More stories

  • in

    Minimizing electric vehicles’ impact on the grid

    National and global plans to combat climate change include increasing the electrification of vehicles and the percentage of electricity generated from renewable sources. But some projections show that these trends might require costly new power plants to meet peak loads in the evening when cars are plugged in after the workday. What’s more, overproduction of power from solar farms during the daytime can waste valuable electricity-generation capacity.

    In a new study, MIT researchers have found that it’s possible to mitigate or eliminate both these problems without the need for advanced technological systems of connected devices and real-time communications, which could add to costs and energy consumption. Instead, encouraging the placing of charging stations for electric vehicles (EVs) in strategic ways, rather than letting them spring up anywhere, and setting up systems to initiate car charging at delayed times could potentially make all the difference.

    The study, published today in the journal Cell Reports Physical Science, is by Zachary Needell PhD ’22, postdoc Wei Wei, and Professor Jessika Trancik of MIT’s Institute for Data, Systems, and Society.

    In their analysis, the researchers used data collected in two sample cities: New York and Dallas. The data were gathered from, among other sources, anonymized records collected via onboard devices in vehicles, and surveys that carefully sampled populations to cover variable travel behaviors. They showed the times of day cars are used and for how long, and how much time the vehicles spend at different kinds of locations — residential, workplace, shopping, entertainment, and so on.

    The findings, Trancik says, “round out the picture on the question of where to strategically locate chargers to support EV adoption and also support the power grid.”

    Better availability of charging stations at workplaces, for example, could help to soak up peak power being produced at midday from solar power installations, which might otherwise go to waste because it is not economical to build enough battery or other storage capacity to save all of it for later in the day. Thus, workplace chargers can provide a double benefit, helping to reduce the evening peak load from EV charging and also making use of the solar electricity output.

    These effects on the electric power system are considerable, especially if the system must meet charging demands for a fully electrified personal vehicle fleet alongside the peaks in other demand for electricity, for example on the hottest days of the year. If unmitigated, the evening peaks in EV charging demand could require installing upwards of 20 percent more power-generation capacity, the researchers say.

    “Slow workplace charging can be more preferable than faster charging technologies for enabling a higher utilization of midday solar resources,” Wei says.

    Meanwhile, with delayed home charging, each EV charger could be accompanied by a simple app to estimate the time to begin its charging cycle so that it charges just before it is needed the next day. Unlike other proposals that require a centralized control of the charging cycle, such a system needs no interdevice communication of information and can be preprogrammed — and can accomplish a major shift in the demand on the grid caused by increasing EV penetration. The reason it works so well, Trancik says, is because of the natural variability in driving behaviors across individuals in a population.

    By “home charging,” the researchers aren’t only referring to charging equipment in individual garages or parking areas. They say it’s essential to make charging stations available in on-street parking locations and in apartment building parking areas as well.

    Trancik says the findings highlight the value of combining the two measures — workplace charging and delayed home charging — to reduce peak electricity demand, store solar energy, and conveniently meet drivers’ charging needs on all days. As the team showed in earlier research, home charging can be a particularly effective component of a strategic package of charging locations; workplace charging, they have found, is not a good substitute for home charging for meeting drivers’ needs on all days.

    “Given that there’s a lot of public money going into expanding charging infrastructure,” Trancik says, “how do you incentivize the location such that this is going to be efficiently and effectively integrated into the power grid without requiring a lot of additional capacity expansion?” This research offers some guidance to policymakers on where to focus rules and incentives.

    “I think one of the fascinating things about these findings is that by being strategic you can avoid a lot of physical infrastructure that you would otherwise need,” she adds. “Your electric vehicles can displace some of the need for stationary energy storage, and you can also avoid the need to expand the capacity of power plants, by thinking about the location of chargers as a tool for managing demands — where they occur and when they occur.”

    Delayed home charging could make a surprising amount of difference, the team found. “It’s basically incentivizing people to begin charging later. This can be something that is preprogrammed into your chargers. You incentivize people to delay the onset of charging by a bit, so that not everyone is charging at the same time, and that smooths out the peak.”

    Such a program would require some advance commitment on the part of participants. “You would need to have enough people committing to this program in advance to avoid the investment in physical infrastructure,” Trancik says. “So, if you have enough people signing up, then you essentially don’t have to build those extra power plants.”

    It’s not a given that all of this would line up just right, and putting in place the right mix of incentives would be crucial. “If you want electric vehicles to act as an effective storage technology for solar energy, then the [EV] market needs to grow fast enough in order to be able to do that,” Trancik says.

    To best use public funds to help make that happen, she says, “you can incentivize charging installations, which would go through ideally a competitive process — in the private sector, you would have companies bidding for different projects, but you can incentivize installing charging at workplaces, for example, to tap into both of these benefits.” Chargers people can access when they are parked near their residences are also important, Trancik adds, but for other reasons. Home charging is one of the ways to meet charging needs while avoiding inconvenient disruptions to people’s travel activities.

