More stories

  • in

    Scaling audio-visual learning without labels

    Researchers from MIT, the MIT-IBM Watson AI Lab, IBM Research, and elsewhere have developed a new technique for analyzing unlabeled audio and visual data that could improve the performance of machine-learning models used in applications like speech recognition and object detection. The work, for the first time, combines two architectures of self-supervised learning, contrastive learning and masked data modeling, in an effort to scale machine-learning tasks like event classification in single- and multimodal data without the need for annotation, thereby replicating how humans understand and perceive our world.

    “A larger portion of human knowledge is learned in a self-supervised way, because we don’t always get supervision signals, and we want to enable the machine-learning model to have the same ability,” says Yuan Gong, an MIT postdoc in the Computer Science and Artificial Intelligence Laboratory (CSAIL).

    “So, another way to put it is that self-supervised learning often forms the foundation of an initial model, because it can learn on vast amounts of unlabeled data. And then you can use classical, supervised learning or reinforcement learning to fine tune the model to something particular if you want to,” says Jim Glass, an MIT senior research scientist and member of the MIT-IBM Watson AI Lab.

    The technique, called the contrastive audio-visual masked autoencoder (CAV-MAE), is a type of neural network that can learn to extract and map meaningful latent representations into high-dimensional space from acoustic and visual data by training on large YouTube datasets of audio and video 10-second clips. The researchers say the technique is more effective than previous approaches because it explicitly models the relationships between audio and visual data in a way that other methods do not.

    Joining Gong and Glass on the study are graduate students Andrew Rouditchenko and Alexander H. Liu of MIT, David Harwath PhD ’18 of the University of Texas at Austin, and MIT-IBM Watson AI Lab members Leonid Karlinsky and Hilde Kuehne. Kuehne is also affiliated with Goethe University Frankfurt. The method was recently presented at the International Conference on Learning Representations.

    A joint and coordinated approach

    The CAV-MAE works by “learning by prediction” and “learning by comparison,” says Gong. The masked data modeling, or the prediction method, takes a video along with its coordinated audio waveform, converts the audio to a spectrogram, and masks 75 percent of both. The unmasked data is tokenized, then fed into separate audio and visual encoders before entering a joint encoder/decoder, where the model is asked to recover the missing data. The difference (reconstruction loss) between the resulting reconstructed prediction and the original audio-visual combination is then used to train the model for better performance. An example of this would be covering part of a video of a piano and part of a spectrogram of piano music, and then asking the model to try to determine the masked inputs. Unfortunately, this method may not capture the association between the video and audio pair, whereas contrastive learning leverages this, but may discard some modality-unique information, like the background in a video.

    Contrastive learning aims to map representations that are similar close to each other. For example, the model will attempt to place different video and audio data of different parrots close to each other and further away from pairs of video and audio of guitars playing. In a similar fashion to masked autoencoding, audio-visual pairs are passed into separate modality encoders; however, the audio and visual components are kept separately within the joint encoder before the model performs pooling and contrastive loss. In this way, contrastive learning tries to identify the parts of each audio or video that are most relevant to the other. For example, if a video shows someone speaking and the corresponding audio clip contains speech, the autoencoder will learn to associate the mouth movements of the speaker with the words being spoken. It will then adjust the model’s parameters so that those inputs are represented close to each other. Ultimately, the CAV-MAE method combines both techniques with multiple forward data streams with masking as a first step, modality-specific encoders, and layer normalization so that the representation strengths are similar.

    “We [then] wanted to compare the proposed CAV-MAE with a model trained only with a masked autoencoder and a model trained only with contrastive learning, because we want to show that by combining masked autoencoder and contrastive learning, we can get some performance improvement,” says Gong, “and the results support our hypothesis that there’s obvious improvement.”

