More stories

  • in

    Researchers create a tool for accurately simulating complex systems

    Researchers often use simulations when designing new algorithms, since testing ideas in the real world can be both costly and risky. But since it’s impossible to capture every detail of a complex system in a simulation, they typically collect a small amount of real data that they replay while simulating the components they want to study.

    Known as trace-driven simulation (the small pieces of real data are called traces), this method sometimes results in biased outcomes. This means researchers might unknowingly choose an algorithm that is not the best one they evaluated, and which will perform worse on real data than the simulation predicted that it should.

    MIT researchers have developed a new method that eliminates this source of bias in trace-driven simulation. By enabling unbiased trace-driven simulations, the new technique could help researchers design better algorithms for a variety of applications, including improving video quality on the internet and increasing the performance of data processing systems.

    The researchers’ machine-learning algorithm draws on the principles of causality to learn how the data traces were affected by the behavior of the system. In this way, they can replay the correct, unbiased version of the trace during the simulation.

    When compared to a previously developed trace-driven simulator, the researchers’ simulation method correctly predicted which newly designed algorithm would be best for video streaming — meaning the one that led to less rebuffering and higher visual quality. Existing simulators that do not account for bias would have pointed researchers to a worse-performing algorithm.

    “Data are not the only thing that matter. The story behind how the data are generated and collected is also important. If you want to answer a counterfactual question, you need to know the underlying data generation story so you only intervene on those things that you really want to simulate,” says Arash Nasr-Esfahany, an electrical engineering and computer science (EECS) graduate student and co-lead author of a paper on this new technique.

    He is joined on the paper by co-lead authors and fellow EECS graduate students Abdullah Alomar and Pouya Hamadanian; recent graduate student Anish Agarwal PhD ’21; and senior authors Mohammad Alizadeh, an associate professor of electrical engineering and computer science; and Devavrat Shah, the Andrew and Erna Viterbi Professor in EECS and a member of the Institute for Data, Systems, and Society and of the Laboratory for Information and Decision Systems. The research was recently presented at the USENIX Symposium on Networked Systems Design and Implementation.

    Specious simulations

    The MIT researchers studied trace-driven simulation in the context of video streaming applications.

    In video streaming, an adaptive bitrate algorithm continually decides the video quality, or bitrate, to transfer to a device based on real-time data on the user’s bandwidth. To test how different adaptive bitrate algorithms impact network performance, researchers can collect real data from users during a video stream for a trace-driven simulation.

    They use these traces to simulate what would have happened to network performance had the platform used a different adaptive bitrate algorithm in the same underlying conditions.

    Researchers have traditionally assumed that trace data are exogenous, meaning they aren’t affected by factors that are changed during the simulation. They would assume that, during the period when they collected the network performance data, the choices the bitrate adaptation algorithm made did not affect those data.

    But this is often a false assumption that results in biases about the behavior of new algorithms, making the simulation invalid, Alizadeh explains.

    “We recognized, and others have recognized, that this way of doing simulation can induce errors. But I don’t think people necessarily knew how significant those errors could be,” he says.

    To develop a solution, Alizadeh and his collaborators framed the issue as a causal inference problem. To collect an unbiased trace, one must understand the different causes that affect the observed data. Some causes are intrinsic to a system, while others are affected by the actions being taken.

    In the video streaming example, network performance is affected by the choices the bitrate adaptation algorithm made — but it’s also affected by intrinsic elements, like network capacity.

    “Our task is to disentangle these two effects, to try to understand what aspects of the behavior we are seeing are intrinsic to the system and how much of what we are observing is based on the actions that were taken. If we can disentangle these two effects, then we can do unbiased simulations,” he says.

    Learning from data

    But researchers often cannot directly observe intrinsic properties. This is where the new tool, called CausalSim, comes in. The algorithm can learn the underlying characteristics of a system using only the trace data.

    CausalSim takes trace data that were collected through a randomized control trial, and estimates the underlying functions that produced those data. The model tells the researchers, under the exact same underlying conditions that a user experienced, how a new algorithm would change the outcome.

    Using a typical trace-driven simulator, bias might lead a researcher to select a worse-performing algorithm, even though the simulation indicates it should be better. CausalSim helps researchers select the best algorithm that was tested.

    The MIT researchers observed this in practice. When they used CausalSim to design an improved bitrate adaptation algorithm, it led them to select a new variant that had a stall rate that was nearly 1.4 times lower than a well-accepted competing algorithm, while achieving the same video quality. The stall rate is the amount of time a user spent rebuffering the video.

    By contrast, an expert-designed trace-driven simulator predicted the opposite. It indicated that this new variant should cause a stall rate that was nearly 1.3 times higher. The researchers tested the algorithm on real-world video streaming and confirmed that CausalSim was correct.

    “The gains we were getting in the new variant were very close to CausalSim’s prediction, while the expert simulator was way off. This is really exciting because this expert-designed simulator has been used in research for the past decade. If CausalSim can so clearly be better than this, who knows what we can do with it?” says Hamadanian.

    During a 10-month experiment, CausalSim consistently improved simulation accuracy, resulting in algorithms that made about half as many errors as those designed using baseline methods.