    The study was supported by the European Regional Development Fund Operational Program for Competitiveness and Internationalization, the Lisbon Portugal Regional Operation Program, and the Portuguese Foundation for Science and Technology. More

  • in

    Improving health outcomes by targeting climate and air pollution simultaneously

    Climate policies are typically designed to reduce greenhouse gas emissions that result from human activities and drive climate change. The largest source of these emissions is the combustion of fossil fuels, which increases atmospheric concentrations of ozone, fine particulate matter (PM2.5) and other air pollutants that pose public health risks. While climate policies may result in lower concentrations of health-damaging air pollutants as a “co-benefit” of reducing greenhouse gas emissions-intensive activities, they are most effective at improving health outcomes when deployed in tandem with geographically targeted air-quality regulations.

    Yet the computer models typically used to assess the likely air quality/health impacts of proposed climate/air-quality policy combinations come with drawbacks for decision-makers. Atmospheric chemistry/climate models can produce high-resolution results, but they are expensive and time-consuming to run. Integrated assessment models can produce results for far less time and money, but produce results at global and regional scales, rendering them insufficiently precise to obtain accurate assessments of air quality/health impacts at the subnational level.

    To overcome these drawbacks, a team of researchers at MIT and the University of California at Davis has developed a climate/air-quality policy assessment tool that is both computationally efficient and location-specific. Described in a new study in the journal ACS Environmental Au, the tool could enable users to obtain rapid estimates of combined policy impacts on air quality/health at more than 1,500 locations around the globe — estimates precise enough to reveal the equity implications of proposed policy combinations within a particular region.

    “The modeling approach described in this study may ultimately allow decision-makers to assess the efficacy of multiple combinations of climate and air-quality policies in reducing the health impacts of air pollution, and to design more effective policies,” says Sebastian Eastham, the study’s lead author and a principal research scientist at the MIT Joint Program on the Science and Policy of Global Change. “It may also be used to determine if a given policy combination would result in equitable health outcomes across a geographical area of interest.”

    To demonstrate the efficiency and accuracy of their policy assessment tool, the researchers showed that outcomes projected by the tool within seconds were consistent with region-specific results from detailed chemistry/climate models that took days or even months to run. While continuing to refine and develop their approaches, they are now working to embed the new tool into integrated assessment models for direct use by policymakers.

    “As decision-makers implement climate policies in the context of other sustainability challenges like air pollution, efficient modeling tools are important for assessment — and new computational techniques allow us to build faster and more accurate tools to provide credible, relevant information to a broader range of users,” says Noelle Selin, a professor at MIT’s Institute for Data, Systems and Society and Department of Earth, Atmospheric and Planetary Sciences, and supervising author of the study. “We are looking forward to further developing such approaches, and to working with stakeholders to ensure that they provide timely, targeted and useful assessments.”

    The study was funded, in part, by the U.S. Environmental Protection Agency and the Biogen Foundation. More

  • in

    Democratizing education: Bringing MIT excellence to the masses

    How do you quantify the value of education or measure success? For the team behind the MIT Institute for Data, Systems, and Society’s (IDSS) MicroMasters Program in Statistics and Data Science (SDS), providing over 1,000 individuals from around the globe with access to MIT-level programming feels like a pretty good place to start. 

    Thanks to the MIT-conceived MicroMasters-style format, SDS faculty director Professor Devavrat Shah and his colleagues have eliminated the physical restrictions created by a traditional brick-and-mortar education, allowing 1,178 learners and counting from 89 countries access to an MIT education.

    “Taking classes from a Nobel Prize winner doesn’t happen every day,” says Oscar Vele, a strategic development worker for the town of Cuenca, Ecuador. “My dream has always been to study at MIT. I knew it was not easy — now, through this program, my dream came true.”

    “With an online forum, in principle, admission is no longer the gate — the merit is a gate,” says Shah. “If you take a class that is MIT-level, and if you perform at MIT-level, then you should get MIT-level credentials.”

    The MM SDS program, delivered in collaboration with MIT Open Learning, plays a key role in the IDSS mission of advancing education in data science, and supports MIT’s overarching belief that everyone should be able to access a quality education no matter what their life circumstances may be.

    “Getting a program like this up and running to the point where it has credentials and credibility across the globe, is an important milestone for us,” says Shah. “Basically, for us, it says we are here to stay, and we are just getting started.”

    Since the program launched in 2018, Shah says he and his team have seen learners from all walks of life, from high-schoolers looking for a challenge to late-in-life learners looking to either evolve or refresh their knowledge.

    “Then there are individuals who want to prove to themselves that they can achieve serious knowledge and build a career,” Shah says. “Circumstances throughout their lives, whether it’s the country or socioeconomic conditions they’re born in, they have never had the opportunity to do something like this, and now they have an MIT-level education and credentials, which is a huge deal for them.”

    Many learners overcome challenges to complete the program, from financial hardships to balancing work, home life, and coursework, and finding private, internet-enabled space for learning — not to mention the added complications of a global pandemic. One Ukrainian learner even finished the program after fleeing her apartment for a bomb shelter.

    Remapping the way to a graduate degree

    For Diogo da Silva Branco Magalhaes, a 44-year-old lifelong learner, curiosity and the desire to evolve within his current profession brought him to the MicroMasters program. Having spent 15 years working in the public transport sector, da Silva Branco Magalhaes had a very specific challenge at the front of his mind: artificial intelligence.