    The researchers tested CAV-MAE — as well as their method without contrastive loss or a masked autoencoder — against other state-of-the-art methods on audio-visual retrieval and audio-visual event classification tasks using standard AudioSet (20K and 2M) and VGGSound datasets — labeled, realistic short clips, which could include multiple sounds. Audio-visual retrieval means that the model sees either the audio or visual component of a query pair and searches for the missing one; event classification includes identifying actions or sounds within data, like a person singing or a car driving.

    Overall, they found that contrastive learning and masked data modeling are complementary methods. CAV-MAE was able to outperform previous techniques (with fully self-supervised pre-training) by about 2 percent for event classification performance verses models with comparable computation and, more impressively, kept pace with or outperformed models with industry-level computational resources. The team’s model ranked similarly to models trained with only the contrastive loss. And surprisingly, the team says, the incorporation of multi-modal data into CAV-MAE pre-training greatly improves the fine-tuning of single-modality representation via supervised learning (with some labeled data) and performance on audio-only event classification tasks. This demonstrates that, like humans, multi-modal information provides an additional “soft label” boost even for audio or visual only tasks; for instance, it helps the model to understand if it’s looking for an electric or acoustic guitar — a richer supervision signal.

    “I think people like the elegance of this model for combining information in the different audio and visual streams. It has the contrastive and the reconstruction loss, and compared to models that have been evaluated with similar data, it clearly does very well across a range of these tasks,” says Glass.

    Building on this, “one special thing is, our model can do both classification and the retrieval, which is not common,” Gong adds. “Before this work, these methods are used separately, but after this work, I see that most of the audio-visual learning frameworks use contracting loss and the masked autoencoder together, implicitly or explicitly.”

    Bringing self-supervised audio-visual learning into our world

    The researchers see their contribution of the contrastive audio-visual masked autoencoder (CAV-MAE) as an important milestone and a step forward for applications, which are increasingly moving from single modality to multi-modality and which require or leverage audio-visual fusion. They hypothesize that one day it could be used for action recognition in realms like sports, education, entertainment, motor vehicles, and public safety. It could also, one day, extend to other modalities. At this time, the fact that, “this only applies to audio-visual data may be a limitation, but we are targeting multi-modal learning, which is trend of machine learning,” says Gong. “As humans, we have multi-modalities — we have smell, touch — many more things that just audio-visual. So, when we try to build AI, we try to mimic humans somehow, not necessarily from the biological perspective, and this method could [potentially be] generalized to other unexplored modalities.”

    As machine-learning models continue to play an increasingly important role in our lives, techniques like this one will become increasingly valuable.

    This research was supported by the MIT-IBM Watson AI Lab. More

  • in

    Celebrating the impact of IDSS

    The “interdisciplinary approach” is something that has been lauded for decades for its ability to break down silos and create new integrated approaches to research.

    For Munther Dahleh, founding director of the MIT Institute for Data, Systems, and Society (IDSS), showing the community that data science and statistics can transcend individual disciplines and form a new holistic approach to addressing complex societal challenges has been crucial to the institute’s success.

    “From the very beginning, it was critical that we recognized the areas of data science, statistics, AI, and, in a way, computing, as transdisciplinary,” says Dahleh, who is the William A. Coolidge Professor in Electrical Engineering and Computer Science. “We made that point over and over — these are areas that embed in your field. It is not ours; this organization is here for everyone.”

    On April 14-15, researchers from across and beyond MIT joined together to celebrate the accomplishments and impact IDSS has had on research and education since its inception in 2015. Taking the place of IDSS’s annual statistics and data science conference SDSCon, the celebration also doubled as a way to recognize Dahleh for his work creating and executing the vision of IDSS as he prepares to step down from his director position this summer.

    In addition to talks and panels on statistics and computation, smart systems, automation and artificial intelligence, conference participants discussed issues ranging from climate change, health care, and misinformation. Nobel Prize winner and IDSS affiliate Professor Esther Duflo spoke on large scale immunization efforts, former MLK Visiting Professor Craig Watkins joined a panel on equity and justice in AI, and IDSS Associate Director Alberto Abadie discussed synthetic controls for policy evaluation. Other policy questions were explored through lightning talks, including those by students from the Technology and Policy Program (TPP) within IDSS.