    In the future, the researchers want to apply CausalSim to situations where randomized control trial data are not available or where it is especially difficult to recover the causal dynamics of the system. They also want to explore how to design and monitor systems to make them more amenable to causal analysis. More

  • in

    Study: Covid-19 has reduced diverse urban interactions

    The Covid-19 pandemic has reduced how often urban residents intersect with people from different income brackets, according to a new study led by MIT researchers.

    Examining the movement of people in four U.S. cities before and after the onset of the pandemic, the study found a 15 to 30 percent decrease in the number of visits residents were making to areas that are socioeconomically different than their own. In turn, this has reduced people’s opportunities to interact with others from varied social and economic spheres.

    “Income diversity of urban encounters decreased during the pandemic, and not just in the lockdown stages,” says Takahiro Yabe, a postdoc at the Media Lab and co-author of a newly published paper detailing the study’s results. “It decreased in the long term as well, after mobility patterns recovered.”

    Indeed, the study found a large immediate dropoff in urban movement in the spring of 2020, when new policies temporarily shuttered many types of institutions and businesses in the U.S. and much of the world due to the emergence of the deadly Covid-19 virus. But even after such restrictions were lifted and the overall amount of urban movement approached prepandemic levels, movement patterns within cities have narrowed; people now visit fewer places.

    “We see that changes like working from home, less exploration, more online shopping, all these behaviors add up,” says Esteban Moro, a research scientist at MIT’s Sociotechnical Systems Research Center (SSRC) and another of the paper’s co-authors. “Working from home is amazing and shopping online is great, but we are not seeing each other at the rates we were before.”

    The paper, “Behavioral changes during the Covid-19 pandemic decreased income diversity of urban encounters,” appears in Nature Communications. The co-authors are Yabe; Bernardo García Bulle Bueno, a doctoral candidate at MIT’s Institute for Data, Systems, and Society (IDSS); Xiaowen Dong, an associate professor at Oxford University; Alex Pentland, professor of media arts and sciences at MIT and the Toshiba Professor at the Media Lab; and Moro, who is also an associate professor at the University Carlos III of Madrid.

    A decline in exploration

    To conduct the study, the researchers examined anonymized cellphone data from 1 million users over a three-year period, starting in early 2019, with data focused on four U.S. cities: Boston, Dallas, Los Angeles, and Seattle. The researchers recorded visits to 433,000 specific “point of interest” locations in those cities, corroborated in part with records from Infogroup’s U.S. Business Database, an annual census of company information.  

    The researchers used U.S. Census Bureau data to categorize the socioeconomic status of the people in the study, placing everyone into one of four income quartiles, based on the average income of the census block (a small area) in which they live. The scholars made the same income-level assessment for every census block in the four cities, then recorded instances in which someone spent from 10 minutes to four hours in a census block other than their own, to see how often people visited areas in different income quartiles. 

    Ultimately, the researchers found that by late 2021, the amount of urban movement overall was returning to prepandemic levels, but the scope of places residents were visiting had become more restricted.

    Among other things, people made many fewer visits to museums, leisure venues, transport sites, and coffee shops. Visits to grocery stores remained fairly constant — but people tend not to leave their socioeconomic circles for grocery shopping.

    “Early in the pandemic, people reduced their mobility radius significantly,” Yabe says. “By late 2021, that decrease flattened out, and the average dwell time people spent at places other than work and home recovered to prepandemic levels. What’s different is that exploration substantially decreased, around 5 to 10 percent. We also see less visitation to fun places.” He adds: “Museums are the most diverse places you can find, parks — they took the biggest hit during the pandemic. Places that are [more] segregated, like grocery stores, did not.”

    Overall, Moro notes, “When we explore less, we go to places that are less diverse.”

    Different cities, same pattern

    Because the study encompassed four cities with different types of policies about reopening public sites and businesses during the pandemic, the researchers could also evaluate what impact public health policies had on urban movement. But even in these different settings, the same phenomenon emerged, with a narrower range of mobility occurring by late 2021.

    “Despite the substantial differences in how cities dealt with Covid-19, the decrease in diversity and the behavioral changes were surprisingly similar across the four cities,” Yabe observes.

    The researchers emphasize that these changes in urban movement can have long-term societal effects. Prior research has shown a significant association between a diversity of social connections and greater economic success for people in lower-income groups. And while some interactions between people in different income quartiles might be brief and transactional, the evidence suggests that, on aggregate, other more substantial connections have also been reduced. Additionally, the scholars note, the narrowing of experience can also weaken civic ties and valuable political connections.

    “It’s creating an urban fabric that is actually more brittle, in the sense that we are less exposed to other people,” Moro says. “We don’t get to know other people in the city, and that is very important for policies and public opinion. We need to convince people that new policies and laws would be fair. And the only way to do that is to know other people’s needs. If we don’t see them around the city, that will be impossible.”

    At the same time, Yabe adds, “I think there is a lot we can do from a policy standpoint to bring people back to places that used to be a lot more diverse.” The researchers are currently developing further studies related to cultural and public institutions, as well and transportation issues, to try to evaluate urban connectivity in additional detail.

    “The quantity of our mobility has recovered,” Yabe says. “The quality has really changed, and we’re more segregated as a result.” More

  • in

    Martin Wainwright named director of the Institute for Data, Systems, and Society

    Martin Wainwright, the Cecil H. Green Professor in MIT’s departments of Electrical Engineering and Computer Science (EECS) and Mathematics, has been named the new director of the Institute for Data, Systems, and Society (IDSS), effective July 1.