    “It’s not science fiction; it’s already here,” he says. “Think about autonomous vehicles, on-demand transportation, mobility as a service — AI and data, in particular, are the driving force of a number of disruptions that will affect my industry.”

    When he signed up for the MicroMasters Program in Statistics and Data Science, da Silva Branco Magalhaes’ said he had no long-term plans, but was taking a first step. “I just wanted to have a first contact with this reality, understand the basics, and then let’s see how it goes,” he describes.

    Now, after earning his credentials in 2021, he finds himself a few weeks into an accelerated master’s program at Northwestern University, one of several graduate pathways supported by the MM SDS program.

    “I was really looking to gain some basic background knowledge; I didn’t expect the level of quality and depth they were able to provide in an online lecture format,” he says. “Having access to this kind of content — it’s a privilege, and now that we have it, we have to make the most of it.”

    A refreshing investment

    As an applied mathematician with 15 years of experience in the U.S. defense sector, Celia Wilson says she felt comfortable with her knowledge, though not 100 percent confident that her math skills could stand up against the next generation.

    “I felt I was getting left behind,” she says. “So I decided to take some time out and invest in myself, and this program was a great opportunity to systematize and refresh my knowledge of statistics and data science.”

    Since completing the course, Wilson says she has secured a new job as a director of data and analytics, where she is confident in her ability to manage a team of the “new breed of data scientists.” It turns out, however, that completing the program has given her an even greater gift than self-confidence.

    “Most importantly,” she adds, “it’s inspired my daughters to tell anyone who will listen that math is definitely for girls.”

    Connecting an engaged community

    Each course is connected to an online forum that allows learners to enhance their experience through real-time conversations with others in their cohort.

    “We have worked hard to provide a scalable version of the traditional teaching assistant support system that you would get in a usual on-campus class, with a great online forum for people to connect with each other as learners,” Shah says.

    David Khachatrian, a data scientist working on improving the drug discovery pipeline, says that leveraging the community to hone his ability to “think clearly and communicate effectively with others” mattered more than anything.

    “Take the opportunity to engage with your community of fellow learners and facilitators — answer questions for others to give back to the community, solidify your own understanding, and practice your ability to explain clearly,” Khachatrian says. “These skills and behaviors will help you to succeed not just in SDS, but wherever you go in the future.”

    “There were a lot of active contributions from a lot of learners and I felt it was really a very strong component of the course,” da Silva Branco Magalhaes adds. “I had some offline contact with other students who are connections that I’ve kept up with to this day.”

    A solid path forward

    “We have a dedicated team supporting the MM SDS community on the MIT side,” Shah says, citing the contributions of Karene Chu, MM SDS assistant director of education; Susana Kevorkova, the MM SDS program manager; and Jeremy Rossen, MM program coordinator. “They’ve done so much to ensure the success of the program and our learners, and they are constantly adding value to the program — like identifying real-time supplementary opportunities for learners to participate in, including the IDSS Policy Hackathon.”

    The program now holds online “graduation” ceremonies, where credential holders from all over the world share their experiences. Says Shah, who looks forward to celebrating the next 1,000 learners: “Every time I think about it, I feel emotional. It feels great, and it keeps us going.” More

  • in

    MIT community members elected to the National Academy of Engineering for 2023

    Seven MIT researchers are among the 106 new members and 18 international members elected to the National Academy of Engineering (NAE) this week. Fourteen additional MIT alumni, including one member of the MIT Corporation, were also elected as new members.

    One of the highest professional distinctions for engineers, membership to the NAE is given to individuals who have made outstanding contributions to “engineering research, practice, or education, including, where appropriate, significant contributions to the engineering literature” and to “the pioneering of new and developing fields of technology, making major advancements in traditional fields of engineering, or developing/implementing innovative approaches to engineering education.”

    The seven MIT researchers elected this year include:

    Regina Barzilay, the School of Engineering Distinguished Professor for AI and Health in the Department of Electrical Engineering and Computer Science, principal investigator at the Computer Science and Artificial Intelligence Laboratory, and faculty lead for the MIT Abdul Latif Jameel Clinic for Machine Learning in Health, for machine learning models that understand structures in text, molecules, and medical images.

    Markus J. Buehler, the Jerry McAfee (1940) Professor in Engineering from the Department of Civil and Environmental Engineering, for implementing the use of nanomechanics to model and design fracture-resistant bioinspired materials.

    Elfatih A.B. Eltahir SM ’93, ScD ’93, the H.M. King Bhumibol Professor in the Department of Civil and Environmental Engineering, for advancing understanding of how climate and land use impact water availability, environmental and human health, and vector-borne diseases.

    Neil Gershenfeld, director of the Center for Bits and Atoms, for eliminating boundaries between digital and physical worlds, from quantum computing to digital materials to the internet of things.

    Roger D. Kamm SM ’73, PhD ’77, the Cecil and Ida Green Distinguished Professor of Biological and Mechanical Engineering, for contributions to the understanding of mechanics in biology and medicine, and leadership in biomechanics.