    A place to call home

    The list of IDSS accomplishments over the last eight years is long and growing. From creating a home for 21st century statistics at MIT after other unsuccessful attempts, to creating a new PhD preparing the trilingual student who is an expert in data science and social science in the context of a domain, to playing a key role in determining an effective process for Covid testing in the early days of the pandemic, IDSS has left its mark on MIT. More recently, IDSS launched an initiative using big data to help effect structural and normative change toward racial equity, and will continue to explore societal challenges through the lenses of statistics, social science, and science and engineering.

    “I’m very proud of what we’ve done and of all the people who have contributed to this. The leadership team has been phenomenal in their commitment and their creativity,” Dahleh says. “I always say it doesn’t take one person, it takes the village to do what we have done, and I am very proud of that.”

    Prior to the institute’s formation, Dahleh and others at MIT were brought together to answer one key question: How would MIT prepare for the future of systems and data?

    “Data science is a complex area because in some ways it’s everywhere and it belongs to everyone, similar to statistics and AI,” Dahleh says “The most important part of creating an organization to support it was making it clear that it was an organization for everyone.” The response the team came back with was to build an Institute: a department that could cross all other departments and schools.

    While Dahleh and others on the committee were creating this blueprint for the future, the events that would lead early IDSS hires like Caroline Uhler to join the team were also beginning to take shape. Uhler, now an MIT professor of computer science and co-director of the Eric and Wendy Schmidt Center at the Broad Institute, was a panelist at the celebration discussing statistics and human health.

    In 2015, Uhler was a faculty member at the Institute of Science and Technology in Austria looking to move back to the U.S. “I was looking for positions in all different types of departments related to statistics, including electrical engineering and computer science, which were areas not related to my degree,” Uhler says. “What really got me to MIT was Munther’s vision for building a modern type of statistics, and the unique opportunity to be part of building what statistics should be moving forward.”

    The breadth of the Statistics and Data Science Center has given it a unique and a robust character that makes for an attractive collaborative environment at MIT. “A lot of IDSS’s impact has been in giving people like me a home,” Uhler adds. “By building an institute for statistics that is across all schools instead of housed within a single department, it has created a home for everyone who is interested in the field.”

    Filling the gap

    For Ali Jadbabaie, former IDSS associate director and another early IDSS hire, being in the right place at the right time landed him in the center of it all. A control theory expert and network scientist by training, Jadbabaie first came to MIT during a sabbatical from his position as a professor at the University of Pennsylvania.

    “My time at MIT coincided with the early discussions around forming IDSS and given my experience they asked me to stay and help with its creation,” Jadbabaie says. He is now head of the Department of Civil and Environmental Engineering at MIT, and he spoke at the celebration about a new MIT major in climate system science and engineering.

    A critical early accomplishment of IDSS was the creation of a doctoral program in social and engineering systems (SES), which has the goal of educating and fostering the success of a new type of PhD student, says Jadbabaie.

    “We realized we had this opportunity to educate a new type of PhD student who was conversant in the math of information sciences and statistics in addition to an understanding of a domain — infrastructures, climate, political polarization — in which problems arise,” he says. “This program would provide training in statistics and data science, the math of information sciences and a branch of social science that is relevant to their domain.”

    “SES has been filling a gap,” adds Jadbabaie. “We wanted to bring quantitative reasoning to areas in social sciences, particularly as they interact with complex engineering systems.”

    “My first year at MIT really broadened my horizon in terms of what was available and exciting,” says Manxi Wu, a member of the first cohort of students in the SES program after starting out in the Master of Science in Transportation (MST) program. “My advisor introduced me to a number of interesting topics at the intersection of game theory, economics, and engineering systems, and in my second year I realized my interest was really about the societal scale systems, with transportation as my go-to application area when I think about how to make an impact in the real world.”