    “Martin is a widely recognized leader in statistics and machine learning — both in research and in education. In taking on this leadership role in the college, Martin will work to build up the human and institutional behavior component of IDSS, while strengthening initiatives in both policy and statistics, and collaborations within the institute, across MIT, and beyond,” says Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing and the Henry Ellis Warren Professor of Electrical Engineering and Computer Science. “I look forward to working with him and supporting his efforts in this next chapter for IDSS.”

    “Martin holds a strong belief in the value of theoretical, experimental, and computational approaches to research and in facilitating connections between them. He also places much importance in having practical, as well as academic, impact,” says Asu Ozdaglar, deputy dean of academics for the MIT Schwarzman College of Computing, department head of EECS, and the MathWorks Professor of Electrical Engineering and Computer Science. “As the new director of IDSS, he will undoubtedly bring these tenets to the role in advancing the mission of IDSS and helping to shape its future.”

    A principal investigator in the Laboratory for Information and Decision Systems and the Statistics and Data Science Center, Wainwright joined the MIT faculty in July 2022 from the University of California at Berkeley, where he held the Howard Friesen Chair with a joint appointment between the departments of Electrical Engineering and Computer Science and Statistics.

    Wainwright received his bachelor’s degree in mathematics from the University of Waterloo, Canada, and doctoral degree in electrical engineering and computer science from MIT. He has received a number of awards and recognition, including an Alfred P. Sloan Foundation Fellowship, and best paper awards from the IEEE Signal Processing Society, IEEE Communications Society, and IEEE Information Theory and Communication Societies. He has also been honored with the Medallion Lectureship and Award from the Institute of Mathematical Statistics, and the COPSS Presidents’ Award from the Joint Statistical Societies. He was a section lecturer with the International Congress of Mathematicians in 2014 and received the Blackwell Award from the Institute of Mathematical Statistics in 2017.

    He is the author of “High-dimensional Statistics: A Non-Asymptotic Viewpoint” (Cambridge University Press, 2019), and is coauthor on several books, including on graphical models and on sparse statistical modeling.

    Wainwright succeeds Munther Dahleh, the William A. Coolidge Professor in EECS, who has helmed IDSS since its founding in 2015.

    “I am grateful to Munther and thank him for his leadership of IDSS. As the founding director, he has led the creation of a remarkable new part of MIT,” says Huttenlocher. More

  • in

    Illuminating the money trail

    You may not know this, but the U.S. imposes a 12.5 percent import tariff on imported flashlights. However, for a product category the federal government describes as “portable electric lamps designed to function by their own source of energy, other than flashlights,” the import tariff is just 3.5 percent.

    At a glance, this seems inexplicable. Why is one kind of self-powered portable light taxed more heavily than another? According to MIT political science professor In Song Kim, a policy discrepancy like this often stems from the difference in firms’ political power, as well as the extent to which firms are empowered by global production networks. This is a subject Kim has spent years examining in detail, producing original scholarly results while opening up a wealth of big data about politics to the public.

    “We all understand companies as being important economic agents,” Kim says. “But companies are political agents, too. They are very important political actors.”

    In particular, Kim’s work has illuminated the effects of lobbying upon U.S. trade policy. International trade is often presented as an unalloyed good, opening up markets and fueling growth. Beyond that, trade issues are usually described at the industry level; we hear about what the agriculture lobby or auto industry wants. But in reality, different firms want different things, even within the same industry.

    As Kim’s work shows, most firms lobby for policies pertaining to specific components of their products, and trade policy consists heavily of carve-outs for companies, not industry-wide standards. Firms making non-flashlight portable lights, it would seem, are good at lobbying, but the benefits clearly do not carry over to all portable light makers, as long as products are not perfect substitutes for each other. Meanwhile, as Kim’s research also shows, lobbying helps firms grow faster in size, even as lobbying-influenced policies may slow down the economy as a whole.

    “All our existing theories suggest that trade policy is a public good, in the sense that the benefits of open trade, the gains from trade, will be enjoyed by the public and will benefit the country as a whole,” Kim says. “But what I’ve learned is that trade policies are very, very granular. It’s become obvious to me that trade is no longer a public good. It’s actually a private good for individual companies.”

    Kim’s work includes over a dozen published journal articles over the last several years, several other forthcoming research papers, and a book he is currently writing. At the same time, Kim has created a public database, LobbyView, which tracks money in U.S. politics extending back to 1999. LobbyView, as an important collection of political information, has research, educational, and public-interest applications, enabling others, in academia or outside it, to further delve into the topic.

    “I want to contribute to the scholarly community, and I also want to create a public [resource] for our MIT community [and beyond], so we can all study politics through it,” Kim says.

    Keeping the public good in sight

    Kim grew up in South Korea, in a setting where politics was central to daily life. Kim’s grandfather, Kim jae-soon, was the Speaker of the National Assembly in South Korea from 1988 through 1990 and an important figure in the country’s government.

    “I’ve always been fascinated by politics,” says Kim, who remembers prominent political figures dropping by the family home when he was young. One of the principal lessons Kim learned about politics from his grandfather, however, was not about proximity to power, but the importance of public service. The enduring lesson of his family’s engagement with politics, Kim says, is that “I truly believe in contributing to the public good.”

