More stories

  • in

    Boosting passenger experience and increasing connectivity at the Hong Kong International Airport

    Recently, a cohort of 36 students from MIT and universities across Hong Kong came together for the MIT Entrepreneurship and Maker Skills Integrator (MEMSI), an intense two-week startup boot camp hosted at the MIT Hong Kong Innovation Node.

    “We’re very excited to be in Hong Kong,” said Professor Charles Sodini, LeBel Professor of Electrical Engineering and faculty director of the Node. “The dream always was to bring MIT and Hong Kong students together.”

    Students collaborated on six teams to meet real-world industry challenges through action learning, defining a problem, designing a solution, and crafting a business plan. The experience culminated in the MEMSI Showcase, where each team presented its process and unique solution to a panel of judges. “The MEMSI program is a great demonstration of important international educational goals for MIT,” says Professor Richard Lester, associate provost for international activities and chair of the Node Steering Committee at MIT. “It creates opportunities for our students to solve problems in a particular and distinctive cultural context, and to learn how innovations can cross international boundaries.” 

    Meeting an urgent challenge in the travel and tourism industry

    The Hong Kong Airport Authority (AAHK) served as the program’s industry partner for the third consecutive year, challenging students to conceive innovative ideas to make passenger travel more personalized from end-to-end while increasing connectivity. As the travel industry resuscitates profitability and welcomes crowds back amidst ongoing delays and labor shortages, the need for a more passenger-centric travel ecosystem is urgent.

    The airport is the third-busiest international passenger airport and the world’s busiest cargo transit. Students experienced an insider’s tour of the Hong Kong International Airport to gain on-the-ground orientation. They observed firsthand the complex logistics, possibilities, and constraints of operating with a team of 78,000 employees who serve 71.5 million passengers with unique needs and itineraries.

    Throughout the program, the cohort was coached and supported by MEMSI alumni, travel industry mentors, and MIT faculty such as Richard de Neufville, professor of engineering systems.

    The mood inside the open-plan MIT Hong Kong Innovation Node was nonstop energetic excitement for the entire program. Each of the six teams was composed of students from MIT and from Hong Kong universities. They learned to work together under time pressure, develop solutions, receive feedback from industry mentors, and iterate around the clock.

    “MEMSI was an enriching and amazing opportunity to learn about entrepreneurship while collaborating with a diverse team to solve a complex problem,” says Maria Li, a junior majoring in computer science, economics, and data science at MIT. “It was incredible to see the ideas we initially came up with as a team turn into a single, thought-out solution by the end.”

    Unsurprisingly given MIT’s focus on piloting the latest technology and the tech-savvy culture of Hong Kong as a global center, many team projects focused on virtual reality, apps, and wearable technology designed to make passengers’ journeys more individualized, efficient, or enjoyable.

    After observing geospatial patterns charting passengers’ movement through an airport, one team realized that many people on long trips aim to meet fitness goals by consciously getting their daily steps power walking the expansive terminals. The team’s prototype, FitAir, is a smart, biometric token integrated virtual coach, which plans walking routes within the airport to promote passenger health and wellness.

    Another team noted a common frustration among frequent travelers who manage multiple mileage rewards program profiles, passwords, and status reports. They proposed AirPoint, a digital wallet that consolidates different rewards programs and presents passengers with all their airport redemption opportunities in one place.

    “Today, there is no loser,” said Vivian Cheung, chief operating officer of AAHK, who served as one of the judges. “Everyone is a winner. I am a winner, too. I have learned a lot from the showcase. Some of the ideas, I believe, can really become a business.”

    Cheung noted that in just 12 days, all teams observed and solved her organization’s pain points and successfully designed solutions to address them.

    More than a competition

    Although many of the models pitched are inventive enough to potentially shape the future of travel, the main focus of MEMSI isn’t to act as yet another startup challenge and incubator.

    “What we’re really focusing on is giving students the ability to learn entrepreneurial thinking,” explains Marina Chan, senior director and head of education at the Node. “It’s the dynamic experience in a highly connected environment that makes being in Hong Kong truly unique. When students can adapt and apply theory to an international context, it builds deeper cultural competency.”

    From an aerial view, the boot camp produced many entrepreneurs in the making and lasting friendships, and respect for other cultural backgrounds and operating environments.

    “I learned the overarching process of how to make a startup pitch, all the way from idea generation, market research, and making business models, to the pitch itself and the presentation,” says Arun Wongprommoon, a senior double majoring in computer science and engineering and linguistics.  “It was all a black box to me before I came into the program.”

    He said he gained tremendous respect for the startup world and the pure hard work and collaboration required to get ahead.

    Spearheaded by the Node, MEMSI is a collaboration among the MIT Innovation Initiative, the Martin Trust Center for Entrepreneurship, the MIT International Science and Technology Initiatives, and Project Manus. Learn more about applying to MEMSI. More

  • in

    Helping companies deploy AI models more responsibly

    Companies today are incorporating artificial intelligence into every corner of their business. The trend is expected to continue until machine-learning models are incorporated into most of the products and services we interact with every day.