    Wu, now an assistant professor in the School of Operations Research and Information Engineering at Cornell, was a panelist at the Celebration’s session on smart infrastructure systems. She says that the beauty of the SES program lies in its ability to create a common ground between groups of students and researchers who all have different applications interests but share an eagerness to sharpen their technical skills.

    “While we may be working on very different application areas, the core methodologies, such as mathematical tools for data science and probability optimization, create a common language,” Wu says. “We are all capable of speaking the technical language, and our diversified interests give us even more to talk about.”

    In addition to the PhD program, IDSS has helped bring quality MIT programming to people around the globe with its MicroMasters Program in Statistics and Data Science (SDS), which recently celebrated the certification of over 1,000 learners. The MicroMasters is just one offering in the newly-minted IDSSx, a collection of online learning opportunities for learners at different skill levels and interests.

    “The impact of branding what MIT-IDSS does across the globe has been great,” Dahleh says. “In addition, we’ve created smaller online programs for continued education in data science and machine learning, which I think is also critical in educating the community at large.”

    Hopes for the future

    Through all of its accomplishments, the core mission of IDSS has never changed.

    “The belief was always to create an institute focused on how data science can be used to solve pressing societal problems,” Dahleh says. “The organizational structure of IDSS as an MIT Institute has enabled it to promote data and systems as a transdiciplinary area that embeds in every domain to support its mission. This reverse ownership structure will continue to strengthen the presence of IDSS in MIT and will make it an essential unit within the Schwarzman College of Computing.”

    As Dahleh prepares to step down from his role, and Professor Martin Wainwright gets ready to fill his (very big) shoes as director, Dahleh’s colleagues say the real key to the success of IDSS all started with his passion and vision.

    “Creating a new academic unit within MIT is actually next to impossible,” Jadbabaie says. “It requires structural changes, as well as someone who has a strong understanding of multiple areas, who knows how to get people to work together collectively, and who has a mission.”

    “The most important thing is that he was inclusive,” he adds. “He didn’t try to create a gate around it and say these people are in and these people are not. I don’t think this would have ever happened without Munther at the helm.” More

  • in

    Using data to write songs for progress

    A three-year recipient of MIT’s Emerson Classical Vocal Scholarships, senior Ananya Gurumurthy recalls getting ready to step onto the Carnegie Hall stage to sing a Mozart opera that she once sang with the New York All-State Choir. The choir conductor reminded her to articulate her words and to engage her diaphragm.

    “If you don’t project your voice, how are people going to hear you when you perform?” Gurumurthy recalls her conductor telling her. “This is your moment, your chance to connect with such a tremendous audience.”

    Gurumurthy reflects on the universal truth of those words as she adds her musical talents to her math and computer science studies to campaign for social and economic justice.

    The daughter of immigrants

    Growing up in Edgemont, New York, she was inspired to fight on behalf of others by her South Asian immigrant parents, who came to the United States in the 1980s. Her father is a management consultant and her mother has experience as an investment banker.

    “They came barely 15 years after the passage of the 1965 Immigration and Nationality Act, which removed national origin quotas from the American immigration system,” she says. “I would not be here if it had not been for the Civil Rights Movement, which preceded both me and my parents.”

    Her parents told her about their new home’s anti-immigrant sentiments; for example, her father was a graduate student in Dallas exiting a store when he was pelted with glass bottles and racial slurs.

    “I often consider the amount of bravery that it must have taken them to abandon everything they knew to immigrate to a new, but still imperfect, country in search of something better,” she says. “As a result, I have always felt so grounded in my identity both as a South Asian American and a woman of color. These identities have allowed me to think critically about how I can most effectively reform the institutions surrounding me.”

