Kim, a policy discrepancy like this often stems from the difference in firms’ political power, as well as the extent to which firms are empowered by global production networks. This is a subject Kim has spent years examining in detail, producing original scholarly results while opening up a wealth of big data about politics to the public.

    “We all understand companies as being important economic agents,” Kim says. “But companies are political agents, too. They are very important political actors.”

    In particular, Kim’s work has illuminated the effects of lobbying upon U.S. trade policy. International trade is often presented as an unalloyed good, opening up markets and fueling growth. Beyond that, trade issues are usually described at the industry level; we hear about what the agriculture lobby or auto industry wants. But in reality, different firms want different things, even within the same industry.

    As Kim’s work shows, most firms lobby for policies pertaining to specific components of their products, and trade policy consists heavily of carve-outs for companies, not industry-wide standards. Firms making non-flashlight portable lights, it would seem, are good at lobbying, but the benefits clearly do not carry over to all portable light makers, as long as products are not perfect substitutes for each other. Meanwhile, as Kim’s research also shows, lobbying helps firms grow faster in size, even as lobbying-influenced policies may slow down the economy as a whole.

    “All our existing theories suggest that trade policy is a public good, in the sense that the benefits of open trade, the gains from trade, will be enjoyed by the public and will benefit the country as a whole,” Kim says. “But what I’ve learned is that trade policies are very, very granular. It’s become obvious to me that trade is no longer a public good. It’s actually a private good for individual companies.”

    Kim’s work includes over a dozen published journal articles over the last several years, several other forthcoming research papers, and a book he is currently writing. At the same time, Kim has created a public database, LobbyView, which tracks money in U.S. politics extending back to 1999. LobbyView, as an important collection of political information, has research, educational, and public-interest applications, enabling others, in academia or outside it, to further delve into the topic.

    “I want to contribute to the scholarly community, and I also want to create a public [resource] for our MIT community [and beyond], so we can all study politics through it,” Kim says.

    Keeping the public good in sight

    Kim grew up in South Korea, in a setting where politics was central to daily life. Kim’s grandfather, Kim jae-soon, was the Speaker of the National Assembly in South Korea from 1988 through 1990 and an important figure in the country’s government.

    “I’ve always been fascinated by politics,” says Kim, who remembers prominent political figures dropping by the family home when he was young. One of the principal lessons Kim learned about politics from his grandfather, however, was not about proximity to power, but the importance of public service. The enduring lesson of his family’s engagement with politics, Kim says, is that “I truly believe in contributing to the public good.”

    Kim’s found his own way of contributing to the public good not as a politician but as a scholar of politics. Kim received his BA in political science from Yonsei University in Seoul but decided he wanted to pursue graduate studies in the U.S. He earned an MA in law and diplomacy from the Fletcher School of Tufts University, then an MA in political science at George Washington University. By this time, Kim had become focused on the quantitative analysis of trade policy; for his PhD work, he attended Princeton University and was awarded his doctorate in 2014, joining the MIT faculty that year.

    Among the key pieces of research Kim has published, one paper, “Political Cleavages within Industry: Firm-level Lobbying for Trade Liberalization,” published in the American Political Science Review and growing out of his dissertation research, helped show how remarkably specialized many trade policies are. As of 2017, the U.S. had almost 17,000 types of products it made tariff decisions about. Many of these are the component parts of a product; about two-thirds of international trade consists of manufactured components that get shipped around during the production process, rather than raw goods or finished products. That paper won the 2018 Michael Wallerstein Award for the best published article in political economy in the previous year.

    Another 2017 paper Kim co-authored, “The Charmed Life of Superstar Exporters,” from the Journal of Politics, provides more empirical evidence of the differences among firms within an industry. The “superstar” firms that are the largest exporters tend to lobby the most about trade politics; a firm’s characteristics reveal more about its preferences for open trade than the possibility that its industry as a whole will gain a comparative advantage internationally.

    Kim often uses large-scale data and computational methods to study international trade and trade politics. Still another paper he has co-authored, “Measuring Trade Profile with Granular Product-level Trade Data,” published in the American Journal of Political Science in 2020, traces trade relationships in highly specific terms. Looking at over 2 billion observations of international trade data, Kim developed an algorithm to group countries based on which products they import and export. The methodology helps researchers to learn about the highly different developmental paths that countries follow, and about the deepening international competition between countries such as the U.S. and China.