    As those models become a bigger part of our lives, ensuring their integrity becomes more important. That’s the mission of Verta, a startup that spun out of MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL).

    Verta’s platform helps companies deploy, monitor, and manage machine-learning models safely and at scale. Data scientists and engineers can use Verta’s tools to track different versions of models, audit them for bias, test them before deployment, and monitor their performance in the real world.

    “Everything we do is to enable more products to be built with AI, and to do that safely,” Verta founder and CEO Manasi Vartak SM ’14, PhD ’18 says. “We’re already seeing with ChatGPT how AI can be used to generate data, artefacts — you name it — that look correct but aren’t correct. There needs to be more governance and control in how AI is being used, particularly for enterprises providing AI solutions.”

    Verta is currently working with large companies in health care, finance, and insurance to help them understand and audit their models’ recommendations and predictions. It’s also working with a number of high-growth tech companies looking to speed up deployment of new, AI-enabled solutions while ensuring those solutions are used appropriately.

    Vartak says the company has been able to decrease the time it takes customers to deploy AI models by orders of magnitude while ensuring those models are explainable and fair — an especially important factor for companies in highly regulated industries.

    Health care companies, for example, can use Verta to improve AI-powered patient monitoring and treatment recommendations. Such systems need to be thoroughly vetted for errors and biases before they’re used on patients.

    “Whether it’s bias or fairness or explainability, it goes back to our philosophy on model governance and management,” Vartak says. “We think of it like a preflight checklist: Before an airplane takes off, there’s a set of checks you need to do before you get your airplane off the ground. It’s similar with AI models. You need to make sure you’ve done your bias checks, you need to make sure there’s some level of explainability, you need to make sure your model is reproducible. We help with all of that.”

    From project to product

    Before coming to MIT, Vartak worked as a data scientist for a social media company. In one project, after spending weeks tuning machine-learning models that curated content to show in people’s feeds, she learned an ex-employee had already done the same thing. Unfortunately, there was no record of what they did or how it affected the models.

    For her PhD at MIT, Vartak decided to build tools to help data scientists develop, test, and iterate on machine-learning models. Working in CSAIL’s Database Group, Vartak recruited a team of graduate students and participants in MIT’s Undergraduate Research Opportunities Program (UROP).

    “Verta would not exist without my work at MIT and MIT’s ecosystem,” Vartak says. “MIT brings together people on the cutting edge of tech and helps us build the next generation of tools.”

    The team worked with data scientists in the CSAIL Alliances program to decide what features to build and iterated based on feedback from those early adopters. Vartak says the resulting project, named ModelDB, was the first open-source model management system.

    Vartak also took several business classes at the MIT Sloan School of Management during her PhD and worked with classmates on startups that recommended clothing and tracked health, spending countless hours in the Martin Trust Center for MIT Entrepreneurship and participating in the center’s delta v summer accelerator.

    “What MIT lets you do is take risks and fail in a safe environment,” Vartak says. “MIT afforded me those forays into entrepreneurship and showed me how to go about building products and finding first customers, so by the time Verta came around I had done it on a smaller scale.”

    ModelDB helped data scientists train and track models, but Vartak quickly saw the stakes were higher once models were deployed at scale. At that point, trying to improve (or accidentally breaking) models can have major implications for companies and society. That insight led Vartak to begin building Verta.

    “At Verta, we help manage models, help run models, and make sure they’re working as expected, which we call model monitoring,” Vartak explains. “All of those pieces have their roots back to MIT and my thesis work. Verta really evolved from my PhD project at MIT.”

    Verta’s platform helps companies deploy models more quickly, ensure they continue working as intended over time, and manage the models for compliance and governance. Data scientists can use Verta to track different versions of models and understand how they were built, answering questions like how data were used and which explainability or bias checks were run. They can also vet them by running them through deployment checklists and security scans.

    “Verta’s platform takes the data science model and adds half a dozen layers to it to transform it into something you can use to power, say, an entire recommendation system on your website,” Vartak says. “That includes performance optimizations, scaling, and cycle time, which is how quickly you can take a model and turn it into a valuable product, as well as governance.”

    Supporting the AI wave

    Vartak says large companies often use thousands of different models that influence nearly every part of their operations.

    “An insurance company, for example, will use models for everything from underwriting to claims, back-office processing, marketing, and sales,” Vartak says. “So, the diversity of models is really high, there’s a large volume of them, and the level of scrutiny and compliance companies need around these models are very high. They need to know things like: Did you use the data you were supposed to use? Who were the people who vetted it? Did you run explainability checks? Did you run bias checks?”

    Vartak says companies that don’t adopt AI will be left behind. The companies that ride AI to success, meanwhile, will need well-defined processes in place to manage their ever-growing list of models.