    Kim’s found his own way of contributing to the public good not as a politician but as a scholar of politics. Kim received his BA in political science from Yonsei University in Seoul but decided he wanted to pursue graduate studies in the U.S. He earned an MA in law and diplomacy from the Fletcher School of Tufts University, then an MA in political science at George Washington University. By this time, Kim had become focused on the quantitative analysis of trade policy; for his PhD work, he attended Princeton University and was awarded his doctorate in 2014, joining the MIT faculty that year.

    Among the key pieces of research Kim has published, one paper, “Political Cleavages within Industry: Firm-level Lobbying for Trade Liberalization,” published in the American Political Science Review and growing out of his dissertation research, helped show how remarkably specialized many trade policies are. As of 2017, the U.S. had almost 17,000 types of products it made tariff decisions about. Many of these are the component parts of a product; about two-thirds of international trade consists of manufactured components that get shipped around during the production process, rather than raw goods or finished products. That paper won the 2018 Michael Wallerstein Award for the best published article in political economy in the previous year.

    Another 2017 paper Kim co-authored, “The Charmed Life of Superstar Exporters,” from the Journal of Politics, provides more empirical evidence of the differences among firms within an industry. The “superstar” firms that are the largest exporters tend to lobby the most about trade politics; a firm’s characteristics reveal more about its preferences for open trade than the possibility that its industry as a whole will gain a comparative advantage internationally.

    Kim often uses large-scale data and computational methods to study international trade and trade politics. Still another paper he has co-authored, “Measuring Trade Profile with Granular Product-level Trade Data,” published in the American Journal of Political Science in 2020, traces trade relationships in highly specific terms. Looking at over 2 billion observations of international trade data, Kim developed an algorithm to group countries based on which products they import and export. The methodology helps researchers to learn about the highly different developmental paths that countries follow, and about the deepening international competition between countries such as the U.S. and China.

    At other times, Kim has analyzed who is influencing trade policy. His paper “Mapping Political Communities,” from the journal Political Analysis in 2021, looks at the U.S. Congress and uses mandatory reports filed by lobbyists to build a picture of which interests groups are most closely connected to which politicians.

    Kim has published all his papers while balancing both his scholarly research and the public launch of LobbyView, which occurred in 2018. He was awarded tenure by MIT in the spring of 2022. Currently he is an associate professor in the Department of Political Science and a faculty affiliate of the Institute for Data, Systems, and Society.

    By the book

    Kim has continued to explore firm-level lobbying dynamics, although his recent research runs in a few directions. In a 2021 working paper, Kim and co-author Federico Huneeus of the Central Bank of Chile built a model estimating that eliminating lobbying in the U.S. could increase productivity by as much as 6 percent.

    “Political rents [favorable policies] given to particular companies might introduce inefficiencies or a misallocation of resources in the economy,” Kim says. “You could allocate those resources to more productive although politically inactive firms, but now they’re given to less productive and yet politically active big companies, increasing market concentration and monopolies.”

    Kim is on sabbatical during the 2022-23 academic year, working on a book about the importance of firms’ political activities in trade policymaking. The book will have an expansive timeframe, dating back to ancient times, which underscores the salience of trade policy across eras. At the same time, the book will analyze the distinctive features of modern trade politics with deepening global production networks.

    “I’m trying to allow people to learn about the history of trade politics, to show how the politics have changed over time,” Kim says. “In doing that, I’m also highlighting the importance of firm-to-firm trade and the emergence of new trade coalitions among firms in different countries and industries that are linked through the global production chain.”

    While continuing his own scholarly research, Kim still leads LobbyView, which he views both as a big data resource for any scholars interested in money in politics and an excellent teaching resource for his MIT classes, as students can tap into it for projects and papers. LobbyView contains so much data, in fact, that part of the challenge is finding ways to mine it effectively.

    “It really offers me an opportunity to work with MIT students,” Kim says of LobbyView. “What I think I can contribute is to bring those technologies to our understanding of politics. Having this unique data set can really allow students here to use technology to learn about politics, and I believe that fits the MIT identity.” More

  • in

    MIT PhD students honored for their work to solve critical issues in water and food

    In 2017, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) initiated the J-WAFS Fellowship Program for outstanding MIT PhD students working to solve humankind’s water-related challenges. Since then, J-WAFS has awarded 18 fellowships to students who have gone on to create innovations like a pump that can maximize energy efficiency even with changing flow rates, and a low-cost water filter made out of sapwood xylem that has seen real-world use in rural India. Last year, J-WAFS expanded eligibility to students with food-related research. The 2022 fellows included students working on micronutrient deficiency and plastic waste from traditional food packaging materials. 

    Today, J-WAFS has announced the award of the 2023-24 fellowships to Gokul Sampath and Jie Yun. A doctoral student in the Department of Urban Studies and planning, Sampath has been awarded the Rasikbhai L. Meswani Fellowship for Water Solutions, which is supported through a generous gift from Elina and Nikhil Meswani and family. Yun, who is in the Department of Civil and Environmental Engineering, received a J-WAFS Fellowship for Water and Food Solutions, which is funded by the J-WAFS Research Affiliate Program. Currently, Xylem, Inc. and GoAigua are J-WAFS’ Research Affiliate companies. A review committee comprised of MIT faculty and staff selected Sampath and Yun from a competitive field of outstanding graduate students working in water and food who were nominated by their faculty advisors. Sampath and Yun will receive one academic semester of funding, along with opportunities for networking and mentoring to advance their research.