    At other times, Kim has analyzed who is influencing trade policy. His paper “Mapping Political Communities,” from the journal Political Analysis in 2021, looks at the U.S. Congress and uses mandatory reports filed by lobbyists to build a picture of which interests groups are most closely connected to which politicians.

    Kim has published all his papers while balancing both his scholarly research and the public launch of LobbyView, which occurred in 2018. He was awarded tenure by MIT in the spring of 2022. Currently he is an associate professor in the Department of Political Science and a faculty affiliate of the Institute for Data, Systems, and Society.

    By the book

    Kim has continued to explore firm-level lobbying dynamics, although his recent research runs in a few directions. In a 2021 working paper, Kim and co-author Federico Huneeus of the Central Bank of Chile built a model estimating that eliminating lobbying in the U.S. could increase productivity by as much as 6 percent.

    “Political rents [favorable policies] given to particular companies might introduce inefficiencies or a misallocation of resources in the economy,” Kim says. “You could allocate those resources to more productive although politically inactive firms, but now they’re given to less productive and yet politically active big companies, increasing market concentration and monopolies.”

    Kim is on sabbatical during the 2022-23 academic year, working on a book about the importance of firms’ political activities in trade policymaking. The book will have an expansive timeframe, dating back to ancient times, which underscores the salience of trade policy across eras. At the same time, the book will analyze the distinctive features of modern trade politics with deepening global production networks.

    “I’m trying to allow people to learn about the history of trade politics, to show how the politics have changed over time,” Kim says. “In doing that, I’m also highlighting the importance of firm-to-firm trade and the emergence of new trade coalitions among firms in different countries and industries that are linked through the global production chain.”

    While continuing his own scholarly research, Kim still leads LobbyView, which he views both as a big data resource for any scholars interested in money in politics and an excellent teaching resource for his MIT classes, as students can tap into it for projects and papers. LobbyView contains so much data, in fact, that part of the challenge is finding ways to mine it effectively.

    “It really offers me an opportunity to work with MIT students,” Kim says of LobbyView. “What I think I can contribute is to bring those technologies to our understanding of politics. Having this unique data set can really allow students here to use technology to learn about politics, and I believe that fits the MIT identity.” More

  • in

    Report: CHIPS Act just the first step in addressing threats to US leadership in advanced computing

    When Liu He, a Chinese economist, politician, and “chip czar,” was tapped to lead the charge in a chipmaking arms race with the United States, his message lingered in the air, leaving behind a dewy glaze of tension: “For our country, technology is not just for growth… it is a matter of survival.”

    Once upon a time, the United States’ early technological prowess positioned the nation to outpace foreign rivals and cultivate a competitive advantage for domestic businesses. Yet, 30 years later, America’s lead in advanced computing is continuing to wane. What happened?

    A new report from an MIT researcher and two colleagues sheds light on the decline in U.S. leadership. The scientists looked at high-level measures to examine the shrinkage: overall capabilities, supercomputers, applied algorithms, and semiconductor manufacturing. Through their analysis, they found that not only has China closed the computing gap with the U.S., but nearly 80 percent of American leaders in the field believe that their Chinese competitors are improving capabilities faster — which, the team says, suggests a “broad threat to U.S. competitiveness.”

    To delve deeply into the fray, the scientists conducted the Advanced Computing Users Survey, sampling 120 top-tier organizations, including universities, national labs, federal agencies, and industry. The team estimates that this group comprises one-third and one-half of all the most significant computing users in the United States.

    “Advanced computing is crucial to scientific improvement, economic growth and the competitiveness of U.S. companies,” says Neil Thompson, director of the FutureTech Research Project at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), who helped lead the study.

    Thompson, who is also a principal investigator at MIT’s Initiative on the Digital Economy, wrote the paper with Chad Evans, executive vice president and secretary and treasurer to the board at the Council on Competitiveness, and Daniel Armbrust, who is the co-founder, initial CEO, and member of the board of directors at Silicon Catalyst and former president of SEMATECH, the semiconductor consortium that developed industry roadmaps.

    The semiconductor, supercomputer, and algorithm bonanza

    Supercomputers — the room-sized, “giant calculators” of the hardware world — are an industry no longer dominated by the United States. Through 2015, about half of the most powerful computers were sitting firmly in the U.S., and China was growing slowly from a very slow base. But in the past six years, China has swiftly caught up, reaching near parity with America.

    This disappearing lead matters. Eighty-four percent of U.S. survey respondents said they’re computationally constrained in running essential programs. “This result was telling, given who our respondents are: the vanguard of American research enterprises and academic institutions with privileged access to advanced national supercomputing resources,” says Thompson. 