    David W. Miller ’82, SM ’85, ScD ’88, the Jerome C. Hunsaker Professor in the Department of Aeronautics and Astronautics, for contributions in control technology for space-based telescope design, and leadership in cross-agency guidance of space technology.

    David Simchi-Levi, professor of civil and environmental engineering, core faculty member in the Institute for Data, Systems, and Society, and principal investigator at the Laboratory for Information and Decision Systems, for contributions using optimization and stochastic modeling to enhance supply chain management and operations.

    Fariborz Maseeh ScD ’90, life member of the MIT Corporation and member of the School of Engineering Dean’s Advisory Council, was also elected as a member for leadership and advances in efficient design, development, and manufacturing of microelectromechanical systems, and for empowering engineering talent through public service.

    Thirteen additional alumni were elected to the National Academy of Engineering this year. They are: Mark George Allen SM ’86, PhD ’89; Shorya Awtar ScD ’04; Inderjit Chopra ScD ’77; David Huang ’85, SM ’89, PhD ’93; Eva Lerner-Lam SM ’78; David F. Merrion SM ’59; Virginia Norwood ’47; Martin Gerard Plys ’80, SM ’81, ScD ’84; Mark Prausnitz PhD ’94; Anil Kumar Sachdev ScD ’77; Christopher Scholz PhD ’67; Melody Ann Swartz PhD ’98; and Elias Towe ’80, SM ’81, PhD ’87.

    “I am delighted that seven members of MIT’s faculty and many members of the wider MIT community were elected to the National Academy of Engineering this year,” says Anantha Chandrakasan, the dean of the MIT School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science. “My warmest congratulations on this recognition of their many contributions to engineering research and education.”

    Including this year’s inductees, 156 members of the National Academy of Engineering are current or retired members of the MIT faculty and staff, or members of the MIT Corporation. More

  • in

    When should data scientists try a new technique?

    If a scientist wanted to forecast ocean currents to understand how pollution travels after an oil spill, she could use a common approach that looks at currents traveling between 10 and 200 kilometers. Or, she could choose a newer model that also includes shorter currents. This might be more accurate, but it could also require learning new software or running new computational experiments. How to know if it will be worth the time, cost, and effort to use the new method?

    A new approach developed by MIT researchers could help data scientists answer this question, whether they are looking at statistics on ocean currents, violent crime, children’s reading ability, or any number of other types of datasets.

    The team created a new measure, known as the “c-value,” that helps users choose between techniques based on the chance that a new method is more accurate for a specific dataset. This measure answers the question “is it likely that the new method is more accurate for this data than the common approach?”

    Traditionally, statisticians compare methods by averaging a method’s accuracy across all possible datasets. But just because a new method is better for all datasets on average doesn’t mean it will actually provide a better estimate using one particular dataset. Averages are not application-specific.

    So, researchers from MIT and elsewhere created the c-value, which is a dataset-specific tool. A high c-value means it is unlikely a new method will be less accurate than the original method on a specific data problem.

    In their proof-of-concept paper, the researchers describe and evaluate the c-value using real-world data analysis problems: modeling ocean currents, estimating violent crime in neighborhoods, and approximating student reading ability at schools. They show how the c-value could help statisticians and data analysts achieve more accurate results by indicating when to use alternative estimation methods they otherwise might have ignored.

    “What we are trying to do with this particular work is come up with something that is data specific. The classical notion of risk is really natural for someone developing a new method. That person wants their method to work well for all of their users on average. But a user of a method wants something that will work on their individual problem. We’ve shown that the c-value is a very practical proof-of-concept in that direction,” says senior author Tamara Broderick, an associate professor in the Department of Electrical Engineering and Computer Science (EECS) and a member of the Laboratory for Information and Decision Systems and the Institute for Data, Systems, and Society.

    She’s joined on the paper by Brian Trippe PhD ’22, a former graduate student in Broderick’s group who is now a postdoc at Columbia University; and Sameer Deshpande ’13, a former postdoc in Broderick’s group who is now an assistant professor at the University of Wisconsin at Madison. An accepted version of the paper is posted online in the Journal of the American Statistical Association.

    Evaluating estimators

    The c-value is designed to help with data problems in which researchers seek to estimate an unknown parameter using a dataset, such as estimating average student reading ability from a dataset of assessment results and student survey responses. A researcher has two estimation methods and must decide which to use for this particular problem.

    The better estimation method is the one that results in less “loss,” which means the estimate will be closer to the ground truth. Consider again the forecasting of ocean currents: Perhaps being off by a few meters per hour isn’t so bad, but being off by many kilometers per hour makes the estimate useless. The ground truth is unknown, though; the scientist is trying to estimate it. Therefore, one can never actually compute the loss of an estimate for their specific data. That’s what makes comparing estimates challenging. The c-value helps a scientist navigate this challenge.

    The c-value equation uses a specific dataset to compute the estimate with each method, and then once more to compute the c-value between the methods. If the c-value is large, it is unlikely that the alternative method is going to be worse and yield less accurate estimates than the original method.