    Gurumurthy has been singing since she was 11, but in high school, she decided to also build her political voice by working for New York Senator Andrea Stewart-Cousins. At one point, Gurumurthy noted a log was kept for the subjects of constituent calls, such as “affordable housing” and  “infrastructure,” and it was then that she became aware that Stewart-Cousins would address the most pressing of these callers’ issues before the Senate.

    “This experience was my first time witnessing how powerful the mobilization of constituents in vast numbers was for influencing meaningful legislative change,” says Gurumurthy.

    After she began applying her math skills to political campaigns, Gurumurthy was soon tapped to run analytics for the Democratic National Committee’s (DNC) midterm election initiative. As a lead analyst for the New York DNC, she adapted an interactive activation-competition (IAC) model to understand voting patterns in the 2018 and 2020 elections. She collected data from public voting records to predict how constituents would cast their ballots and used an IAC algorithm to strategize alongside grassroots organizations and allocate resources to empower historically disenfranchised groups in municipal, state, and federal elections to encourage them to vote.

    Research and student organizing at MIT

    When she arrived at MIT in 2019 to study mathematics with computer science, along with minors in music and economics, she admits she was saddled with the naïve notion that she would “build digital tools that could single-handedly alleviate all of the collective pressures of systemic injustice in this country.” 

    Since then, she has learned to create what she calls “a more nuanced view.” She picked up data analytics skills to build mobilization platforms for organizations that pursued social and economic justice, including working in Fulton County, Georgia, with Fair Fight Action (through the Kelly-Douglas Fund Scholarship) to analyze patterns of voter suppression, and MIT’s ethics laboratories in the Computer Science and Artificial Intelligence Laboratory to build symbolic artificial intelligence protocols to better understand bias in artificial intelligence algorithms. For her work on the International Monetary Fund (through the MIT Washington Summer Internship Program), Gurumurthy was awarded second place for the 2022 S. Klein Prize in Technical Writing for her paper “The Rapid Rise of Cryptocurrency.”

    “The outcomes of each project gave me more hope to begin the next because I could see the impact of these digital tools,” she says. “I saw people feel empowered to use their voices whether it was voting for the first time, protesting exploitative global monetary policy, or fighting gender discrimination. I’ve been really fortunate to see the power of mathematical analysis firsthand.”

    “I have come to realize that the constructive use of technology could be a powerful voice of resistance against injustice,” she says. “Because numbers matter, and when people bear witness to them, they are pushed to take action in meaningful ways.”

    Hoping to make a difference in her own community, she joined several Institute committees. As co-chair of the Undergraduate Association’s education committee, she propelled MIT’s first-ever digital petition for grade transparency and worked with faculty members on Institute committees to ensure that all students were being provided adequate resources to participate in online education in the wake of the Covid-19 pandemic. The digital petition inspired her to begin a project, called Insite, to develop a more centralized digital means of data collection on student life at MIT to better inform policies made by its governing bodies. As Ring Committee chair, she ensured that the special traditions of the “Brass Rat” were made economically accessible to all class members by helping the committee nearly triple its financial aid budget. For her efforts at MIT, last May she received the William L. Stewart, Jr. Award for “[her] contributions [as] an individual student at MIT to extracurricular activities and student life.”

    Ananya plans on going to law school after graduation, to study constitutional law so that she can use her technical background to build quantitative evidence in cases pertaining to voting rights, social welfare, and ethical technology, and set legal standards ”for the humane use of data,” she says.

    “In building digital tools for a variety of social and economic justice organizations, I hope that we can challenge our existing systems of power and realize the progress we so dearly need to witness. There is strength in numbers, both algorithmically and organizationally. I believe it is our responsibility to simultaneously use these strengths to change the world.”

    Her ambitions, however, began when she began singing lessons when she was 11; without her background as a vocalist, she says she would be voiceless.

