More stories

  • in

    Unpacking the “black box” to build better AI models

    When deep learning models are deployed in the real world, perhaps to detect financial fraud from credit card activity or identify cancer in medical images, they are often able to outperform humans.

    But what exactly are these deep learning models learning? Does a model trained to spot skin cancer in clinical images, for example, actually learn the colors and textures of cancerous tissue, or is it flagging some other features or patterns?

    These powerful machine-learning models are typically based on artificial neural networks that can have millions of nodes that process data to make predictions. Due to their complexity, researchers often call these models “black boxes” because even the scientists who build them don’t understand everything that is going on under the hood.

    Stefanie Jegelka isn’t satisfied with that “black box” explanation. A newly tenured associate professor in the MIT Department of Electrical Engineering and Computer Science, Jegelka is digging deep into deep learning to understand what these models can learn and how they behave, and how to build certain prior information into these models.

    “At the end of the day, what a deep-learning model will learn depends on so many factors. But building an understanding that is relevant in practice will help us design better models, and also help us understand what is going on inside them so we know when we can deploy a model and when we can’t. That is critically important,” says Jegelka, who is also a member of the Computer Science and Artificial Intelligence Laboratory (CSAIL) and the Institute for Data, Systems, and Society (IDSS).

    Jegelka is particularly interested in optimizing machine-learning models when input data are in the form of graphs. Graph data pose specific challenges: For instance, information in the data consists of both information about individual nodes and edges, as well as the structure — what is connected to what. In addition, graphs have mathematical symmetries that need to be respected by the machine-learning model so that, for instance, the same graph always leads to the same prediction. Building such symmetries into a machine-learning model is usually not easy.

    Take molecules, for instance. Molecules can be represented as graphs, with vertices that correspond to atoms and edges that correspond to chemical bonds between them. Drug companies may want to use deep learning to rapidly predict the properties of many molecules, narrowing down the number they must physically test in the lab.

    Jegelka studies methods to build mathematical machine-learning models that can effectively take graph data as an input and output something else, in this case a prediction of a molecule’s chemical properties. This is particularly challenging since a molecule’s properties are determined not only by the atoms within it, but also by the connections between them.  

    Other examples of machine learning on graphs include traffic routing, chip design, and recommender systems.

    Designing these models is made even more difficult by the fact that data used to train them are often different from data the models see in practice. Perhaps the model was trained using small molecular graphs or traffic networks, but the graphs it sees once deployed are larger or more complex.

    In this case, what can researchers expect this model to learn, and will it still work in practice if the real-world data are different?

    “Your model is not going to be able to learn everything because of some hardness problems in computer science, but what you can learn and what you can’t learn depends on how you set the model up,” Jegelka says.

    She approaches this question by combining her passion for algorithms and discrete mathematics with her excitement for machine learning.

    From butterflies to bioinformatics

    Jegelka grew up in a small town in Germany and became interested in science when she was a high school student; a supportive teacher encouraged her to participate in an international science competition. She and her teammates from the U.S. and Singapore won an award for a website they created about butterflies, in three languages.

    “For our project, we took images of wings with a scanning electron microscope at a local university of applied sciences. I also got the opportunity to use a high-speed camera at Mercedes Benz — this camera usually filmed combustion engines — which I used to capture a slow-motion video of the movement of a butterfly’s wings. That was the first time I really got in touch with science and exploration,” she recalls.

    Intrigued by both biology and mathematics, Jegelka decided to study bioinformatics at the University of Tübingen and the University of Texas at Austin. She had a few opportunities to conduct research as an undergraduate, including an internship in computational neuroscience at Georgetown University, but wasn’t sure what career to follow.

    When she returned for her final year of college, Jegelka moved in with two roommates who were working as research assistants at the Max Planck Institute in Tübingen.

    “They were working on machine learning, and that sounded really cool to me. I had to write my bachelor’s thesis, so I asked at the institute if they had a project for me. I started working on machine learning at the Max Planck Institute and I loved it. I learned so much there, and it was a great place for research,” she says.

    She stayed on at the Max Planck Institute to complete a master’s thesis, and then embarked on a PhD in machine learning at the Max Planck Institute and the Swiss Federal Institute of Technology.

    During her PhD, she explored how concepts from discrete mathematics can help improve machine-learning techniques.

    Teaching models to learn

    The more Jegelka learned about machine learning, the more intrigued she became by the challenges of understanding how models behave, and how to steer this behavior.

    “You can do so much with machine learning, but only if you have the right model and data. It is not just a black-box thing where you throw it at the data and it works. You actually have to think about it, its properties, and what you want the model to learn and do,” she says.

    After completing a postdoc at the University of California at Berkeley, Jegelka was hooked on research and decided to pursue a career in academia. She joined the faculty at MIT in 2015 as an assistant professor.

    “What I really loved about MIT, from the very beginning, was that the people really care deeply about research and creativity. That is what I appreciate the most about MIT. The people here really value originality and depth in research,” she says.

    That focus on creativity has enabled Jegelka to explore a broad range of topics.

    In collaboration with other faculty at MIT, she studies machine-learning applications in biology, imaging, computer vision, and materials science.

    But what really drives Jegelka is probing the fundamentals of machine learning, and most recently, the issue of robustness. Often, a model performs well on training data, but its performance deteriorates when it is deployed on slightly different data. Building prior knowledge into a model can make it more reliable, but understanding what information the model needs to be successful and how to build it in is not so simple, she says.

    She is also exploring methods to improve the performance of machine-learning models for image classification.

    Image classification models are everywhere, from the facial recognition systems on mobile phones to tools that identify fake accounts on social media. These models need massive amounts of data for training, but since it is expensive for humans to hand-label millions of images, researchers often use unlabeled datasets to pretrain models instead.

    These models then reuse the representations they have learned when they are fine-tuned later for a specific task.

    Ideally, researchers want the model to learn as much as it can during pretraining, so it can apply that knowledge to its downstream task. But in practice, these models often learn only a few simple correlations — like that one image has sunshine and one has shade — and use these “shortcuts” to classify images.