    “In our case, we are assuming that you conservatively want to stay with the default estimator, and you only want to go to the new estimator if you feel very confident about it. With a high c-value, it’s likely that the new estimate is more accurate. If you get a low c-value, you can’t say anything conclusive. You might have actually done better, but you just don’t know,” Broderick explains.

    Probing the theory

    The researchers put that theory to the test by evaluating three real-world data analysis problems.

    For one, they used the c-value to help determine which approach is best for modeling ocean currents, a problem Trippe has been tackling. Accurate models are important for predicting the dispersion of contaminants, like pollution from an oil spill. The team found that estimating ocean currents using multiple scales, one larger and one smaller, likely yields higher accuracy than using only larger scale measurements.

    “Oceans researchers are studying this, and the c-value can provide some statistical ‘oomph’ to support modeling the smaller scale,” Broderick says.

    In another example, the researchers sought to predict violent crime in census tracts in Philadelphia, an application Deshpande has been studying. Using the c-value, they found that one could get better estimates about violent crime rates by incorporating information about census-tract-level nonviolent crime into the analysis. They also used the c-value to show that additionally leveraging violent crime data from neighboring census tracts in the analysis isn’t likely to provide further accuracy improvements.

    “That doesn’t mean there isn’t an improvement, that just means that we don’t feel confident saying that you will get it,” she says.

    Now that they have proven the c-value in theory and shown how it could be used to tackle real-world data problems, the researchers want to expand the measure to more types of data and a wider set of model classes.

    The ultimate goal is to create a measure that is general enough for many more data analysis problems, and while there is still a lot of work to do to realize that objective, Broderick says this is an important and exciting first step in the right direction.

    This research was supported, in part, by an Advanced Research Projects Agency-Energy grant, a National Science Foundation CAREER Award, the Office of Naval Research, and the Wisconsin Alumni Research Foundation. More

  • in

    Research, education, and connection in the face of war

    When Russian forces invaded Ukraine in February 2022, Tetiana Herasymova had several decisions to make: What should she do, where should she live, and should she take her MITx MicroMasters capstone exams? She had registered for the Statistics and Data Science Program’s final exams just days prior to moving out of her apartment and into a bomb shelter. Although it was difficult to focus on studying and preparations with air horns sounding overhead and uncertainty lingering around her, she was determined to try. “I wouldn’t let the aggressor in the war squash my dreams,” she says.

    A love of research and the desire to improve teaching 

    An early love of solving puzzles and problems for fun piqued Herasymova’s initial interest in mathematics. When she later pursued her PhD in mathematics at Kiev National Taras Shevchenko University, Herasymova’s love of math evolved into a love of research. Throughout Herasymova’s career, she’s worked to close the gap between scientific researchers and educators. Starting as a math tutor at MBA Strategy, a company that prepares Ukrainian leaders for qualifying standardized tests for MBA programs, she was later promoted as the head of their test preparation department. Afterward, she moved on to an equivalent position at ZNOUA, a new project that prepared high school students for Ukraine’s standardized test, and she eventually became ZNOUA’s CEO.

    In 2018, she founded Prosteer, a “self-learning community” of educators who share research, pedagogy, and experience to learn from one another. “It’s really interesting to have a community of teachers from different domains,” she says, speaking of educators and researchers whose specialties range across language, mathematics, physics, music, and more.

    Implementing new pedagogical research in the classroom is often up to educators who seek out studies on an individual basis, Herasymova has found. “Lots of scientists are not practitioners,” she says, and the reverse is also true. She only became more determined to build these connections once she was promoted to head of test preparation at MBA Strategy because she wanted to share more effective pedagogy with the tutors she was mentoring.

    First, Herasymova knew she needed a way to measure the teachers’ effectiveness. She was able to determine whether students who received the company’s tutoring services improved their scores. Moreover, Ukraine keeps an open-access database of national standardized test scores, so anyone could analyze the data in hopes of improving the level of education in the country. She says, “I could do some analytics because I am a mathematician, but I knew I could do much more with this data if I knew data science and machine learning knowledge.”

    That’s why Herasymova sought out the MITx MicroMasters Program in Statistics and Data Science offered by the MIT Institute for Data, Systems, and Society (IDSS). “I wanted to learn the fundamentals so I could join the Learning Analytics domain,” she says. She was looking for a comprehensive program that covered the foundations without being overly basic. “I had some knowledge from the ground, so I could see the deepness of that course,” she says. Because of her background as an instructional designer, she thought the MicroMasters curriculum was well-constructed, calling the variety of videos, practice problems, and homework assignments that encouraged learners to approach the course material in different ways, “a perfect experience.”

    Another benefit of the MicroMasters program was its online format. “I had my usual work, so it was impossible to study in a stationary way,” she says. She found the structure to be more flexible than other programs. “It’s really great that you can construct your course schedule your own way, especially with your own adult life,” she says.

    Determination and support in the midst of war

    When the war first forced Herasymova to flee her apartment, she had already registered to take the exams for her four courses. “It was quite hard to prepare for exams when you could hear explosions outside of the bomb shelter,” she says. She and other Ukranians were invited to postpone their exams until the following session, but the next available testing period wouldn’t be held until October. “It was a hard decision, but I had to allow myself to try,” she says. “For all people in Ukraine, when you don’t know if you’re going to live or die, you try to live in the now. You have to appreciate every moment and what life brings to you. You don’t say, ‘Someday’ — you do it today or tomorrow.”