    “Operatic performance has given me the ability to truly step into my character and convey powerful emotions in my performance. In the process, I have realized that my voice is most powerful when it reflects my true convictions, whether I am performing or publicly speaking. I truly believe that this honesty has allowed me to become an effective community organizer. I’d like to believe that this voice is what compels those around me to act.”

    Private musical study is available for students through the Emerson/Harris Program, which offers merit-based financial awards to students of outstanding achievement on their instruments or voice in classical, jazz, or world music. The Emerson/Harris Program is funded by the late Cherry L. Emerson Jr. SM ’41, in response to an appeal from Associate Provost Ellen T. Harris (Class of 1949 professor emeritus of music). More

  • in

    A better way to study ocean currents

    To study ocean currents, scientists release GPS-tagged buoys in the ocean and record their velocities to reconstruct the currents that transport them. These buoy data are also used to identify “divergences,” which are areas where water rises up from below the surface or sinks beneath it.

    By accurately predicting currents and pinpointing divergences, scientists can more precisely forecast the weather, approximate how oil will spread after a spill, or measure energy transfer in the ocean. A new model that incorporates machine learning makes more accurate predictions than conventional models do, a new study reports.

    A multidisciplinary research team including computer scientists at MIT and oceanographers has found that a standard statistical model typically used on buoy data can struggle to accurately reconstruct currents or identify divergences because it makes unrealistic assumptions about the behavior of water.

    The researchers developed a new model that incorporates knowledge from fluid dynamics to better reflect the physics at work in ocean currents. They show that their method, which only requires a small amount of additional computational expense, is more accurate at predicting currents and identifying divergences than the traditional model.

    This new model could help oceanographers make more accurate estimates from buoy data, which would enable them to more effectively monitor the transportation of biomass (such as Sargassum seaweed), carbon, plastics, oil, and nutrients in the ocean. This information is also important for understanding and tracking climate change.

    “Our method captures the physical assumptions more appropriately and more accurately. In this case, we know a lot of the physics already. We are giving the model a little bit of that information so it can focus on learning the things that are important to us, like what are the currents away from the buoys, or what is this divergence and where is it happening?” says senior author Tamara Broderick, an associate professor in MIT’s Department of Electrical Engineering and Computer Science (EECS) and a member of the Laboratory for Information and Decision Systems and the Institute for Data, Systems, and Society.

    Broderick’s co-authors include lead author Renato Berlinghieri, an electrical engineering and computer science graduate student; Brian L. Trippe, a postdoc at Columbia University; David R. Burt and Ryan Giordano, MIT postdocs; Kaushik Srinivasan, an assistant researcher in atmospheric and ocean sciences at the University of California at Los Angeles; Tamay Özgökmen, professor in the Department of Ocean Sciences at the University of Miami; and Junfei Xia, a graduate student at the University of Miami. The research will be presented at the International Conference on Machine Learning.

    Diving into the data

    Oceanographers use data on buoy velocity to predict ocean currents and identify “divergences” where water rises to the surface or sinks deeper.

    To estimate currents and find divergences, oceanographers have used a machine-learning technique known as a Gaussian process, which can make predictions even when data are sparse. To work well in this case, the Gaussian process must make assumptions about the data to generate a prediction.

    A standard way of applying a Gaussian process to oceans data assumes the latitude and longitude components of the current are unrelated. But this assumption isn’t physically accurate. For instance, this existing model implies that a current’s divergence and its vorticity (a whirling motion of fluid) operate on the same magnitude and length scales. Ocean scientists know this is not true, Broderick says. The previous model also assumes the frame of reference matters, which means fluid would behave differently in the latitude versus the longitude direction.

    “We were thinking we could address these problems with a model that incorporates the physics,” she says.

    They built a new model that uses what is known as a Helmholtz decomposition to accurately represent the principles of fluid dynamics. This method models an ocean current by breaking it down into a vorticity component (which captures the whirling motion) and a divergence component (which captures water rising or sinking).

    In this way, they give the model some basic physics knowledge that it uses to make more accurate predictions.