    “In the next 10 years, every device we interact with is going to have intelligence built in, whether it’s a toaster or your email programs, and it’s going to make your life much, much easier,” Vartak says. “What’s going to enable that intelligence are better models and software, like Verta, that help you integrate AI into all of these applications very quickly.” More

  • in

    New program to support translational research in AI, data science, and machine learning

    The MIT School of Engineering and Pillar VC today announced the MIT-Pillar AI Collective, a one-year pilot program funded by a gift from Pillar VC that will provide seed grants for projects in artificial intelligence, machine learning, and data science with the goal of supporting translational research. The program will support graduate students and postdocs through access to funding, mentorship, and customer discovery.

    Administered by the MIT Deshpande Center for Technological Innovation, the MIT-Pillar AI Collective will center on the market discovery process, advancing projects through market research, customer discovery, and prototyping. Graduate students and postdocs will aim to emerge from the program having built minimum viable products, with support from Pillar VC and experienced industry leaders.

    “We are grateful for this support from Pillar VC and to join forces to converge the commercialization of translational research in AI, data science, and machine learning, with an emphasis on identifying and cultivating prospective entrepreneurs,” says Anantha Chandrakasan, dean of the MIT School of Engineering and Vannevar Bush Professor of Electrical Engineering and Computer Science. “Pillar’s focus on mentorship for our graduate students and postdoctoral researchers, and centering the program within the Deshpande Center, will undoubtedly foster big ideas in AI and create an environment for prospective companies to launch and thrive.” 

    Founded by Jamie Goldstein ’89, Pillar VC is committed to growing companies and investing in personal and professional development, coaching, and community.

    “Many of the most promising companies of the future are living at MIT in the form of transformational research in the fields of data science, AI, and machine learning,” says Goldstein. “We’re honored by the chance to help unlock this potential and catalyze a new generation of founders by surrounding students and postdoctoral researchers with the resources and mentorship they need to move from the lab to industry.”

    The program will launch with the 2022-23 academic year. Grants will be open only to MIT faculty and students, with an emphasis on funding for graduate students in their final year, as well as postdocs. Applications must be submitted by MIT employees with principal investigator status. A selection committee composed of three MIT representatives will include Devavrat Shah, faculty director of the Deshpande Center, the Andrew (1956) and Erna Viterbi Professor in the Department of Electrical Engineering and Computer Science and the Institute for Data, Systems, and Society; the chair of the selection committee; and a representative from the MIT Schwarzman College of Computing. The committee will also include representation from Pillar VC. Funding will be provided for up to nine research teams.

    “The Deshpande Center will serve as the perfect home for the new collective, given its focus on moving innovative technologies from the lab to the marketplace in the form of breakthrough products and new companies,” adds Chandrakasan. 

    “The Deshpande Center has a 20-year history of guiding new technologies toward commercialization, where they can have a greater impact,” says Shah. “This new collective will help the center expand its own impact by helping more projects realize their market potential and providing more support to researchers in the fast-growing fields of AI, machine learning, and data science.” More

  • in

    Transforming the travel experience for the Hong Kong airport

    MIT Hong Kong Innovation Node welcomed 33 students to its flagship program, MIT Entrepreneurship and Maker Skills Integrator (MEMSI). Designed to develop entrepreneurial prowess through exposure to industry-driven challenges, MIT students joined forces with Hong Kong peers in this two-week hybrid bootcamp, developing unique proposals for the Airport Authority of Hong Kong.

    Many airports across the world continue to be affected by the broader impact of Covid-19 with reduced air travel, prompting airlines to cut capacity. The result is a need for new business opportunities to propel economic development. For Hong Kong, the expansion toward non-aeronautical activities to boost regional consumption is therefore crucial, and included as part of the blueprint to transform the city’s airport into an airport city — characterized by capacity expansion, commercial developments, air cargo leadership, an autonomous transport system, connectivity to neighboring cities in mainland China, and evolution into a smart airport guided by sustainable practices. To enhance the customer experience, a key focus is capturing business opportunities at the nexus of digital and physical interactions. 

    These challenges “bring ideas and talent together to tackle real-world problems in the areas of digital service creation for the airport and engaging regional customers to experience the new airport city,” says Charles Sodini, the LeBel Professor of Electrical Engineering at MIT and faculty director at the Node. 

    The new travel standard

    Businesses are exploring new digital technologies, both to drive bookings and to facilitate safe travel. Developments such as Hong Kong airport’s Flight Token, a biometric technology using facial recognition to enable contactless check-ins and boarding at airports, unlock enormous potential that speeds up the departure journey of passengers. Seamless virtual experiences are not going to disappear.

    “What we may see could be a strong rebounce especially for travelers after the travel ban lifts … an opportunity to make travel easier, flying as simple as riding the bus,” says Chris Au Young, general manager of smart airport and general manager of data analytics at the Airport Authority of Hong Kong. 

    The passenger experience of the future will be “enabled by mobile technology, internet of things, and digital platforms,” he explains, adding that in the aviation community, “international organizations have already stipulated that biometric technology will be the new standard for the future … the next question is how this can be connected across airports.”  