    “Both Yun and Sampath have demonstrated excellence in their research,” says J-WAFS executive director Renee J. Robins. “They also stood out in their communication skills and their passion to work on issues of agricultural sustainability and resilience and access to safe water. We are so pleased to have them join our inspiring group of J-WAFS fellows,” she adds.

    Using behavioral health strategies to address the arsenic crisis in India and Bangladesh

    Gokul Sampath’s research centers on ways to improve access to safe drinking water in developing countries. A PhD candidate in the International Development Group in the Department of Urban Studies and Planning, his current work examines the issue of arsenic in drinking water sources in India and Bangladesh. In Eastern India, millions of shallow tube wells provide rural households a personal water source that is convenient, free, and mostly safe from cholera. Unfortunately, it is now known that one-in-four of these wells is contaminated with naturally occurring arsenic at levels dangerous to human health. As a result, approximately 40 million people across the region are at elevated risk of cancer, stroke, and heart disease from arsenic consumed through drinking water and cooked food. 

    Since the discovery of arsenic in wells in the late 1980s, governments and nongovernmental organizations have sought to address the problem in rural villages by providing safe community water sources. Yet despite access to safe alternatives, many households still consume water from their contaminated home wells. Sampath’s research seeks to understand the constraints and trade-offs that account for why many villagers don’t collect water from arsenic-safe government wells in the village, even when they know their own wells at home could be contaminated.

    Before coming to MIT, Sampath received a master’s degree in Middle East, South Asian, and African studies from Columbia University, as well as a bachelor’s degree in microbiology and history from the University of California at Davis. He has long worked on water management in India, beginning in 2015 as a Fulbright scholar studying households’ water source choices in arsenic-affected areas of the state of West Bengal. He also served as a senior research associate with the Abdul Latif Jameel Poverty Action Lab, where he conducted randomized evaluations of market incentives for groundwater conservation in Gujarat, India. Sampath’s advisor, Bishwapriya Sanyal, the Ford International Professor of Urban Development and Planning at MIT, says Sampath has shown “remarkable hard work and dedication.” In addition to his classes and research, Sampath taught the department’s undergraduate Introduction to International Development course, for which he received standout evaluations from students.

    This summer, Sampath will travel to India to conduct field work in four arsenic-affected villages in West Bengal to understand how social influence shapes villagers’ choices between arsenic-safe and unsafe water sources. Through longitudinal surveys, he hopes to connect data on the social ties between families in villages and the daily water source choices they make. Exclusionary practices in Indian village communities, especially the segregation of water sources on the basis of caste and religion, has long been suspected to be a barrier to equitable drinking water access in Indian villages. Yet despite this, planners seeking to expand safe water access in diverse Indian villages have rarely considered the way social divisions within communities might be working against their efforts. Sampath hopes to test whether the injunctive norms enabled by caste ties constrain villagers’ ability to choose the safest water source among those shared within the village. When he returns to MIT in the fall, he plans to dive into analyzing his survey data and start work on a publication.

    Understanding plant responses to stress to improve crop drought resistance and yield

    Plants, including crops, play a fundamental role in Earth’s ecosystems through their effects on climate, air quality, and water availability. At the same time, plants grown for agriculture put a burden on the environment as they require energy, irrigation, and chemical inputs. Understanding plant/environment interactions is becoming more and more important as intensifying drought is straining agricultural systems. Jie Yun, a PhD student in the Department of Civil and Environmental Engineering, is studying plant response to drought stress in the hopes of improving agricultural sustainability and yield under climate change.  Yun’s research focuses on genotype-by-environment interaction (GxE.) This relates to the observation that plant varieties respond to environmental changes differently. The effects of GxE in crop breeding can be exploited because differing environmental responses among varieties enables breeders to select for plants that demonstrate high stress-tolerant genotypes under particular growing conditions. Yun bases her studies on Brachypodium, a model grass species related to wheat, oat, barley, rye, and perennial forage grasses. By experimenting with this species, findings can be directly applied to cereal and forage crop improvement. For the first part of her thesis, Yun collaborated with Professor Caroline Uhler’s group in the Department of Electrical Engineering and Computer Science and the Institute for Data, Systems, and Society. Uhler’s computational tools helped Yun to evaluate gene regulatory networks and how they relate to plant resilience and environmental adaptation. This work will help identify the types of genes and pathways that drive differences in drought stress response among plant varieties.  David Des Marais, the Cecil and Ida Green Career Development Professor in the Department of Civil and Environmental Engineering, is Yun’s advisor. He notes, “throughout Jie’s time [at MIT] I have been struck by her intellectual curiosity, verging on fearlessness.” When she’s not mentoring undergraduate students in Des Marais’ lab, Yun is working on the second part of her project: how carbon allocation in plants and growth is affected by soil drying. One result of this work will be to understand which populations of plants harbor the necessary genetic diversity to adapt or acclimate to climate change. Another likely impact is identifying targets for the genetic improvement of crop species to increase crop yields with less water supply. Growing up in China, Yun witnessed environmental issues springing from the development of the steel industry, which caused contamination of rivers in her hometown. On one visit to her aunt’s house in rural China, she learned that water pollution was widespread after noticing wastewater was piped outside of the house into nearby farmland without being treated. These experiences led Yun to study water supply and sewage engineering for her undergraduate degree at Shenyang Jianzhu University. She then went on to complete a master’s program in civil and environmental engineering at Carnegie Mellon University. It was there that Yun discovered a passion for plant-environment interactions; during an independent study on perfluorooctanoic sulfonate, she realized the amazing ability of plants to adapt to environmental changes, toxins, and stresses. Her goal is to continue researching plant and environment interactions and to translate the latest scientific findings into applications that can improve food security. More