    “We showed that this is a problem in ‘contrastive learning,’ which is a standard technique for pre-training, both theoretically and empirically. But we also show that you can influence the kinds of information the model will learn to represent by modifying the types of data you show the model. This is one step toward understanding what models are actually going to do in practice,” she says.

    Researchers still don’t understand everything that goes on inside a deep-learning model, or details about how they can influence what a model learns and how it behaves, but Jegelka looks forward to continue exploring these topics.

    “Often in machine learning, we see something happen in practice and we try to understand it theoretically. This is a huge challenge. You want to build an understanding that matches what you see in practice, so that you can do better. We are still just at the beginning of understanding this,” she says.

    Outside the lab, Jegelka is a fan of music, art, traveling, and cycling. But these days, she enjoys spending most of her free time with her preschool-aged daughter. More

  • in

    Urbanization: No fast lane to transformation

    Accra, Ghana, “is a city I’ve come to know as well as any place in the U.S,” says Associate Professor Noah Nathan, who has conducted research there over the past 15 years. The booming capital of 4 million is an ideal laboratory for investigating the rapid urbanization of nations in Africa and beyond, believes Nathan, who joined the MIT Department of Political Science in July.

    “Accra is vibrant and exciting, with gleaming glass office buildings, shopping centers, and an emerging middle class,” he says. “But at the same time there is enormous poverty, with slums and a mixing pot of ethnic groups.” Cities like Accra that have emerged in developing countries around the world are “hybrid spaces” that provoke a multitude of questions for Nathan.

    “Rich and poor are in incredibly close proximity and I want to know how this dramatic inequality can be sustainable, and what politics looks like with such ethnic and class diversity living side-by-side,” he says.

    With his singular approach to data collection and deep understanding of Accra, its neighborhoods, and increasingly, its built environment, Nathan is generating a body of scholarship on the political impacts of urbanization throughout the global South.

    A trap in the urban transition

    Nathan’s early studies of Accra challenged common expectations about how urbanization shifts political behavior.

    “Modernization theory states that as people become more ‘modern’ and move to cities, ethnicity fades and class becomes the dominant dynamic in political behavior,” explains Nathan. “It predicts that the process of urbanization transforms the relationship between politicians and voters, and elections become more ideologically and policy oriented,” says Nathan.  

    But in Accra, the heart of one of the fastest-growing economies in the developing world, Nathan found “a type of politics stuck in an old equilibrium, hard to dislodge, and not updated by newly wealthy voters,” he says. Using census data revealing the demographic composition of every neighborhood in Accra, Nathan determined that there were many enclaves in which forms of patronage politics and ethnic competition persist. He conducted sample surveys and collected polling-station level results on residents’ voting across the city. “I was able to merge spatial data on where people lived and their answers to survey questions, and determine how different neighborhoods voted,” says Nathan.

    Among his findings: Ethnic politics were thriving in many parts of Accra, and many middle-class voters were withdrawing from politics entirely in reaction to the well-established practice of patronage rather than pressuring politicians to change their approach. “They decided it was better to look out for themselves,” he explains.

    In Nathan’s 2019 book, “Electoral Politics and Africa’s Urban Transition: Class and Ethnicity in Ghana,” he described this situation as a trap. “As the wealthy exit from the state, politicians double down on patronage politics with poor voters, which the middle class views as further evidence of corruption,” he explains. The wealthier citizens “want more public goods, and big policy reforms, such as changes in the health-care and tax systems, while poor voters focus on immediate needs such as jobs, homes, better schools in their communities.”

    In Ghana and other developing countries where the state’s capacity is limited, politicians can’t deliver on the broad-scale changes desired by the middle class. Motivated by their own political survival, they continue dealing with poor voters as clients, trading services for votes. “I connect urban politics in Ghana to the early 20th-century urban machines in the United States, run by party bosses,” says Nathan.

    This may prove sobering news for many engaged with the developing world. “There’s enormous enthusiasm among foreign aid organizations, in the popular press and policy circles, for the idea that urbanization will usher in big, radical political change,” notes Nathan. “But these kinds of transformations will only come about with structural change such as civil service reforms and nonpartisan welfare programs that can push politicians beyond just delivering targeted services to poor voters.”

    Falling in love with Ghana

    For most of his youth, Nathan was a committed jazz saxophonist, toying with going professional. But he had long cultivated another fascination as well. “I was a huge fan of ‘The West Wing’ in middle school” and got into American politics through that,” he says. He volunteered in Hillary Clinton’s 2008 primary campaign during college, but soon realized work in politics was “both more boring and not as idealistic” as he’d hoped.

    As an undergraduate at Harvard University, where he concentrated in government, he “signed up for African history on a lark — because American high schools didn’t teach anything on the subject — and I loved it,” Nathan says. He took another African history course, and then found his way to classes taught by Harvard political scientist Robert H. Bates PhD ’69 that focused on the political economy of development, ethnic conflict, and state failure in Africa. In the summer before his senior year, he served as a research assistant for one of his professors in Ghana, and then stayed longer, hoping to map out a senior thesis on ethnic conflict.

    “Once I got to Ghana, I was fascinated by the place — the dynamism of this rapidly transforming society,” he recalls. “Growing up in the U.S., there are a lot of stereotypes about the developing world, and I quickly realized how much more complicated everything is.”

    These initial experiences living in Ghana shaped Nathan’s ideas for what became his doctoral dissertation at Harvard and first book on the ethnic and class dynamics driving the nation’s politics. His frequent return visits to that country sparked a wealth of research that built on and branched out from this work.

    One set of studies examines the historical development of Ghana’s rural north in its colonial and post-colonial periods, the center of ethnic conflict in the 1990s. These are communities “where the state delivers few resources, doesn’t seem to do much, yet figures as a central actor in people’s lives,” he says.

    Part of this region had been a German colony, and the other part was originally under British rule, and Nathan compared the political trajectories of these two areas, focusing on differences in early state efforts to impose new forms of local political leadership and gradually build a formal education system.