    In addition to emotional support from her boyfriend, Herasymova had a group of friends who had also enrolled in the program, and they supported each other through study sessions and an ongoing chat. Herasymova’s personal support network helped her accomplish what she set out to do with her MicroMasters program, and in turn, she was able to support her professional network. While Prosteer halted its regular work during the early stages of the war, Herasymova was determined to support the community of educators and scientists that she had built. They continued meeting weekly to exchange ideas as usual. “It’s intrinsic motivation,” she says. They managed to restore all of their activities by October.

    Despite the factors stacked against her, Herasymova’s determination paid off — she passed all of her exams in May, the final step to earning her MicroMasters certificate in statistics and data science. “I just couldn’t believe it,” she says. “It was definitely a bifurcation point. The moment when you realize that you have something to rely on, and that life is just beginning to show all its diversity despite the fact that you live in war.” With her newly minted certificate in hand, Herasymova has continued her research on the effectiveness of educational models — analyzing the data herself — with a summer research program at New York University. 

    The student becomes the master

    After moving seven times between February and October, heading west from Kyiv until most recently settling near the border of Poland, Herasymova hopes she’s moved for the last time. Ukrainian Catholic University offered her a position teaching both mathematics and programming. Before enrolling in the MicroMasters Program in Statistics and Data Science, she had some prior knowledge of programming languages and mathematical algorithms, but she didn’t know Python. She took MITx’s Introduction to Computer Science and Programming Using Python to prepare. “It gave me a huge step forward,” she says. “I learned a lot. Now, not only can I work with Python machine learning models in programming language R, I also have knowledge of the big picture of the purpose and the point to do so.”

    In addition to the skills the MicroMasters Program trained her in, she gained firsthand experience in learning new subjects and exploring topics more deeply. She will be sharing that practice with the community of students and teachers she’s built, plus, she plans on guiding them through this course during the next year. As a continuation of her own educational growth, says she’s looking forward to her next MITx course this year, Data Analysis.

    Herasymova advises that the best way to keep progressing is investing a lot of time. “Adults don’t want to hear this, but you need one or two years,” she says. “Allow yourself to be stupid. If you’re an expert in one domain and want to switch to another, or if you want to understand something new, a lot of people don’t ask questions or don’t ask for help. But from this point, if I don’t know something, I know I should ask for help because that’s the start of learning. With a fixed mindset, you won’t grow.”

    July 2022 MicroMasters Program Joint Completion Celebration. Ukrainian student Tetiana Herasymova, who completed her program amid war in her home country, speaks at 43:55. More

  • in

    Unpacking the “black box” to build better AI models

    When deep learning models are deployed in the real world, perhaps to detect financial fraud from credit card activity or identify cancer in medical images, they are often able to outperform humans.

    But what exactly are these deep learning models learning? Does a model trained to spot skin cancer in clinical images, for example, actually learn the colors and textures of cancerous tissue, or is it flagging some other features or patterns?

    These powerful machine-learning models are typically based on artificial neural networks that can have millions of nodes that process data to make predictions. Due to their complexity, researchers often call these models “black boxes” because even the scientists who build them don’t understand everything that is going on under the hood.

    Stefanie Jegelka isn’t satisfied with that “black box” explanation. A newly tenured associate professor in the MIT Department of Electrical Engineering and Computer Science, Jegelka is digging deep into deep learning to understand what these models can learn and how they behave, and how to build certain prior information into these models.

    “At the end of the day, what a deep-learning model will learn depends on so many factors. But building an understanding that is relevant in practice will help us design better models, and also help us understand what is going on inside them so we know when we can deploy a model and when we can’t. That is critically important,” says Jegelka, who is also a member of the Computer Science and Artificial Intelligence Laboratory (CSAIL) and the Institute for Data, Systems, and Society (IDSS).

    Jegelka is particularly interested in optimizing machine-learning models when input data are in the form of graphs. Graph data pose specific challenges: For instance, information in the data consists of both information about individual nodes and edges, as well as the structure — what is connected to what. In addition, graphs have mathematical symmetries that need to be respected by the machine-learning model so that, for instance, the same graph always leads to the same prediction. Building such symmetries into a machine-learning model is usually not easy.

    Take molecules, for instance. Molecules can be represented as graphs, with vertices that correspond to atoms and edges that correspond to chemical bonds between them. Drug companies may want to use deep learning to rapidly predict the properties of many molecules, narrowing down the number they must physically test in the lab.

    Jegelka studies methods to build mathematical machine-learning models that can effectively take graph data as an input and output something else, in this case a prediction of a molecule’s chemical properties. This is particularly challenging since a molecule’s properties are determined not only by the atoms within it, but also by the connections between them.  

    Other examples of machine learning on graphs include traffic routing, chip design, and recommender systems.

    Designing these models is made even more difficult by the fact that data used to train them are often different from data the models see in practice. Perhaps the model was trained using small molecular graphs or traffic networks, but the graphs it sees once deployed are larger or more complex.