  • in

    Study: Shutting down nuclear power could increase air pollution

    Nearly 20 percent of today’s electricity in the United States comes from nuclear power. The U.S. has the largest nuclear fleet in the world, with 92 reactors scattered around the country. Many of these power plants have run for more than half a century and are approaching the end of their expected lifetimes.

    Policymakers are debating whether to retire the aging reactors or reinforce their structures to continue producing nuclear energy, which many consider a low-carbon alternative to climate-warming coal, oil, and natural gas.

    Now, MIT researchers say there’s another factor to consider in weighing the future of nuclear power: air quality. In addition to being a low carbon-emitting source, nuclear power is relatively clean in terms of the air pollution it generates. Without nuclear power, how would the pattern of air pollution shift, and who would feel its effects?

    The MIT team took on these questions in a new study appearing today in Nature Energy. They lay out a scenario in which every nuclear power plant in the country has shut down, and consider how other sources such as coal, natural gas, and renewable energy would fill the resulting energy needs throughout an entire year.

    Their analysis reveals that indeed, air pollution would increase, as coal, gas, and oil sources ramp up to compensate for nuclear power’s absence. This in itself may not be surprising, but the team has put numbers to the prediction, estimating that the increase in air pollution would have serious health effects, resulting in an additional 5,200 pollution-related deaths over a single year.

    If, however, more renewable energy sources become available to supply the energy grid, as they are expected to by the year 2030, air pollution would be curtailed, though not entirely. The team found that even under this heartier renewable scenario, there is still a slight increase in air pollution in some parts of the country, resulting in a total of 260 pollution-related deaths over one year.

    When they looked at the populations directly affected by the increased pollution, they found that Black or African American communities — a disproportionate number of whom live near fossil-fuel plants — experienced the greatest exposure.

    “This adds one more layer to the environmental health and social impacts equation when you’re thinking about nuclear shutdowns, where the conversation often focuses on local risks due to accidents and mining or long-term climate impacts,” says lead author Lyssa Freese, a graduate student in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS).

    “In the debate over keeping nuclear power plants open, air quality has not been a focus of that discussion,” adds study author Noelle Selin, a professor in MIT’s Institute for Data, Systems, and Society (IDSS) and EAPS. “What we found was that air pollution from fossil fuel plants is so damaging, that anything that increases it, such as a nuclear shutdown, is going to have substantial impacts, and for some people more than others.”

    The study’s MIT-affiliated co-authors also include Principal Research Scientist Sebastian Eastham and Guillaume Chossière SM ’17, PhD ’20, along with Alan Jenn of the University of California at Davis.

    Future phase-outs

    When nuclear power plants have closed in the past, fossil fuel use increased in response. In 1985, the closure of reactors in Tennessee Valley prompted a spike in coal use, while the 2012 shutdown of a plant in California led to an increase in natural gas. In Germany, where nuclear power has almost completely been phased out, coal-fired power increased initially to fill the gap.

    Noting these trends, the MIT team wondered how the U.S. energy grid would respond if nuclear power were completely phased out.

    “We wanted to think about what future changes were expected in the energy grid,” Freese says. “We knew that coal use was declining, and there was a lot of work already looking at the impact of what that would have on air quality. But no one had looked at air quality and nuclear power, which we also noticed was on the decline.”

    In the new study, the team used an energy grid dispatch model developed by Jenn to assess how the U.S. energy system would respond to a shutdown of nuclear power. The model simulates the production of every power plant in the country and runs continuously to estimate, hour by hour, the energy demands in 64 regions across the country.

    Much like the way the actual energy market operates, the model chooses to turn a plant’s production up or down based on cost: Plants producing the cheapest energy at any given time are given priority to supply the grid over more costly energy sources.

    The team fed the model available data on each plant’s changing emissions and energy costs throughout an entire year. They then ran the model under different scenarios, including: an energy grid with no nuclear power, a baseline grid similar to today’s that includes nuclear power, and a grid with no nuclear power that also incorporates the additional renewable sources that are expected to be added by 2030.

    They combined each simulation with an atmospheric chemistry model to simulate how each plant’s various emissions travel around the country and to overlay these tracks onto maps of population density. For populations in the path of pollution, they calculated the risk of premature death based on their degree of exposure.

    System response

    Play video

    Courtesy of the researchers, edited by MIT News

    Their analysis showed a clear pattern: Without nuclear power, air pollution worsened in general, mainly affecting regions in the East Coast, where nuclear power plants are mostly concentrated. Without those plants, the team observed an uptick in production from coal and gas plants, resulting in 5,200 pollution-related deaths across the country, compared to the baseline scenario.