    “The colonial legacy in the British areas was elite families who came to dominate, entrenching themselves and creating political dynasties and economic inequality,” says Nathan. But similar ethnic groups exposed to different state policies in the original German colony were not riven with the same class inequalities, and enjoy better access to government services today. “This research is changing how we think about state weakness in the developing world, how we tend to see the emergence of inequality where societal elites come into power,” he says. The results of Nathan’s research will be published in a forthcoming book, “The Scarce State: Inequality and Political Power in the Hinterland.”

    Politics of built spaces

    At MIT, Nathan is pivoting to a fresh new framing for questions on urbanization. Wielding a public source map of cities around the world, he is scrutinizing the geometry of street grids in 1,000 of sub-Saharan Africa’s largest cities “to think about urban order,” he says. Digitizing historical street maps of African cities from the Library of Congress’s map collection, he can look at how these cities were built and evolved physically. “When cities emerge based on grids, rather than tangles, they are more legible to governments,” he says. “This means that it’s easier to find people, easier to govern, tax, repress, and politically mobilize them.”  

    Nathan has begun to demonstrate that in the post-colonial period, “cities that were built under authoritarian regimes tend to be most legible, with even low-capacity regimes trying to impose control and make them gridded.” Democratic governments, he says, “lead to more tangled and chaotic built environments, with people doing what they want.” He also draws comparisons to how state policies shaped urban growth in the United States, with local and federal governments exerting control over neighborhood development, leading to redlining and segregation in many cities.

    Nathan’s interests naturally pull him toward the MIT Governance Lab and Global Diversity Lab. “I’m hoping to dive into both,” he says. “One big attraction of the department is the really interesting research that’s being done on developing countries.”  He also plans to use the stature he has built over many years of research in Africa to help “open doors” to African researchers and students, who may not always get the same kind of access to institutions and data that he has had. “I’m hoping to build connections to researchers in the global South,” he says. More

  • in

    Making each vote count

    Graduate student Jacob Jaffe wants to improve the administration of American elections. To do that, he is posing “questions in political science that we haven’t been asking enough,” he says, “and solving them with methods we haven’t been using enough.”

    Considerable research has been devoted to understanding “who votes, and what makes people vote or not vote,” says Jaffe. He is training his attention on questions of a different nature: Does providing practical information to voters about how to cast their ballots change how they will vote? Is it possible to increase the accuracy of vote-counting, on a state-by-state and even precinct-by-precinct basis? How do voters experience polling places? These problems form the core of his dissertation.

    Taking advantage of the resources at the MIT Election Data and Science Lab, where he serves as a researcher, Jaffe conducts novel field experiments to gather highly detailed information on local, state, and federal elections, and analyzes this trove with advanced statistical techniques. Whether investigating the probability of miscounts in voting, or the possibility of changing a voter’s mode of voting, Jaffe intends to strengthen the scaffolding that supports representative government. “Elections are both theoretically and normatively important; they’re the basis of our belief in the moral rightness of the state to do the things the state does,” he says.

    Click this link

    For one of his keystone projects, Jaffe seized a unique opportunity to run a big field experiment. In summer 2020, at the height of the Covid-19 pandemic, he emailed 80,000 Floridians instructions on how to vote in an upcoming primary by mail. His email contained a link enabling recipients to fill out two simple questions to receive a ballot. “I wanted to learn if this was an effective method for getting people to vote by mail, and I proved it is, statistically,” he says. “This is important to know because if elections are held in times when we might need people to vote nonlocally or vote using one method over another — if they’re displaced by a hurricane or another emergency, for instance — I learned that we can effect a new vote mode practically and quickly.”

    One of Jaffe’s insights from this experiment is that “people do read their voting-related emails, but the content of the email has to be something they can act on proximately,” he says. “A message reminding them to vote two weeks from now is not so helpful.” The lower the burden on an individual to participate in voting, whether due to proximity to a polling site or instructions on how to receive and cast a ballot, the greater the likelihood of that person engaging in the election.

    “If we want people to vote by mail, we need to reduce the informational cost so it’s easier for voters to understand how the system works,” he says.

    Another significant research thrust for Jaffe involves scrutinizing accuracy in vote counting, using instances of recounts in presidential elections. Ensuring each vote counts, he says, “is one of the most fundamental questions in democracy,” he says.

    With access to 20 elections in 2020, Jaffe is comparing original vote totals for each candidate to the recounted, correct tally, on a precinct-level basis. “Using original combinatorial techniques, I can estimate the probability of miscounting ballots,” he says. The ultimate goal is to generate a granular picture of the efficacy of election administration across the country.

    “It varies a lot by state, and most states do a good job,” he says. States that take their time in counting perform better. “There’s a phenomenon where some towns race to get results in as quickly as possible, and this affects their accuracy.”

    In spite of the bright spots, Jaffe sees chronic underfunding of American elections. “We need to give local administrators the resources, the time and money to fund employees to do their jobs,” he says. The worse the situation is, “the more likely that elections will be called wrong, with no one knowing.” Jaffe believes that his analysis can offer states useful information for improving election administration. “Determining how good a place is historically at counting ballots can help determine the likelihood of needing costly recounts in future elections,” he says.

    The ballot box and beyond

    It didn’t take Jaffe long to decide on a life dedicated to studying politics. Part of a Boston-area family who, he says, “liked discussing what was going on in the world,” he had his own subscriptions to Time magazine at age 9, and to The Economist in middle school. During high school, he volunteered for then-Massachusetts Representative Barney Frank and Senator John Kerry, working on constituent services. At Rice University, he interned all four years with political scientist Robert M. Stein, an expert on voting and elections. With Stein’s help, Jaffe landed a position the summer before his senior year with the Department of Justice (DOJ), researching voting rights cases.

    “The experience was fascinating, and the work felt super important,” says Jaffe. His portfolio involved determining whether legal challenges to particular elections met the statistical standard for racial gerrymandering. “I had to answer hard quantitative questions about the relationship between race and voting in an area, and whether minority candidates were systematically prevented from winning,” he says.