    This new model utilizes the same data as the old model. And while their method can be more computationally intensive, the researchers show that the additional cost is relatively small.

    Buoyant performance

    They evaluated the new model using synthetic and real ocean buoy data. Because the synthetic data were fabricated by the researchers, they could compare the model’s predictions to ground-truth currents and divergences. But simulation involves assumptions that may not reflect real life, so the researchers also tested their model using data captured by real buoys released in the Gulf of Mexico.

    This shows the trajectories of approximately 300 buoys released during the Grand LAgrangian Deployment (GLAD) in the Gulf of Mexico in the summer of 2013, to learn about ocean surface currents around the Deepwater Horizon oil spill site. The small, regular clockwise rotations are due to Earth’s rotation.Credit: Consortium of Advanced Research for Transport of Hydrocarbons in the Environment

    In each case, their method demonstrated superior performance for both tasks, predicting currents and identifying divergences, when compared to the standard Gaussian process and another machine-learning approach that used a neural network. For example, in one simulation that included a vortex adjacent to an ocean current, the new method correctly predicted no divergence while the previous Gaussian process method and the neural network method both predicted a divergence with very high confidence.

    The technique is also good at identifying vortices from a small set of buoys, Broderick adds.

    Now that they have demonstrated the effectiveness of using a Helmholtz decomposition, the researchers want to incorporate a time element into their model, since currents can vary over time as well as space. In addition, they want to better capture how noise impacts the data, such as winds that sometimes affect buoy velocity. Separating that noise from the data could make their approach more accurate.

    “Our hope is to take this noisily observed field of velocities from the buoys, and then say what is the actual divergence and actual vorticity, and predict away from those buoys, and we think that our new technique will be helpful for this,” she says.

    “The authors cleverly integrate known behaviors from fluid dynamics to model ocean currents in a flexible model,” says Massimiliano Russo, an associate biostatistician at Brigham and Women’s Hospital and instructor at Harvard Medical School, who was not involved with this work. “The resulting approach retains the flexibility to model the nonlinearity in the currents but can also characterize phenomena such as vortices and connected currents that would only be noticed if the fluid dynamic structure is integrated into the model. This is an excellent example of where a flexible model can be substantially improved with a well thought and scientifically sound specification.”

    This research is supported, in part, by the Office of Naval Research, a National Science Foundation (NSF) CAREER Award, and the Rosenstiel School of Marine, Atmospheric, and Earth Science at the University of Miami. More

  • in

    Joining the battle against health care bias

    Medical researchers are awash in a tsunami of clinical data. But we need major changes in how we gather, share, and apply this data to bring its benefits to all, says Leo Anthony Celi, principal research scientist at the MIT Laboratory for Computational Physiology (LCP). 

    One key change is to make clinical data of all kinds openly available, with the proper privacy safeguards, says Celi, a practicing intensive care unit (ICU) physician at the Beth Israel Deaconess Medical Center (BIDMC) in Boston. Another key is to fully exploit these open data with multidisciplinary collaborations among clinicians, academic investigators, and industry. A third key is to focus on the varying needs of populations across every country, and to empower the experts there to drive advances in treatment, says Celi, who is also an associate professor at Harvard Medical School. 

    In all of this work, researchers must actively seek to overcome the perennial problem of bias in understanding and applying medical knowledge. This deeply damaging problem is only heightened with the massive onslaught of machine learning and other artificial intelligence technologies. “Computers will pick up all our unconscious, implicit biases when we make decisions,” Celi warns.

    Play video

    Sharing medical data 

    Founded by the LCP, the MIT Critical Data consortium builds communities across disciplines to leverage the data that are routinely collected in the process of ICU care to understand health and disease better. “We connect people and align incentives,” Celi says. “In order to advance, hospitals need to work with universities, who need to work with industry partners, who need access to clinicians and data.” 