    With regards to advanced algorithms, historically, the U.S. has fronted the charge, with two-thirds of all significant improvements dominated by U.S.-born inventors. But in recent decades, U.S. dominance in algorithms has relied on bringing in foreign talent to work in the U.S., which the researchers say is now in jeopardy. China has outpaced the U.S. and many other countries in churning out PhDs in STEM fields since 2007, with one report postulating a near-distant future (2025) where China will be home to nearly twice as many PhDs than in the U.S. China’s rise in algorithms can also be seen with the “Gordon Bell Prize,” an achievement for outstanding work in harnessing the power of supercomputers in varied applications. U.S. winners historically dominated the prize, but China has now equaled or surpassed Americans’ performance in the past five years.

    While the researchers note the CHIPS and Science Act of 2022 is a critical step in re-establishing the foundation of success for advanced computing, they propose recommendations to the U.S. Office of Science and Technology Policy. 

    First, they suggest democratizing access to U.S. supercomputing by building more mid-tier systems that push boundaries for many users, as well as building tools so users scaling up computations can have less up-front resource investment. They also recommend increasing the pool of innovators by funding many more electrical engineers and computer scientists being trained with longer-term US residency incentives and scholarships. Finally, in addition to this new framework, the scientists urge taking advantage of what already exists, via providing the private sector access to experimentation with high-performance computing through supercomputing sites in academia and national labs.

    All that and a bag of chips

    Computing improvements depend on continuous advances in transistor density and performance, but creating robust, new chips necessitate a harmonious blend of design and manufacturing.

    Over the last six years, China was not known as the savants of noteworthy chips. In fact, in the past five decades, the U.S. designed most of them. But this changed in the past six years when China created the HiSilicon Kirin 9000, propelling itself to the international frontier. This success was mainly obtained through partnerships with leading global chip designers that began in the 2000s. Now, China now has 14 companies among the world’s top 50 fabless designers. A decade ago, there was only one. 

    Competitive semiconductor manufacturing has been more mixed, where U.S.-led policies and internal execution issues have slowed China’s rise, but as of July 2022, the Semiconductor Manufacturing International Corporation (SMIC) has evidence of 7 nanometer logic, which was not expected until much later. However, with extreme ultraviolet export restrictions, progress below 7 nm means domestic technology development would be expensive. Currently, China is only at parity or better in two out of 12 segments of the semiconductor supply chain. Still, with government policy and investments, the team expects a whopping increase to seven segments in 10 years. So, for the moment, the U.S. retains leadership in hardware manufacturing, but with fewer dimensions of advantage.

    The authors recommend that the White House Office of Science and Technology Policy work with key national agencies, such as the U.S. Department of Defense, U.S. Department of Energy, and the National Science Foundation, to define initiatives to build the hardware and software systems needed for important computing paradigms and workloads critical for economic and security goals. “It is crucial that American enterprises can get the benefit of faster computers,” says Thompson. “With Moore’s Law slowing down, the best way to do this is to create a portfolio of specialized chips (or “accelerators”) that are customized to our needs.”

    The scientists further believe that to lead the next generation of computing, four areas must be addressed. First, by issuing grand challenges to the CHIPS Act National Semiconductor Technology Center, researchers and startups would be motivated to invest in research and development and to seek startup capital for new technologies in areas such as spintronics, neuromorphics, optical and quantum computing, and optical interconnect fabrics. By supporting allies in passing similar acts, overall investment in these technologies would increase, and supply chains would become more aligned and secure. Establishing test beds for researchers to test algorithms on new computing architectures and hardware would provide an essential platform for innovation and discovery. Finally, planning for post-exascale systems that achieve higher levels of performance through next-generation advances would ensure that current commercial technologies don’t limit future computing systems.

    “The advanced computing landscape is in rapid flux — technologically, economically, and politically, with both new opportunities for innovation and rising global rivalries,” says Daniel Reed, Presidential Professor and professor of computer science and electrical and computer engineering at the University of Utah. “The transformational insights from both deep learning and computational modeling depend on both continued semiconductor advances and their instantiation in leading edge, large-scale computing systems — hyperscale clouds and high-performance computing systems. Although the U.S. has historically led the world in both advanced semiconductors and high-performance computing, other nations have recognized that these capabilities are integral to 21st century economic competitiveness and national security, and they are investing heavily.”

    The research was funded, in part, through Thompson’s grant from Good Ventures, which supports his FutureTech Research Group. The paper is being published by the Georgetown Public Policy Review. More