    But while Jaffe cared a lot about this work, he didn’t feel adequately challenged. “As a 21-year-old at DOJ, I learned that I could address problems in the world using statistics,” he says. “But I felt I could have a greater impact addressing tougher questions outside of voting rights.”

    Jaffe was drawn to political science at MIT, and specifically to the research of Charles Stewart III, the Kenan Sahin Distinguished Professor of Political Science, director of the MIT Election Lab, and head of Jaffe’s thesis committee. It wasn’t just the opportunity to plumb the lab’s singular repository of voting data that attracted Jaffe, but its commitment to making every vote count. For Jaffe, this was a call to arms to investigate the many, and sometimes quotidian, obstacles, between citizens and ballot boxes.

    To this end, he has been analyzing, with the help of mathematical methods from queuing theory, why some elections involve wait lines of six hours and longer at polling sites. “We know that simpler ballots mean people move don’t get stuck in these lines, where they might potentially give up before voting,” he says. “Looking at the content of ballots and the interval between voter check-in and check-out, I learned that adding races, rather than candidates, to a ballot, means that people take more time completing ballots, leading to interminable lines.”

    A key takeaway from his ensemble of studies is that “while it’s relatively rare that elections are bad, we shouldn’t think that we’re good to go,” he says. “Instead, we need to be asking under what conditions do things get bad, and how can we make them better.” More

  • in

    Investigating at the interface of data science and computing

    A visual model of Guy Bresler’s research would probably look something like a Venn diagram. He works at the four-way intersection where theoretical computer science, statistics, probability, and information theory collide.

    “There are always new things to do be done at the interface. There are always opportunities for entirely new questions to ask,” says Bresler, an associate professor who recently earned tenure in MIT’s Department of Electrical Engineering and Computer Science (EECS).

    A theoretician, he aims to understand the delicate interplay between structure in data, the complexity of models, and the amount of computation needed to learn those models. Recently, his biggest focus has been trying to unveil fundamental phenomena that are broadly responsible for determining the computational complexity of statistics problems — and finding the “sweet spot” where available data and computation resources enable researchers to effectively solve a problem.

    When trying to solve a complex statistics problem, there is often a tug-of-war between data and computation. Without enough data, the computation needed to solve a statistical problem can be intractable, or at least consume a staggering amount of resources. But get just enough data and suddenly the intractable becomes solvable; the amount of computation needed to come up with a solution drops dramatically.

    The majority of modern statistical problems exhibits this sort of trade-off between computation and data, with applications ranging from drug development to weather prediction. Another well-studied and practically important example is cryo-electron microscopy, Bresler says. With this technique, researchers use an electron microscope to take images of molecules in different orientations. The central challenge is how to solve the inverse problem — determining the molecule’s structure given the noisy data. Many statistical problems can be formulated as inverse problems of this sort.

    One aim of Bresler’s work is to elucidate relationships between the wide variety of different statistics problems currently being studied. The dream is to classify statistical problems into equivalence classes, as has been done for other types of computational problems in the field of computational complexity. Showing these sorts of relationships means that, instead of trying to understand each problem in isolation, researchers can transfer their understanding from a well-studied problem to a poorly understood one, he says.

    Adopting a theoretical approach

    For Bresler, a desire to theoretically understand various basic phenomena inspired him to follow a path into academia.

    Both of his parents worked as professors and showed how fulfilling academia can be, he says. His earliest introduction to the theoretical side of engineering came from his father, who is an electrical engineer and theoretician studying signal processing. Bresler was inspired by his work from an early age. As an undergraduate at the University of Illinois at Urbana-Champaign, he bounced between physics, math, and computer science courses. But no matter the topic, he gravitated toward the theoretical viewpoint.

    In graduate school at the University of California at Berkeley, Bresler enjoyed the opportunity to work in a wide variety of topics spanning probability, theoretical computer science, and mathematics. His driving motivator was a love of learning new things.

    “Working at the interface of multiple fields with new questions, there is a feeling that one had better learn as much as possible if one is to have any chance of finding the right tools to answer those questions,” he says.

    That curiosity led him to MIT for a postdoc in the Laboratory for Information and Decision Systems (LIDS) in 2013, and then he joined the faculty two years later as an assistant professor in EECS. He was named an associate professor in 2019.

    Bresler says he was drawn to the intellectual atmosphere at MIT, as well as the supportive environment for launching bold research quests and trying to make progress in new areas of study.

    Opportunities for collaboration

    “What really struck me was how vibrant and energetic and collaborative MIT is. I have this mental list of more than 20 people here who I would love to have lunch with every single week and collaborate with on research. So just based on sheer numbers, joining MIT was a clear win,” he says.

    He’s especially enjoyed collaborating with his students, who continually teach him new things and ask deep questions that drive exciting research projects. One such student, Matthew Brennan, who was one of Bresler’s closest collaborators, tragically and unexpectedly passed away in January, 2021.

    The shock from Brennan’s death is still raw for Bresler, and it derailed his research for a time.

    “Beyond his own prodigious capabilities and creativity, he had this amazing ability to listen to an idea of mine that was almost completely wrong, extract from it a useful piece, and then pass the ball back,” he says. “We had the same vision for what we wanted to achieve in the work, and we were driven to try to tell a certain story. At the time, almost nobody was pursuing this particular line of work, and it was in a way kind of lonely. But he trusted me, and we encouraged one another to keep at it when things seemed bleak.”

    Those lessons in perseverance fuel Bresler as he and his students continue exploring questions that, by their nature, are difficult to answer.

    One area he’s worked in on-and-off for over a decade involves learning graphical models from data. Models of certain types of data, such as time-series data consisting of temperature readings, are often constructed by domain experts who have relevant knowledge and can build a reasonable model, he explains.

    But for many types of data with complex dependencies, such as social network or biological data, it is not at all clear what structure a model should take. Bresler’s work seeks to estimate a structured model from data, which could then be used for downstream applications like making recommendations or better predicting the weather.

    The basic question of identifying good models, whether algorithmically in a complex setting or analytically, by specifying a useful toy model for theoretical analysis, connects the abstract work with engineering practice, he says.