    They also calculated that more people are also likely to die prematurely due to climate impacts from the increase in carbon dioxide emissions, as the grid compensates for nuclear power’s absence. The climate-related effects from this additional influx of carbon dioxide could lead to 160,000 additional deaths over the next century.

    “We need to be thoughtful about how we’re retiring nuclear power plants if we are trying to think about them as part of an energy system,” Freese says. “Shutting down something that doesn’t have direct emissions itself can still lead to increases in emissions, because the grid system will respond.”

    “This might mean that we need to deploy even more renewables, in order to fill the hole left by nuclear, which is essentially a zero-emissions energy source,” Selin adds. “Otherwise we will have a reduction in air quality that we weren’t necessarily counting on.”

    This study was supported, in part, by the U.S. Environmental Protection Agency. More

  • in

    A method for designing neural networks optimally suited for certain tasks

    Neural networks, a type of machine-learning model, are being used to help humans complete a wide variety of tasks, from predicting if someone’s credit score is high enough to qualify for a loan to diagnosing whether a patient has a certain disease. But researchers still have only a limited understanding of how these models work. Whether a given model is optimal for certain task remains an open question.

    MIT researchers have found some answers. They conducted an analysis of neural networks and proved that they can be designed so they are “optimal,” meaning they minimize the probability of misclassifying borrowers or patients into the wrong category when the networks are given a lot of labeled training data. To achieve optimality, these networks must be built with a specific architecture.

    The researchers discovered that, in certain situations, the building blocks that enable a neural network to be optimal are not the ones developers use in practice. These optimal building blocks, derived through the new analysis, are unconventional and haven’t been considered before, the researchers say.

    In a paper published this week in the Proceedings of the National Academy of Sciences, they describe these optimal building blocks, called activation functions, and show how they can be used to design neural networks that achieve better performance on any dataset. The results hold even as the neural networks grow very large. This work could help developers select the correct activation function, enabling them to build neural networks that classify data more accurately in a wide range of application areas, explains senior author Caroline Uhler, a professor in the Department of Electrical Engineering and Computer Science (EECS).

    “While these are new activation functions that have never been used before, they are simple functions that someone could actually implement for a particular problem. This work really shows the importance of having theoretical proofs. If you go after a principled understanding of these models, that can actually lead you to new activation functions that you would otherwise never have thought of,” says Uhler, who is also co-director of the Eric and Wendy Schmidt Center at the Broad Institute of MIT and Harvard, and a researcher at MIT’s Laboratory for Information and Decision Systems (LIDS) and its Institute for Data, Systems and Society (IDSS).

    Joining Uhler on the paper are lead author Adityanarayanan Radhakrishnan, an EECS graduate student and an Eric and Wendy Schmidt Center Fellow, and Mikhail Belkin, a professor in the Halicioğlu Data Science Institute at the University of California at San Diego.

    Activation investigation

    A neural network is a type of machine-learning model that is loosely based on the human brain. Many layers of interconnected nodes, or neurons, process data. Researchers train a network to complete a task by showing it millions of examples from a dataset.

    For instance, a network that has been trained to classify images into categories, say dogs and cats, is given an image that has been encoded as numbers. The network performs a series of complex multiplication operations, layer by layer, until the result is just one number. If that number is positive, the network classifies the image a dog, and if it is negative, a cat.

    Activation functions help the network learn complex patterns in the input data. They do this by applying a transformation to the output of one layer before data are sent to the next layer. When researchers build a neural network, they select one activation function to use. They also choose the width of the network (how many neurons are in each layer) and the depth (how many layers are in the network.)

    “It turns out that, if you take the standard activation functions that people use in practice, and keep increasing the depth of the network, it gives you really terrible performance. We show that if you design with different activation functions, as you get more data, your network will get better and better,” says Radhakrishnan.

    He and his collaborators studied a situation in which a neural network is infinitely deep and wide — which means the network is built by continually adding more layers and more nodes — and is trained to perform classification tasks. In classification, the network learns to place data inputs into separate categories.

    “A clean picture”

    After conducting a detailed analysis, the researchers determined that there are only three ways this kind of network can learn to classify inputs. One method classifies an input based on the majority of inputs in the training data; if there are more dogs than cats, it will decide every new input is a dog. Another method classifies by choosing the label (dog or cat) of the training data point that most resembles the new input.

    The third method classifies a new input based on a weighted average of all the training data points that are similar to it. Their analysis shows that this is the only method of the three that leads to optimal performance. They identified a set of activation functions that always use this optimal classification method.

    “That was one of the most surprising things — no matter what you choose for an activation function, it is just going to be one of these three classifiers. We have formulas that will tell you explicitly which of these three it is going to be. It is a very clean picture,” he says.

    They tested this theory on a several classification benchmarking tasks and found that it led to improved performance in many cases. Neural network builders could use their formulas to select an activation function that yields improved classification performance, Radhakrishnan says.

    In the future, the researchers want to use what they’ve learned to analyze situations where they have a limited amount of data and for networks that are not infinitely wide or deep. They also want to apply this analysis to situations where data do not have labels.