    This extends further beyond travel, where Au Young illustrates, “If you go to a concert at Asia World Expo, which is the airport’s new arena in the future, you might just simply show your face rather than queue up in a long line waiting to show your tickets.”

    Accelerating the learning curve with industry support

    Working closely with industry mentors involved in the airport city’s development, students dived deep into discussions on the future of adapted travel, interviewed and surveyed travelers, and plowed through a range of airport data to uncover business insights.

    “With the large amount of data provided, my teammates and I worked hard to identify modeling opportunities that were both theoretically feasible and valuable in a business sense,” says Sean Mann, a junior at MIT studying computer science.

    Mann and his team applied geolocation data to inform machine learning predictions on a passenger’s journey once they enter the airside area. Coupled with biometric technology, passengers can receive personalized recommendations with improved accuracy via the airport’s bespoke passenger app, powered by data collected through thousands of iBeacons dispersed across the vicinity. Armed with these insights, the aim is to enhance the user experience by driving meaningful footfall to retail shops, restaurants, and other airport amenities.

    The support of industry partners inspired his team “with their deep understanding of the aviation industry,” he added. “In a short period of two weeks, we built a proof-of-concept and a rudimentary business plan — the latter of which was very new to me.”

    Collaborating across time zones, Rumen Dangovski, a PhD candidate in electrical engineering and computer science at MIT, joined MEMSI from his home in Bulgaria. For him, learning “how to continually revisit ideas to discover important problems and meaningful solutions for a large and complex real-world system” was a key takeaway. The iterative process helped his team overcome the obstacle of narrowing down the scope of their proposal, with the help of industry mentors and advisors. 

    “Without the feedback from industry partners, we would not have been able to formulate a concrete solution that is actually helpful to the airport,” says Dangovski.  

    Beyond valuable mentorship, he adds, “there was incredible energy in our team, consisting of diverse talent, grit, discipline and organization. I was positively surprised how MEMSI can form quickly and give continual support to our team. The overall experience was very fun.“

    A sustainable future

    Mrigi Munjal, a PhD candidate studying materials science and engineering at MIT, had just taken a long-haul flight from Boston to Delhi prior to the program, and “was beginning to fully appreciate the scale of carbon emissions from aviation.” For her, “that one journey basically overshadowed all of my conscious pro-sustainability lifestyle changes,” she says.

    Knowing that international flights constitute the largest part of an individual’s carbon footprint, Munjal and her team wanted “to make flying more sustainable with an idea that is economically viable for all of the stakeholders involved.” 

    They proposed a carbon offset API that integrates into an airline’s ticket payment system, empowering individuals to take action to offset their carbon footprint, track their personal carbon history, and pick and monitor green projects. The advocacy extends to a digital display of interactive art featured in physical installations across the airport city. The intent is to raise community awareness about one’s impact on the environment and making carbon offsetting accessible. 

    Shaping the travel narrative

    Six teams of students created innovative solutions for the Hong Kong airport which they presented in hybrid format to a panel of judges on Showcase Day. The diverse ideas included an app-based airport retail recommendations supported by iBeacons; a platform that empowers customers to offset their carbon footprint; an app that connects fellow travelers for social and incentive-driven retail experiences; a travel membership exchange platform offering added flexibility to earn and redeem loyalty rewards; an interactive and gamified location-based retail experience using augmented reality; and a digital companion avatar to increase adoption of the airport’s Flight Token and improve airside passenger experience.

    Among the judges was Julian Lee ’97, former president of the MIT Club of Hong Kong and current executive director of finance at the Airport Authority of Hong Kong, who commended the students for demonstrably having “worked very thoroughly and thinking through the specific challenges,” addressing the real pain points that the airport is experiencing.

    “The ideas were very thoughtful and very unique to us. Some of you defined transit passengers as a sub-segment of the market that works. It only happens at the airport and you’ve been able to leverage this transit time in between,” remarked Lee. 

    Strong solutions include an implementation plan to see a path for execution and a viable future. Among the solutions proposed, Au Young was impressed by teams for “paying a lot of attention to the business model … a very important aspect in all the ideas generated.”  

    Addressing the students, Au Young says, “What we love is the way you reinvent the airport business and partnerships, presenting a new way of attracting people to engage more in new services and experiences — not just returning for a flight or just shopping with us, but innovating beyond the airport and using emerging technologies, using location data, using the retailer’s capability and adding some social activities in your solutions.”

    Despite today’s rapidly evolving travel industry, what remains unchanged is a focus on the customer. In the end, “it’s still about the passengers,” added Au Young.  More

  • in

    Devavrat Shah appointed faculty director of the Deshpande Center

    Devavrat Shah, the Andrew (1956) and Erna Viterbi Professor in the Department of Electrical Engineering and Computer Science and the Institute for Data, Systems, and Society, has been named faculty director of the MIT Deshpande Center for Technological Innovations. The new role took effect on Feb. 1.