    In this case, what can researchers expect this model to learn, and will it still work in practice if the real-world data are different?

    “Your model is not going to be able to learn everything because of some hardness problems in computer science, but what you can learn and what you can’t learn depends on how you set the model up,” Jegelka says.

    She approaches this question by combining her passion for algorithms and discrete mathematics with her excitement for machine learning.

    From butterflies to bioinformatics

    Jegelka grew up in a small town in Germany and became interested in science when she was a high school student; a supportive teacher encouraged her to participate in an international science competition. She and her teammates from the U.S. and Singapore won an award for a website they created about butterflies, in three languages.

    “For our project, we took images of wings with a scanning electron microscope at a local university of applied sciences. I also got the opportunity to use a high-speed camera at Mercedes Benz — this camera usually filmed combustion engines — which I used to capture a slow-motion video of the movement of a butterfly’s wings. That was the first time I really got in touch with science and exploration,” she recalls.

    Intrigued by both biology and mathematics, Jegelka decided to study bioinformatics at the University of Tübingen and the University of Texas at Austin. She had a few opportunities to conduct research as an undergraduate, including an internship in computational neuroscience at Georgetown University, but wasn’t sure what career to follow.

    When she returned for her final year of college, Jegelka moved in with two roommates who were working as research assistants at the Max Planck Institute in Tübingen.

    “They were working on machine learning, and that sounded really cool to me. I had to write my bachelor’s thesis, so I asked at the institute if they had a project for me. I started working on machine learning at the Max Planck Institute and I loved it. I learned so much there, and it was a great place for research,” she says.

    She stayed on at the Max Planck Institute to complete a master’s thesis, and then embarked on a PhD in machine learning at the Max Planck Institute and the Swiss Federal Institute of Technology.

    During her PhD, she explored how concepts from discrete mathematics can help improve machine-learning techniques.

    Teaching models to learn

    The more Jegelka learned about machine learning, the more intrigued she became by the challenges of understanding how models behave, and how to steer this behavior.

    “You can do so much with machine learning, but only if you have the right model and data. It is not just a black-box thing where you throw it at the data and it works. You actually have to think about it, its properties, and what you want the model to learn and do,” she says.

    After completing a postdoc at the University of California at Berkeley, Jegelka was hooked on research and decided to pursue a career in academia. She joined the faculty at MIT in 2015 as an assistant professor.

    “What I really loved about MIT, from the very beginning, was that the people really care deeply about research and creativity. That is what I appreciate the most about MIT. The people here really value originality and depth in research,” she says.

    That focus on creativity has enabled Jegelka to explore a broad range of topics.

    In collaboration with other faculty at MIT, she studies machine-learning applications in biology, imaging, computer vision, and materials science.

    But what really drives Jegelka is probing the fundamentals of machine learning, and most recently, the issue of robustness. Often, a model performs well on training data, but its performance deteriorates when it is deployed on slightly different data. Building prior knowledge into a model can make it more reliable, but understanding what information the model needs to be successful and how to build it in is not so simple, she says.

    She is also exploring methods to improve the performance of machine-learning models for image classification.

    Image classification models are everywhere, from the facial recognition systems on mobile phones to tools that identify fake accounts on social media. These models need massive amounts of data for training, but since it is expensive for humans to hand-label millions of images, researchers often use unlabeled datasets to pretrain models instead.

    These models then reuse the representations they have learned when they are fine-tuned later for a specific task.

    Ideally, researchers want the model to learn as much as it can during pretraining, so it can apply that knowledge to its downstream task. But in practice, these models often learn only a few simple correlations — like that one image has sunshine and one has shade — and use these “shortcuts” to classify images.

    “We showed that this is a problem in ‘contrastive learning,’ which is a standard technique for pre-training, both theoretically and empirically. But we also show that you can influence the kinds of information the model will learn to represent by modifying the types of data you show the model. This is one step toward understanding what models are actually going to do in practice,” she says.

    Researchers still don’t understand everything that goes on inside a deep-learning model, or details about how they can influence what a model learns and how it behaves, but Jegelka looks forward to continue exploring these topics.

    “Often in machine learning, we see something happen in practice and we try to understand it theoretically. This is a huge challenge. You want to build an understanding that matches what you see in practice, so that you can do better. We are still just at the beginning of understanding this,” she says.

    Outside the lab, Jegelka is a fan of music, art, traveling, and cycling. But these days, she enjoys spending most of her free time with her preschool-aged daughter. More

  • in

    Simulating discrimination in virtual reality

    Have you ever been advised to “walk a mile in someone else’s shoes?” Considering another person’s perspective can be a challenging endeavor — but recognizing our errors and biases is key to building understanding across communities. By challenging our preconceptions, we confront prejudice, such as racism and xenophobia, and potentially develop a more inclusive perspective about others.

    To assist with perspective-taking, MIT researchers have developed “On the Plane,” a virtual reality role-playing game (VR RPG) that simulates discrimination. In this case, the game portrays xenophobia directed against a Malaysian America woman, but the approach can be generalized. Situated on an airplane, players can take on the role of characters from different backgrounds, engaging in dialogue with others while making in-game choices to a series of prompts. In turn, players’ decisions control the outcome of a tense conversation between the characters about cultural differences.