    “In general, modeling is an art. Real life is complicated and if you write down some super-complicated model that tries to capture every feature of a problem, it is doomed,” says Bresler. “You have to think about the problem and understand the practical side of things on some level to identify the correct features of the problem to be modeled, so that you can hope to actually solve it and gain insight into what one should do in practice.”

    Outside the lab, Bresler often finds himself solving very different kinds of problems. He is an avid rock climber and spends much of his free time bouldering throughout New England.

    “I really love it. It is a good excuse to get outside and get sucked into a whole different world. Even though there is problem solving involved, and there are similarities at the philosophical level, it is totally orthogonal to sitting down and doing math,” he says. More

  • in

    Emma Gibson: Optimizing health care logistics in Africa

    Growing up in South Africa at the turn of the century, Emma Gibson saw the rise of the HIV/AIDS epidemic and its devastating impact on her home country, where many people lacked life-saving health care. At the time, Gibson was too young to understand what a sexually transmitted infection was, but she knew that HIV was infecting millions of South Africans and AIDS was taking hundreds of thousands of lives. “As a child, I was terrified by this monster that was HIV and felt so powerless to do anything about it,” she says.

    Now, as an adult, her childhood fear of the HIV epidemic has evolved into a desire to fight it. Gibson seeks to improve health care for HIV and other diseases in regions with limited resources, including South Africa. She wants to help health care facilities in these areas to use their resources more effectively so that patients can more easily obtain care.

    To help reach her goal, Gibson sought mathematics and logistics training through higher education in South Africa. She first earned her bachelor’s degree in mathematical sciences at the University of the Witwatersrand, and then her master’s degree in operations research at Stellenbosch University. There, she learned to tackle complex decision-making problems using math, statistics, and computer simulations.

    During her master’s, Gibson studied the operational challenges faced in rural South African health care facilities by working with staff at Zithulele Hospital in the Eastern Cape, one of the country’s poorest provinces. Her research focused on ways to reduce hours-long wait times for patients seeking same-day care. In the end, she developed a software tool to model patient congestion throughout the day and optimize staff schedules accordingly, enabling the hospital to care for its patients more efficiently.

    After completing her master’s, Gibson wanted to further her education outside of South Africa and left to pursue a PhD in operations research at MIT. Upon arrival, she branched out in her research and worked on a project to improve breast cancer treatment in U.S. health care, a very different environment from what she was used to.

    Two years later, Gibson had the opportunity to return to researching health care in resource-limited settings and began working with Jónas Jónasson, an associate professor at the MIT Sloan School of Management, on a new project to improve diagnostic services in sub-Saharan Africa. For the past four years, she has been working diligently on this project in collaboration with researchers at the Indian School of Business and Northwestern University. “My love language is time,” she says. “If I’m investing a lot of time in something, I really value it.”

    Scheduling sample transport

    Diagnostic testing is an essential tool that allows medical professionals to identify new diagnoses in patients and monitor patients’ conditions as they undergo treatment. For example, people living with HIV require regular blood tests to ensure that their prescribed treatments are working effectively and provide an early warning of potential treatment failures.

    For Gibson’s current project, she’s trying to improve diagnostic services in Malawi, a landlocked country in southeast Africa. “We have the tools” to diagnose and treat diseases like HIV, she says. “But in resource-limited settings, we often lack the money, the staff, and the infrastructure to reach every patient that needs them.”

    When diagnostic testing is needed, clinicians collect samples from patients and send the samples to be tested at a laboratory, which then returns the results to the facility where the patient is treated. To move these items between facilities and laboratories, Malawi has developed a national sample transportation network. The transportation system plays an important role in linking remote, rural facilities to laboratory services and ensuring that patients in these areas can access diagnostic testing through community clinics. Samples collected at these clinics are first transported to nearby district hubs, and then forwarded to laboratories located in urban areas. Since most facilities do not have computers or communications infrastructure, laboratories print copies of test results and send them back to facilities through the same transportation process.

    The sample transportation cycle is onerous, but it’s a practical solution to a difficult problem. “During the Covid pandemic, we saw how hard it was to scale up diagnostic infrastructure,” Gibson says. Diagnostic services in sub-Saharan Africa face “similar challenges, but in a much poorer setting.”

    In Malawi, sample transportation is managed by a  nongovernment organization called Riders 4 Health. The organization has around 80 couriers on motorcycles who transport samples and test results between facilities. “When we started working with [Riders], the couriers operated on fixed weekly schedules, visiting each site once or twice a week,” Gibson says. But that led to “a lot of unnecessary trips and delays.”

    To make sample transportation more efficient, Gibson developed a dynamic scheduling system that adapts to the current demand for diagnostic testing. The system consists of two main parts: an information sharing platform that aggregates sample transportation data, and an algorithm that uses the data to generate optimized routes and schedules for sample transport couriers.

    In 2019, Gibson ran a four-month-long pilot test for this system in three out of the 27 districts in Malawi. During the pilot study, six couriers transported over 20,000 samples and results across 51 health care facilities, and 150 health care workers participated in data sharing.

    The pilot was a success. Gibson’s dynamic scheduling system eliminated about half the unnecessary trips and reduced transportation delays by 25 percent — a delay that used to be four days was reduced to three. Now, Riders 4 Health is developing their own version of Gibson’s system to operate nationally in Malawi. Throughout this project, “we focused on making sure this was something that could grow with the organization,” she says. “It’s gratifying to see that actually happening.”

    Leveraging patient data

    Gibson is completing her MIT degree this September but will continue working to improve health care in Africa. After graduation, she will join the technology and analytics health care practice of an established company in South Africa. Her initial focus will be on public health care institutions, including Chris Hani Baragwanath Academic Hospital in Johannesburg, the third-largest hospital in the world.

    In this role, Gibson will work to fill in gaps in African patient data for medical operational research and develop ways to use this data more effectively to improve health care in resource-limited areas. For example, better data systems can help to monitor the prevalence and impact of different diseases, guiding where health care workers and researchers put their efforts to help the most people. “You can’t make good decisions if you don’t have all the information,” Gibson says.