    Shah replaces Tim Swager, the John D. MacArthur Professor of Chemistry, who has held the position of faculty director since 2014. Working alongside Executive Director to the Deshpande Center Leon Sandler, Swager helped the Deshpande Center build an inclusive environment where innovation and entrepreneurship could thrive. By examining new models for directing, seeding, and fostering the commercialization of inventions and technology, Swager helped students and faculty breathe life into research, propelling it out of the lab and into the world as successful ventures.

    The MIT Deshpande Center for Technological Innovations is an interdepartmental center working to empower MIT’s most talented students and faculty by helping them bring new innovative technologies from the lab to the marketplace in the form of breakthrough products and new companies. Desh Deshpande founded the center with his wife, in 2002.

    “Professor Shah’s deep entrepreneurial experience coupled with his research on large complex networks will be tremendous assets to the center,” says Deshpande. “Devavrat is an impactful educator and inspiring mentor who will play a key role in the center’s mission to foster innovation and accelerate the impact of new discoveries.”

    Shah joined the Department of Electrical Engineering and Computer Science in 2005. With research focusing on statistical inference and stochastic networks, his research contributions span a variety of areas including resource allocation in communications networks, inference and learning on graphical models, algorithms for social data processing including ranking, recommendations and crowdsourcing, and more recently, causal inference using observational and experimental data.  

    While Shah’s work spans a range of areas across electrical engineering, computer science, and operations research, they are all tied together with the singular focus on developing algorithmic solutions for practical, challenging problems. He’s also authored two books, one on gossip algorithms in 2006 and the other on prediction methods of nearest neighbors in 2018. 

    A highly regarded teacher, Shah has been very active in curriculum development — most notably class 6.438 (Algorithms for Inference) and class 6.401 (Introduction to Statistical Data Analysis) — and has taken a leading role in developing educational programs in the statistics and data science at MIT as part of the Statistics and Data Science Center within the Institute for Data, Systems, and Society.

    “With his experience and contributions as a researcher, educator, and innovator, I have no doubt that Devavrat will excel as the next faculty director of the Deshpande Center and help usher in the next era of innovation for MIT,” says Anantha P. Chandrakasan, dean of the School of Engineering and Vannevar Bush Professor of Electrical Engineering and Computer Science. “I am grateful to Tim for the tremendous work he has done during his eight years as faculty director of the Deshpande Center. His commitment to building an inclusive environment for innovation and entrepreneurship to thrive was particularly impressive.” 

    A practiced entrepreneur, Shah co-founded Celect, Inc. — now part of Nike — in 2013, to help retailers accurately predict demand using omnichannel data. In 2019, he helped start IkigaiLabs, where he serves as CTO, with the mission to build self-driving organizations by enabling data-driven operations with human-in-the-loop with the ease of spreadsheet.

    Among his many achievements and accolades, Shah was named a Kavli Fellow of the National Academy of Science in 2014 and was just recently announced as an Institute of Electrical and Electronics Engineers (IEEE) Fellow for 2022. He’s also received a number of awards for his papers from INFORMS Applied Probability Society, INFORMS Management Science and Operations Management, NeurIPS, ACM Sigmetrics, and IEEE Infocom. His career prizes include the Erlang Prize from INFORMS Applied Probability Society and the Rising Star Award from ACM Sigmetrics. Shah has also received multiple Test of Time paper awards from ACM Sigmetrics and is recognized as a distinguished alumnus of his alma mater, the Indian Institute of Technology Bombay.

    “The Deshpande Center thanks Tim for his years of service as faculty director,” says the center’s executive director, Leon Sandler. “Tim’s commitment to innovation played an integral role in our success, and the center’s programs have thrived under his leadership. I look forward to working with Devavrat in the continuing effort to fulfill the mission of our center.”

    As part of his new post, Shah will work closely with Sandler, who has held the executive director position at the Deshpande Center since 2006. More

  • in

    Unlocking new doors to artificial intelligence

    Artificial intelligence research is constantly developing new hypotheses that have the potential to benefit society and industry; however, sometimes these benefits are not fully realized due to a lack of engineering tools. To help bridge this gap, graduate students in the MIT Department of Electrical Engineering and Computer Science’s 6-A Master of Engineering (MEng) Thesis Program work with some of the most innovative companies in the world and collaborate on cutting-edge projects, while contributing to and completing their MEng thesis.

    During a portion of the last year, four 6-A MEng students teamed up and completed an internship with IBM Research’s advanced prototyping team through the MIT-IBM Watson AI Lab on AI projects, often developing web applications to solve a real-world issue or business use cases. Here, the students worked alongside AI engineers, user experience engineers, full-stack researchers, and generalists to accommodate project requests and receive thesis advice, says Lee Martie, IBM research staff member and 6-A manager. The students’ projects ranged from generating synthetic data to allow for privacy-sensitive data analysis to using computer vision to identify actions in video that allows for monitoring human safety and tracking build progress on a construction site.