    As a VR RPG, “On the Plane” encourages players to take on new roles that may be outside of their personal experiences in the first person, allowing them to confront in-group/out-group bias by incorporating new perspectives into their understanding of different cultures. Players engage with three characters: Sarah, a first-generation Muslim American of Malaysian ancestry who wears a hijab; Marianne, a white woman from the Midwest with little exposure to other cultures and customs; or a flight attendant. Sarah represents the out group, Marianne is a member of the in group, and the flight staffer is a bystander witnessing an exchange between the two passengers.“This project is part of our efforts to harness the power of virtual reality and artificial intelligence to address social ills, such as discrimination and xenophobia,” says Caglar Yildirim, an MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) research scientist who is a co-author and co-game designer on the project. “Through the exchange between the two passengers, players experience how one passenger’s xenophobia manifests itself and how it affects the other passenger. The simulation engages players in critical reflection and seeks to foster empathy for the passenger who was ‘othered’ due to her outfit being not so ‘prototypical’ of what an American should look like.”

    Yildirim worked alongside the project’s principal investigator, D. Fox Harrell, MIT professor of digital media and AI at CSAIL, the Program in Comparative Media Studies/Writing (CMS), and the Institute for Data, Systems, and Society (IDSS) and founding director of the MIT Center for Advanced Virtuality. “It is not possible for a simulation to give someone the life experiences of another person, but while you cannot ‘walk in someone else’s shoes’ in that sense, a system like this can help people recognize and understand the social patterns at work when it comes to issue like bias,” says Harrell, who is also co-author and designer on this project. “An engaging, immersive, interactive narrative can also impact people emotionally, opening the door for users’ perspectives to be transformed and broadened.” This simulation also utilizes an interactive narrative engine that creates several options for responses to in-game interactions based on a model of how people are categorized socially. The tool grants players a chance to alter their standing in the simulation through their reply choices to each prompt, affecting their affinity toward the other two characters. For example, if you play as the flight attendant, you can react to Marianne’s xenophobic expressions and attitudes toward Sarah, changing your affinities. The engine will then provide you with a different set of narrative events based on your changes in standing with others.

    To animate each avatar, “On the Plane” incorporates artificial intelligence knowledge representation techniques controlled by probabilistic finite state machines, a tool commonly used in machine learning systems for pattern recognition. With the help of these machines, characters’ body language and gestures are customizable: if you play as Marianne, the game will customize her mannerisms toward Sarah based on user inputs, impacting how comfortable she appears in front of a member of a perceived out group. Similarly, players can do the same from Sarah or the flight attendant’s point of view.In a 2018 paper based on work done in a collaboration between MIT CSAIL and the Qatar Computing Research Institute, Harrell and co-author Sercan Şengün advocated for virtual system designers to be more inclusive of Middle Eastern identities and customs. They claimed that if designers allowed users to customize virtual avatars more representative of their background, it might empower players to engage in a more supportive experience. Four years later, “On the Plane” accomplishes a similar goal, incorporating a Muslim’s perspective into an immersive environment.

    “Many virtual identity systems, such as avatars, accounts, profiles, and player characters, are not designed to serve the needs of people across diverse cultures. We have used statistical and AI methods in conjunction with qualitative approaches to learn where the gaps are,” they note. “Our project helps engender perspective transformation so that people will treat each other with respect and enhanced understanding across diverse cultural avatar representations.”

    Harrell and Yildirim’s work is part of the MIT IDSS’s Initiative on Combatting Systemic Racism (ICSR). Harrell is on the initiative’s steering committee and is the leader of the newly forming Antiracism, Games, and Immersive Media vertical, who study behavior, cognition, social phenomena, and computational systems related to race and racism in video games and immersive experiences.

    The researchers’ latest project is part of the ICSR’s broader goal to launch and coordinate cross-disciplinary research that addresses racially discriminatory processes across American institutions. Using big data, members of the research initiative develop and employ computing tools that drive racial equity. Yildirim and Harrell accomplish this goal by depicting a frequent, problematic scenario that illustrates how bias creeps into our everyday lives.“In a post-9/11 world, Muslims often experience ethnic profiling in American airports. ‘On the Plane’ builds off of that type of in-group favoritism, a well-established finding in psychology,” says MIT Professor Fotini Christia, director of the Sociotechnical Systems Research Center (SSRC) and associate director or IDSS. “This game also takes a novel approach to analyzing hardwired bias by utilizing VR instead of field experiments to simulate prejudice. Excitingly, this research demonstrates that VR can be used as a tool to help us better measure bias, combating systemic racism and other forms of discrimination.”“On the Plane” was developed on the Unity game engine using the XR Interaction Toolkit and Harrell’s Chimeria platform for authoring interactive narratives that involve social categorization. The game will be deployed for research studies later this year on both desktop computers and the standalone, wireless Meta Quest headsets. A paper on the work was presented in December at the 2022 IEEE International Conference on Artificial Intelligence and Virtual Reality. More