    “In deep learning, we want to build theoretically grounded models so we can reliably deploy them in some mission-critical setting. This is a promising approach at getting toward something like that — building architectures in a theoretically grounded way that translates into better results in practice,” he says.

    This work was supported, in part, by the National Science Foundation, Office of Naval Research, the MIT-IBM Watson AI Lab, the Eric and Wendy Schmidt Center at the Broad Institute, and a Simons Investigator Award. More

  • in

    Boosting passenger experience and increasing connectivity at the Hong Kong International Airport

    Recently, a cohort of 36 students from MIT and universities across Hong Kong came together for the MIT Entrepreneurship and Maker Skills Integrator (MEMSI), an intense two-week startup boot camp hosted at the MIT Hong Kong Innovation Node.

    “We’re very excited to be in Hong Kong,” said Professor Charles Sodini, LeBel Professor of Electrical Engineering and faculty director of the Node. “The dream always was to bring MIT and Hong Kong students together.”

    Students collaborated on six teams to meet real-world industry challenges through action learning, defining a problem, designing a solution, and crafting a business plan. The experience culminated in the MEMSI Showcase, where each team presented its process and unique solution to a panel of judges. “The MEMSI program is a great demonstration of important international educational goals for MIT,” says Professor Richard Lester, associate provost for international activities and chair of the Node Steering Committee at MIT. “It creates opportunities for our students to solve problems in a particular and distinctive cultural context, and to learn how innovations can cross international boundaries.” 

    Meeting an urgent challenge in the travel and tourism industry

    The Hong Kong Airport Authority (AAHK) served as the program’s industry partner for the third consecutive year, challenging students to conceive innovative ideas to make passenger travel more personalized from end-to-end while increasing connectivity. As the travel industry resuscitates profitability and welcomes crowds back amidst ongoing delays and labor shortages, the need for a more passenger-centric travel ecosystem is urgent.

    The airport is the third-busiest international passenger airport and the world’s busiest cargo transit. Students experienced an insider’s tour of the Hong Kong International Airport to gain on-the-ground orientation. They observed firsthand the complex logistics, possibilities, and constraints of operating with a team of 78,000 employees who serve 71.5 million passengers with unique needs and itineraries.

    Throughout the program, the cohort was coached and supported by MEMSI alumni, travel industry mentors, and MIT faculty such as Richard de Neufville, professor of engineering systems.

    The mood inside the open-plan MIT Hong Kong Innovation Node was nonstop energetic excitement for the entire program. Each of the six teams was composed of students from MIT and from Hong Kong universities. They learned to work together under time pressure, develop solutions, receive feedback from industry mentors, and iterate around the clock.

    “MEMSI was an enriching and amazing opportunity to learn about entrepreneurship while collaborating with a diverse team to solve a complex problem,” says Maria Li, a junior majoring in computer science, economics, and data science at MIT. “It was incredible to see the ideas we initially came up with as a team turn into a single, thought-out solution by the end.”

    Unsurprisingly given MIT’s focus on piloting the latest technology and the tech-savvy culture of Hong Kong as a global center, many team projects focused on virtual reality, apps, and wearable technology designed to make passengers’ journeys more individualized, efficient, or enjoyable.

    After observing geospatial patterns charting passengers’ movement through an airport, one team realized that many people on long trips aim to meet fitness goals by consciously getting their daily steps power walking the expansive terminals. The team’s prototype, FitAir, is a smart, biometric token integrated virtual coach, which plans walking routes within the airport to promote passenger health and wellness.

    Another team noted a common frustration among frequent travelers who manage multiple mileage rewards program profiles, passwords, and status reports. They proposed AirPoint, a digital wallet that consolidates different rewards programs and presents passengers with all their airport redemption opportunities in one place.

    “Today, there is no loser,” said Vivian Cheung, chief operating officer of AAHK, who served as one of the judges. “Everyone is a winner. I am a winner, too. I have learned a lot from the showcase. Some of the ideas, I believe, can really become a business.”

    Cheung noted that in just 12 days, all teams observed and solved her organization’s pain points and successfully designed solutions to address them.

    More than a competition

    Although many of the models pitched are inventive enough to potentially shape the future of travel, the main focus of MEMSI isn’t to act as yet another startup challenge and incubator.

    “What we’re really focusing on is giving students the ability to learn entrepreneurial thinking,” explains Marina Chan, senior director and head of education at the Node. “It’s the dynamic experience in a highly connected environment that makes being in Hong Kong truly unique. When students can adapt and apply theory to an international context, it builds deeper cultural competency.”

    From an aerial view, the boot camp produced many entrepreneurs in the making and lasting friendships, and respect for other cultural backgrounds and operating environments.

    “I learned the overarching process of how to make a startup pitch, all the way from idea generation, market research, and making business models, to the pitch itself and the presentation,” says Arun Wongprommoon, a senior double majoring in computer science and engineering and linguistics.  “It was all a black box to me before I came into the program.”

    He said he gained tremendous respect for the startup world and the pure hard work and collaboration required to get ahead.

    Spearheaded by the Node, MEMSI is a collaboration among the MIT Innovation Initiative, the Martin Trust Center for Entrepreneurship, the MIT International Science and Technology Initiatives, and Project Manus. Learn more about applying to MEMSI. More