    “I appreciated all of the expertise from the team and the feedback,” says 6-A graduate Violetta Jusiega ’21, who participated in the program. “I think that working in industry gives the lens of making sure that the project’s needs are satisfied and [provides the opportunity] to ground research and make sure that it is helpful for some use case in the future.”

    Jusiega’s research intersected the fields of computer vision and design to focus on data visualization and user interfaces for the medical field. Working with IBM, she built an application programming interface (API) that let clinicians interact with a medical treatment strategy AI model, which was deployed in the cloud. Her interface provided a medical decision tree, as well as some prescribed treatment plans. After receiving feedback on her design from physicians at a local hospital, Jusiega developed iterations of the API and how the results where displayed, visually, so that it would be user-friendly and understandable for clinicians, who don’t usually code. She says that, “these tools are often not acquired into the field because they lack some of these API principles which become more important in an industry where everything is already very fast paced, so there’s little time to incorporate a new technology.” But this project might eventually allow for industry deployment. “I think this application has a bunch of potential, whether it does get picked up by clinicians or whether it’s simply used in research. It’s very promising and very exciting to see how technology can help us modify, or I can improve, the health-care field to be even more custom-tailored towards patients and giving them the best care possible,” she says.

    Another 6-A graduate student, Spencer Compton, was also considering aiding professionals to make more informed decisions, for use in settings including health care, but he was tackling it from a causal perspective. When given a set of related variables, Compton was investigating if there was a way to determine not just correlation, but the cause-and-effect relationship between them (the direction of the interaction) from the data alone. For this, he and his collaborators from IBM Research and Purdue University turned to a field of math called information theory. With the goal of designing an algorithm to learn complex networks of causal relationships, Compton used ideas relating to entropy, the randomness in a system, to help determine if a causal relationship is present and how variables might be interacting. “When judging an explanation, people often default to Occam’s razor” says Compton. “We’re more inclined to believe a simpler explanation than a more complex one.” In many cases, he says, it seemed to perform well. For instance, they were able to consider variables such as lung cancer, pollution, and X-ray findings. He was pleased that his research allowed him to help create a framework of “entropic causal inference” that could aid in safe and smart decisions in the future, in a satisfying way. “The math is really surprisingly deep, interesting, and complex,” says Compton. “We’re basically asking, ‘when is the simplest explanation correct?’ but as a math question.”

    Determining relationships within data can sometimes require large volumes of it to suss out patterns, but for data that may contain sensitive information, this may not be available. For her master’s work, Ivy Huang worked with IBM Research to generate synthetic tabular data using a natural language processing tool called a transformer model, which can learn and predict future values from past values. Trained on real data, the model can produce new data with similar patterns, properties, and relationships without restrictions like privacy, availability, and access that might come with real data in financial transactions and electronic medical records. Further, she created an API and deployed the model in an IBM cluster, which allowed users increased access to the model and abilities to query it without compromising the original data.

    Working with the advanced prototyping team, MEng candidate Brandon Perez also considered how to gather and investigate data with restrictions, but in his case it was to use computer vision frameworks, centered on an action recognition model, to identify construction site happenings. The team based their work on the Moments in Time dataset, which contains over a million three-second video clips with about 300 attached classification labels, and has performed well during AI training. However, the group needed more construction-based video data. For this, they used YouTube-8M. Perez built a framework for testing and fine-tuning existing object detection models and action recognition models that could plug into an automatic spatial and temporal localization tool — how they would identify and label particular actions in a video timeline. “I was satisfied that I was able to explore what made me curious, and I was grateful for the autonomy that I was given with this project,” says Perez. “I felt like I was always supported, and my mentor was a great support to the project.”

    “The kind of collaborations that we have seen between our MEng students and IBM researchers are exactly what the 6-A MEng Thesis program at MIT is all about,” says Tomas Palacios, professor of electrical engineering and faculty director of the MIT 6-A MEng Thesis program. “For more than 100 years, 6-A has been connecting MIT students with industry to solve together some of the most important problems in the world.” More

  • in

    Reducing food waste to increase access to affordable foods

    About a third of the world’s food supply never gets eaten. That means the water, labor, energy, and fertilizer that went into growing, processing, and distributing the food is wasted.

    On the other end of the supply chain are cash-strapped consumers, who have been further distressed in recent years by factors like the Covid-19 pandemic and inflation.

    Spoiler Alert, a company founded by two MIT alumni, is helping companies bridge the gap between food waste and food insecurity with a platform connecting major food and beverage brands with discount grocers, retailers, and nonprofits. The platform helps brands discount or donate excess and short-dated inventory days, weeks, and months before it expires.

    “There is a tremendous amount of underutilized data that exists in the manufacturing and distribution space that results in good food going to waste,” says Ricky Ashenfelter MBA ’15, who co-founded the company with Emily Malina MBA ’15.