    To best leverage patient data for improving health care, Gibson plans to reevaluate how data systems are structured and used in the hospital. For ideas on upgrading the current system, she’ll look to existing data systems in other countries to see what works and what doesn’t, while also drawing upon her past research experience in U.S. health care. Ultimately, she’ll tailor the new hospital data system to South African needs to accurately inform future directions in health care.

    Gibson’s new job — her “dream job” — will be based in the United Kingdom, but she anticipates spending a significant amount of time in Johannesburg. “I have so many opportunities in the wider world, but the ones that appeal to me are always back in the place I came from,” she says. More

  • in

    Mining social media data for social good

    For Erin Walk, who has loved school since she was a little girl, pursuing a graduate degree always seemed like a given. As a mechanical engineering major at Harvard University with a minor in government, she figured that going to graduate school in engineering would be the next logical step. However, during her senior year, a class on the “Technology of War” changed her trajectory, sparking her interest in technology and policy.

    “[Warfare] seems like a very dark reason for this interest to blossom … but I was so interested in how these technological developments including cyberwar had such a large impact on the entire course of world history,” Walk says. The class took a starkly different perspective from her engineering classes, which often focused on how a revolutionary technology was built. Instead, Walk was challenged to think about “the implications of what this [technology] could do.” 

    Now, Walk is studying the intersection between data science, policy, and technology as a graduate student in the Social and Engineering Systems program (SES), part of the Institute for Data, Systems, and Society (IDSS). Her research has demonstrated the value and bias inherent in social media data, with a focus on how to mine social media data to better understand the conflict in Syria. 

    Using data for social good

    With a newfound interest in policy developing just as college was drawing to a close, Walk says, “I realized I did not know what I wanted to do research on for five whole years, and the idea of getting a PhD started to feel very daunting.” Instead, she decided to work for a web security company in Washington, as a member of the policy team. “Being in school can be this fast process where you feel like you are being pushed through a tube and all of a sudden you come out the other end. Work gave me a lot more mental time to think about what I enjoyed and what was important to me,” she says.

    Walk served as a liaison between thinktanks and nonprofits in Washington that worked to provide services and encourage policies that enable equitable technology distribution. The role helped her identify what held her interest: corporate social responsibility projects that addressed access to technology, in this case, by donating free web security services to nonprofit organizations and to election websites. She became curious about how access to data and to the Internet can be beneficial for education, and how such access can be leveraged to establish connections to populations that are otherwise hard-to-reach, such as refugees, marginalized groups, or activist communities that rely on anonymity for safety.

    Walk knew she wanted to pursue this kind of tech activism work, but she also recognized that staying with a company driven by profits would not be the best avenue to fulfill her personal career aspirations. Graduate school seemed like the best option to both learn the data science skills she needed, and pursue full-time research focusing on technology and policy.

    Finding new ways to tap social media data

    With these goals in mind, Walk joined the SES graduate program in IDSS. “This program for me had the most balance,” she says. “I have a lot of leeway to explore whatever kind of research I want, provided it has an impact component and a data component.”

    During her first year, she intended to explore a variety of research advisors to find the right fit. Instead, during her first few months on MIT’s campus, she sat down for an introductory meeting with her now-research advisor, Fotini Christia, the Ford International Professor in the Social Sciences, and walked out with a project. Her new task: analyzing “how different social media sources are used differently by groups within the conflict, and how those different narratives present themselves online. So much social science research tends to use just Twitter, or just Facebook, to draw conclusions. It is important to understand how your data set might be skewed,” she says.

    Walk’s current research focuses on another novel way to tap social media. Scholars traditionally use geographic data to understand population movements, but her research has demonstrated that social media can also be a ripe data source. She is analyzing how social media discussions differ in places with and without refugees, with a particular focus on places where refugees have returned to their homelands, including Syria.

    “Now that the [Syrian] civil war has been going on for so long, there is a lot of discussion on how to bring refugees back in [to their homelands],” Walk says. Her research adds to this discussion by using social media sources to understand and predict the factors that encourage refugees to return, such as economic opportunities and decreases in local violence. Her goal is to harness some of the social media data to provide policymakers and nonprofits with information on how to address repatriation and related issues.

    Walk attributes much of her growth as a graduate student to the influence of collaborators, especially Professor Kiran Garimella at Rutgers’ Department of Library and Information Science. “So much of being a graduate student is feeling like you have a stupid question and figuring out who you can be vulnerable with in asking that stupid question,” she says. “I am very lucky to have a lot of those people in my life.”

    Encouraging the next generation

    Now, as a third-year student, Walk is the one whom others go to with their “stupid questions.” This desire to mentor and share her knowledge extends beyond the laboratory. “Something I discovered is that I really like talking to and advising people who are in a similar position to where I was. It is fulfilling to work with smart people close to my age who are just trying to figure out the answers to these meaty life issues that I have also struggled with,” she says.

    This realization led Walk to a position as a resident advisor at Harvard University’s Mather House, an undergraduate dormitory and community center. Walk became a faculty dean aide during her first year at MIT, and since then has served as a full-time Mather House resident tutor. “Every year I advise a new class of students, and I just become invested in their process. I get to talk to people about their lives, about their classes, about what is making them excited and about what is making them sad,” she says.

    After she graduates, Walk plans to explore issues that have a positive, tangible impact on policy outcomes and people, perhaps in an academic lab or in a nonprofit organization. Two such issues that particularly intrigue her are internet access and privacy for underserved populations. Regardless of the issues, she will continue to draw from both political science and data science. “One of my favorite things about being a part of interdisciplinary research is that [experts in] political science and computer science approach these issues so differently, and it is very grounding to have both of those perspectives. Political science thinks so carefully about measurement, population selection, and research design … [while] computer science has so many interesting methods that should be used in other disciplines,” she says.