    Spoiler Alert helps brands manage distressed inventory data, create offers for potential buyers, and review and accept bids. The platform is designed to work with companies’ existing inventory and fulfillment systems, using automation and pricing intelligence to further streamline sales.

    “At a high level, we’re a waste-prevention software built for sales and supply-chain teams,” Ashenfelter says. “You can think of it as a private [business-to-business] eBay of sorts.”

    Spoiler Alert is working with global companies like Nestle, Kraft Heinz, and Danone, as well as discount grocers like the United Grocery Outlet and Misfits Market. Those brands are already using the platform to reduce food waste and get more food on people’s tables.

    “Project Drawdown [a nonprofit working on climate solutions] has identified food waste as the number one priority to address the global climate crisis, so these types of corporate initiatives can be really powerful from an environmental standpoint,” Ashenfelter says, noting the nonprofit estimates food waste accounts for 8 percent of global greenhouse gas emissions. “Contrast that with growing levels of food insecurity and folks not being able to access affordable nutrition, and you start to see how tackling supply-chain inefficiency can have a dramatic impact from both an environmental and a social lens. That’s what motivates us.”

    Untapped data for change

    Ashenfelter came to MIT’s Sloan School of Management after several years in sustainability software and management consulting within the retail and consumer products industries.

    “I was really attracted to transitioning into something much more entrepreneurial, and to leverage not only Sloan’s focus on entrepreneurship, but also the broader MIT ecosystem’s focus on technology, entrepreneurship, clean tech innovation, and other themes along that front,” he says.

    Ashenfelter met Malina at one of Sloan’s admitted students events in 2013, and the founders soon set out to use data to decrease food waste.

    “For us, the idea was clear: How do we better leverage data to manage excess and short-dated inventory?” Ashenfelter says. “How we go about that has evolved over the last six years, but it’s all rooted in solving an enormous climate problem, solving a major food insecurity problem, and from a capitalistic standpoint, helping businesses cut costs and generate revenue from otherwise wasted products.”

    The founders spent many hours in the Martin Trust Center for MIT Entrepreneurship with support from the Sloan Sustainability Initiative, and used Spoiler Alert as a case study in nearly every class they took, thinking through product development, sales, marketing, pricing, and more through their coursework.

    “We brought our idea into just about every action learning class that we could at Sloan and MIT,” Ashenfelter says.

    They also participated in the MIT $100K Entrepreneurship Competition and received support from the Venture Mentoring Service and the IDEAS Global Challenge program.

    Upon graduation, the founders initially began building a platform to facilitate donations of excess inventory, but soon learned big companies’ processes for discounting that inventory were also highly manual. Today, more than 90 percent of Spoiler Alert’s transaction volume is discounted, with the remainder donated.

    Different teams within an organization can upload excess inventory reports to Spoiler Alert’s system, eliminating the need to manually aggregate datasets and preparing what the industry refers to as “blowout lists” to sell. Spoiler Alert uses machine-learning-based tools to help both parties with pricing and negotiations to close deals more quickly.

    “Companies are taking pretty manual and slow approaches to deciding [what to do with excess inventory],” Ashenfelter says. “And when you have slow decision-making, you’re losing days or even weeks of shelf life on that product. That can be the difference between selling product versus donating, and donating versus dumping.”

    Once a deal has been made, Spoiler Alert automatically generates the forms and workflows needed by fulfillment teams to get the product out the door. The relationships companies build on the platform are also a major driver for cutting down waste.

    “We’re providing suppliers with the ability to control where their discounted and donated product ends up,” Ashenfelter says. “That’s really powerful because it allows these CPG brands to ensure that this product is, in many cases, getting to affordable nutrition outlets in underserved communities.”

    Ashenfelter says the majority of inventory goes to regional and national discount grocers, supplemented with extensive purchasing from local and nonprofit grocery chains.

    “Everything we do is oriented around helping sell as much product as possible to a reputable set of buyers at the most fair, equitable prices possible,” Ashenfelter says.

    Scaling for impact

    The pandemic has disrupted many aspects of the food supply chains. But Ashenfelter says it has also accelerated the adoption of digital solutions that can better manage such volatility.

    When Campbell began using Spoiler Alert’s system in 2019, for instance, it achieved a 36 percent increase in discount sales and a 27 percent increase in donations over the first five months.

    Ashenfelter says the results have proven that companies’ sustainability targets can go hand in hand with initiatives that boost their bottom lines. In fact, because Spoiler Alert focuses so much on the untapped revenue associated with food waste, many customers don’t even realize Spoiler Alert is a sustainability company until after they’ve signed on.

    “What’s neat about this program is that it becomes an incredibly powerful case study internally for how sustainability and operational outcomes aren’t in conflict and can drive both business results as well as overall environmental impact,” Ashenfelter says.

    Going forward, Spoiler Alert will continue building out algorithmic solutions that could further cut down on waste internationally and across a wider array of products.

    “At every step in our process, we’re collecting a tremendous amount of data in terms of what is and isn’t selling, at what price point, to which buyers, out of which geographies, and with how much remaining shelf life,” Ashenfelter explains. “We are only starting to scratch the surface in terms of bringing our recommendations engine to life for our suppliers and buyers. Ultimately our goal is to power the waste-free economy, and rooted in that is making better decisions faster, in collaboration with a growing ecosystem of supply chain partners, and with as little manual intervention as possible.” More

  • in

    Enabling AI-driven health advances without sacrificing patient privacy

    There’s a lot of excitement at the intersection of artificial intelligence and health care. AI has already been used to improve disease treatment and detection, discover promising new drugs, identify links between genes and diseases, and more.

    By analyzing large datasets and finding patterns, virtually any new algorithm has the potential to help patients — AI researchers just need access to the right data to train and test those algorithms. Hospitals, understandably, are hesitant to share sensitive patient information with research teams. When they do share data, it’s difficult to verify that researchers are only using the data they need and deleting it after they’re done.

    Secure AI Labs (SAIL) is addressing those problems with a technology that lets AI algorithms run on encrypted datasets that never leave the data owner’s system. Health care organizations can control how their datasets are used, while researchers can protect the confidentiality of their models and search queries. Neither party needs to see the data or the model to collaborate.

    SAIL’s platform can also combine data from multiple sources, creating rich insights that fuel more effective algorithms.

    “You shouldn’t have to schmooze with hospital executives for five years before you can run your machine learning algorithm,” says SAIL co-founder and MIT Professor Manolis Kellis, who co-founded the company with CEO Anne Kim ’16, SM ’17. “Our goal is to help patients, to help machine learning scientists, and to create new therapeutics. We want new algorithms — the best algorithms — to be applied to the biggest possible data set.”

    SAIL has already partnered with hospitals and life science companies to unlock anonymized data for researchers. In the next year, the company hopes to be working with about half of the top 50 academic medical centers in the country.

    Unleashing AI’s full potential

    As an undergraduate at MIT studying computer science and molecular biology, Kim worked with researchers in the Computer Science and Artificial Intelligence Laboratory (CSAIL) to analyze data from clinical trials, gene association studies, hospital intensive care units, and more.

    “I realized there is something severely broken in data sharing, whether it was hospitals using hard drives, ancient file transfer protocol, or even sending stuff in the mail,” Kim says. “It was all just not well-tracked.”

    Kellis, who is also a member of the Broad Institute of MIT and Harvard, has spent years establishing partnerships with hospitals and consortia across a range of diseases including cancers, heart disease, schizophrenia, and obesity. He knew that smaller research teams would struggle to get access to the same data his lab was working with.

    In 2017, Kellis and Kim decided to commercialize technology they were developing to allow AI algorithms to run on encrypted data.

    In the summer of 2018, Kim participated in the delta v startup accelerator run by the Martin Trust Center for MIT Entrepreneurship. The founders also received support from the Sandbox Innovation Fund and the Venture Mentoring Service, and made various early connections through their MIT network.

    To participate in SAIL’s program, hospitals and other health care organizations make parts of their data available to researchers by setting up a node behind their firewall. SAIL then sends encrypted algorithms to the servers where the datasets reside in a process called federated learning. The algorithms crunch the data locally in each server and transmit the results back to a central model, which updates itself. No one — not the researchers, the data owners, or even SAIL —has access to the models or the datasets.

    The approach allows a much broader set of researchers to apply their models to large datasets. To further engage the research community, Kellis’ lab at MIT has begun holding competitions in which it gives access to datasets in areas like protein function and gene expression, and challenges researchers to predict results.

    “We invite machine learning researchers to come and train on last year’s data and predict this year’s data,” says Kellis. “If we see there’s a new type of algorithm that is performing best in these community-level assessments, people can adopt it locally at many different institutions and level the playing field. So, the only thing that matters is the quality of your algorithm rather than the power of your connections.”

    By enabling a large number of datasets to be anonymized into aggregate insights, SAIL’s technology also allows researchers to study rare diseases, in which small pools of relevant patient data are often spread out among many institutions. That has historically made the data difficult to apply AI models to.

    “We’re hoping that all of these datasets will eventually be open,” Kellis says. “We can cut across all the silos and enable a new era where every patient with every rare disorder across the entire world can come together in a single keystroke to analyze data.”

    Enabling the medicine of the future

    To work with large amounts of data around specific diseases, SAIL has increasingly sought to partner with patient associations and consortia of health care groups, including an international health care consulting company and the Kidney Cancer Association. The partnerships also align SAIL with patients, the group they’re most trying to help.

    Overall, the founders are happy to see SAIL solving problems they faced in their labs for researchers around the world.

    “The right place to solve this is not an academic project. The right place to solve this is in industry, where we can provide a platform not just for my lab but for any researcher,” Kellis says. “It’s about creating an ecosystem of academia, researchers, pharma, biotech, and hospital partners. I think it’s the blending all of these different areas that will make that vision of medicine of the future become a reality.” More