    No matter what the future holds, Walk already has a sense of contentment. She admits that “my path was much less linear than I expected. I don’t think I even realized that a field like this existed.” Nevertheless, she says with a laugh, “I think that little-girl me would be very proud of present-day me.” More

  • in

    Living better with algorithms

    Laboratory for Information and Decision Systems (LIDS) student Sarah Cen remembers the lecture that sent her down the track to an upstream question.

    At a talk on ethical artificial intelligence, the speaker brought up a variation on the famous trolley problem, which outlines a philosophical choice between two undesirable outcomes.

    The speaker’s scenario: Say a self-driving car is traveling down a narrow alley with an elderly woman walking on one side and a small child on the other, and no way to thread between both without a fatality. Who should the car hit?

    Then the speaker said: Let’s take a step back. Is this the question we should even be asking?

    That’s when things clicked for Cen. Instead of considering the point of impact, a self-driving car could have avoided choosing between two bad outcomes by making a decision earlier on — the speaker pointed out that, when entering the alley, the car could have determined that the space was narrow and slowed to a speed that would keep everyone safe.

    Recognizing that today’s AI safety approaches often resemble the trolley problem, focusing on downstream regulation such as liability after someone is left with no good choices, Cen wondered: What if we could design better upstream and downstream safeguards to such problems? This question has informed much of Cen’s work.

    “Engineering systems are not divorced from the social systems on which they intervene,” Cen says. Ignoring this fact risks creating tools that fail to be useful when deployed or, more worryingly, that are harmful.

    Cen arrived at LIDS in 2018 via a slightly roundabout route. She first got a taste for research during her undergraduate degree at Princeton University, where she majored in mechanical engineering. For her master’s degree, she changed course, working on radar solutions in mobile robotics (primarily for self-driving cars) at Oxford University. There, she developed an interest in AI algorithms, curious about when and why they misbehave. So, she came to MIT and LIDS for her doctoral research, working with Professor Devavrat Shah in the Department of Electrical Engineering and Computer Science, for a stronger theoretical grounding in information systems.

    Auditing social media algorithms

    Together with Shah and other collaborators, Cen has worked on a wide range of projects during her time at LIDS, many of which tie directly to her interest in the interactions between humans and computational systems. In one such project, Cen studies options for regulating social media. Her recent work provides a method for translating human-readable regulations into implementable audits.

    To get a sense of what this means, suppose that regulators require that any public health content — for example, on vaccines — not be vastly different for politically left- and right-leaning users. How should auditors check that a social media platform complies with this regulation? Can a platform be made to comply with the regulation without damaging its bottom line? And how does compliance affect the actual content that users do see?

    Designing an auditing procedure is difficult in large part because there are so many stakeholders when it comes to social media. Auditors have to inspect the algorithm without accessing sensitive user data. They also have to work around tricky trade secrets, which can prevent them from getting a close look at the very algorithm that they are auditing because these algorithms are legally protected. Other considerations come into play as well, such as balancing the removal of misinformation with the protection of free speech.

    To meet these challenges, Cen and Shah developed an auditing procedure that does not need more than black-box access to the social media algorithm (which respects trade secrets), does not remove content (which avoids issues of censorship), and does not require access to users (which preserves users’ privacy).

    In their design process, the team also analyzed the properties of their auditing procedure, finding that it ensures a desirable property they call decision robustness. As good news for the platform, they show that a platform can pass the audit without sacrificing profits. Interestingly, they also found the audit naturally incentivizes the platform to show users diverse content, which is known to help reduce the spread of misinformation, counteract echo chambers, and more.

    Who gets good outcomes and who gets bad ones?

    In another line of research, Cen looks at whether people can receive good long-term outcomes when they not only compete for resources, but also don’t know upfront what resources are best for them.

    Some platforms, such as job-search platforms or ride-sharing apps, are part of what is called a matching market, which uses an algorithm to match one set of individuals (such as workers or riders) with another (such as employers or drivers). In many cases, individuals have matching preferences that they learn through trial and error. In labor markets, for example, workers learn their preferences about what kinds of jobs they want, and employers learn their preferences about the qualifications they seek from workers.

    But learning can be disrupted by competition. If workers with a particular background are repeatedly denied jobs in tech because of high competition for tech jobs, for instance, they may never get the knowledge they need to make an informed decision about whether they want to work in tech. Similarly, tech employers may never see and learn what these workers could do if they were hired.

    Cen’s work examines this interaction between learning and competition, studying whether it is possible for individuals on both sides of the matching market to walk away happy.

    Modeling such matching markets, Cen and Shah found that it is indeed possible to get to a stable outcome (workers aren’t incentivized to leave the matching market), with low regret (workers are happy with their long-term outcomes), fairness (happiness is evenly distributed), and high social welfare.

    Interestingly, it’s not obvious that it’s possible to get stability, low regret, fairness, and high social welfare simultaneously.  So another important aspect of the research was uncovering when it is possible to achieve all four criteria at once and exploring the implications of those conditions.

    What is the effect of X on Y?

    For the next few years, though, Cen plans to work on a new project, studying how to quantify the effect of an action X on an outcome Y when it’s expensive — or impossible — to measure this effect, focusing in particular on systems that have complex social behaviors.

    For instance, when Covid-19 cases surged in the pandemic, many cities had to decide what restrictions to adopt, such as mask mandates, business closures, or stay-home orders. They had to act fast and balance public health with community and business needs, public spending, and a host of other considerations.

    Typically, in order to estimate the effect of restrictions on the rate of infection, one might compare the rates of infection in areas that underwent different interventions. If one county has a mask mandate while its neighboring county does not, one might think comparing the counties’ infection rates would reveal the effectiveness of mask mandates. 

    But of course, no county exists in a vacuum. If, for instance, people from both counties gather to watch a football game in the maskless county every week, people from both counties mix. These complex interactions matter, and Sarah plans to study questions of cause and effect in such settings.

    “We’re interested in how decisions or interventions affect an outcome of interest, such as how criminal justice reform affects incarceration rates or how an ad campaign might change the public’s behaviors,” Cen says.

    Cen has also applied the principles of promoting inclusivity to her work in the MIT community.

    As one of three co-presidents of the Graduate Women in MIT EECS student group, she helped organize the inaugural GW6 research summit featuring the research of women graduate students — not only to showcase positive role models to students, but also to highlight the many successful graduate women at MIT who are not to be underestimated.

    Whether in computing or in the community, a system taking steps to address bias is one that enjoys legitimacy and trust, Cen says. “Accountability, legitimacy, trust — these principles play crucial roles in society and, ultimately, will determine which systems endure with time.”  More

  • in

    Frequent encounters build familiarity

    Do better spatial networks make for better neighbors? There is evidence that they do, according to Paige Bollen, a sixth-year political science graduate student at MIT. The networks Bollen works with are not virtual but physical, part of the built environment in which we are all embedded. Her research on urban spaces suggests that the routes bringing people together or keeping them apart factor significantly in whether individuals see each other as friend or foe.

    “We all live in networks of streets, and come across different types of people,” says Bollen. “Just passing by others provides information that informs our political and social views of the world.” In her doctoral research, Bollen is revealing how physical context matters in determining whether such ordinary encounters engender suspicion or even hostility, while others can lead to cooperation and tolerance.

    Through her in-depth studies mapping the movement of people in urban communities in Ghana and South Africa, Bollen is demonstrating that even in diverse communities, “when people repeatedly come into contact, even if that contact is casual, they can build understanding that can lead to cooperation and positive outcomes,” she says. “My argument is that frequent, casual contact, facilitated by street networks, can make people feel more comfortable with those unlike themselves,” she says.

    Mapping urban networks

    Bollen’s case for the benefits of casual contact emerged from her pursuit of several related questions: Why do people in urban areas who regard other ethnic groups with prejudice and economic envy nevertheless manage to collaborate for a collective good? How do you reduce fears that arise from differences? How do the configuration of space and the built environment influence contact patterns among people?

    While other social science research suggests that there are weak ties in ethnically mixed urban communities, with casual contact exacerbating hostility, Bollen noted that there were plenty of examples of “cooperation across ethnic divisions in ethnically mixed communities.” She absorbed the work of psychologist Stanley Milgram, whose 1972 research showed that strangers seen frequently in certain places become familiar — less anonymous or threatening. So she set out to understand precisely how “the built environment of a neighborhood interacts with its demography to create distinct patterns of contact between social groups.”

    With the support of MIT Global Diversity Lab and MIT GOV/LAB, Bollen set out to develop measures of intergroup contact in cities in Ghana and South Africa. She uses street network data to predict contact patterns based on features of the built environment and then combines these measures with mobility data on peoples’ actual movement.

    “I created a huge dataset for every intersection in these cities, to determine the central nodes where many people are passing through,” she says. She combined these datasets with census data to determine which social groups were most likely to use specific intersections based on their position in a particular street network. She mapped these measures of casual contact to outcomes, such as inter-ethnic cooperation in Ghana and voting behavior in South Africa.

    “My analysis [in Ghana] showed that in areas that are more ethnically heterogeneous and where there are more people passing through intersections, we find more interconnections among people and more cooperation within communities in community development efforts,” she says.

    In a related survey experiment conducted on Facebook with 1,200 subjects, Bollen asked Accra residents if they would help an unknown non-co-ethnic in need with a financial gift. She found that the likelihood of offering such help was strongly linked to the frequency of interactions. “Helping behavior occurred when the subjects believed they would see this person again, even when they did not know the person in need well,” says Bollen. “They figured if they helped, they could count on this person’s reciprocity in the future.”

    For Bollen, this was “a powerful gut check” for her hypothesis that “frequency builds familiarity, because frequency provides information and drives expectations, which means it can reduce uncertainty and fear of the other.”

    In research underway in South Africa, a nation increasingly dealing with anti-immigrant violence, Bollen is investigating whether frequency of contact reduces prejudice against foreigners. Using her detailed street maps, 1.1 billion unique geolocated cellphone pings, and election data, she finds that frequent contact opportunities with immigrants are associated with lower support for anti-immigrant party voting.    Passion for places and spaces

    Bollen never anticipated becoming a political scientist. The daughter of two academics, she was “bent on becoming a data scientist.” But she was also “always interested in why people behave in certain ways and how this influences macro trends.”

    As an undergraduate at Tufts University, she became interested in international affairs. But it was her 2013 fieldwork studying women-only carriages in Delhi, India’s metro system, that proved formative. “I interviewed women for a month, talking to them about how these cars enabled them to participate in public life,” she recalls. Another project involving informal transportation routes in Cape Town, South Africa, immersed her more deeply in the questions of people’s experience of public space. “I left college thinking about mobility and public space, and I discovered how much I love geographic information systems,” she says.

    A gig with the Commonwealth of Massachusetts to improve the 911 emergency service — updating and cleaning geolocations of addresses using Google Street View — further piqued her interest. “The job was tedious, but I realized you can really understand a place, and how people move around, from these images.” Bollen began thinking about a career in urban planning.

    Then a two-year stint as a researcher at MIT GOV/LAB brought Bollen firmly into the political science fold. Working with Lily Tsai, the Ford Professor of Political Science, on civil society partnerships in the developing world, Bollen realized that “political science wasn’t what I thought it was,” she says. “You could bring psychology, economics, and sociology into thinking about politics.” Her decision to join the doctoral program was simple: “I knew and loved the people I was with at MIT.”

    Bollen has not regretted that decision. “All the things I’ve been interested in are finally coming together in my dissertation,” she says. Due to the pandemic, questions involving space, mobility, and contact became sharper to her. “I shifted my research emphasis from asking people about inter-ethnic differences and inequality through surveys, to using contact and context information to measure these variables.”

    She sees a number of applications for her work, including working with civil society organizations in communities touched by ethnic or other frictions “to rethink what we know about contact, challenging some of the classic things we think we know.”

    As she moves into the final phases of her dissertation, which she hopes to publish as a book, Bollen also relishes teaching comparative politics to undergraduates. “There’s something so fun engaging with them, and making their arguments stronger,” she says. With the long process of earning a PhD, this helps her “enjoy what she is doing every single day.” More