    The consortium’s flagship project is the MIMIC (medical information marked for intensive care) ICU database built at BIDMC. With about 35,000 users around the world, the MIMIC cohort is the most widely analyzed in critical care medicine. 

    International collaborations such as MIMIC highlight one of the biggest obstacles in health care: most clinical research is performed in rich countries, typically with most clinical trial participants being white males. “The findings of these trials are translated into treatment recommendations for every patient around the world,” says Celi. “We think that this is a major contributor to the sub-optimal outcomes that we see in the treatment of all sorts of diseases in Africa, in Asia, in Latin America.” 

    To fix this problem, “groups who are disproportionately burdened by disease should be setting the research agenda,” Celi says. 

    That’s the rule in the “datathons” (health hackathons) that MIT Critical Data has organized in more than two dozen countries, which apply the latest data science techniques to real-world health data. At the datathons, MIT students and faculty both learn from local experts and share their own skill sets. Many of these several-day events are sponsored by the MIT Industrial Liaison Program, the MIT International Science and Technology Initiatives program, or the MIT Sloan Latin America Office. 

    Datathons are typically held in that country’s national language or dialect, rather than English, with representation from academia, industry, government, and other stakeholders. Doctors, nurses, pharmacists, and social workers join up with computer science, engineering, and humanities students to brainstorm and analyze potential solutions. “They need each other’s expertise to fully leverage and discover and validate the knowledge that is encrypted in the data, and that will be translated into the way they deliver care,” says Celi. 

    “Everywhere we go, there is incredible talent that is completely capable of designing solutions to their health-care problems,” he emphasizes. The datathons aim to further empower the professionals and students in the host countries to drive medical research, innovation, and entrepreneurship.

    Play video

    Fighting built-in bias 

    Applying machine learning and other advanced data science techniques to medical data reveals that “bias exists in the data in unimaginable ways” in every type of health product, Celi says. Often this bias is rooted in the clinical trials required to approve medical devices and therapies. 

    One dramatic example comes from pulse oximeters, which provide readouts on oxygen levels in a patient’s blood. It turns out that these devices overestimate oxygen levels for people of color. “We have been under-treating individuals of color because the nurses and the doctors have been falsely assured that their patients have adequate oxygenation,” he says. “We think that we have harmed, if not killed, a lot of individuals in the past, especially during Covid, as a result of a technology that was not designed with inclusive test subjects.” 

    Such dangers only increase as the universe of medical data expands. “The data that we have available now for research is maybe two or three levels of magnitude more than what we had even 10 years ago,” Celi says. MIMIC, for example, now includes terabytes of X-ray, echocardiogram, and electrocardiogram data, all linked with related health records. Such enormous sets of data allow investigators to detect health patterns that were previously invisible. 

    “But there is a caveat,” Celi says. “It is trivial for computers to learn sensitive attributes that are not very obvious to human experts.” In a study released last year, for instance, he and his colleagues showed that algorithms can tell if a chest X-ray image belongs to a white patient or person of color, even without looking at any other clinical data. 

    “More concerningly, groups including ours have demonstrated that computers can learn easily if you’re rich or poor, just from your imaging alone,” Celi says. “We were able to train a computer to predict if you are on Medicaid, or if you have private insurance, if you feed them with chest X-rays without any abnormality. So again, computers are catching features that are not visible to the human eye.” And these features may lead algorithms to advise against therapies for people who are Black or poor, he says. 

    Opening up industry opportunities 

    Every stakeholder stands to benefit when pharmaceutical firms and other health-care corporations better understand societal needs and can target their treatments appropriately, Celi says. 

    “We need to bring to the table the vendors of electronic health records and the medical device manufacturers, as well as the pharmaceutical companies,” he explains. “They need to be more aware of the disparities in the way that they perform their research. They need to have more investigators representing underrepresented groups of people, to provide that lens to come up with better designs of health products.” 

    Corporations could benefit by sharing results from their clinical trials, and could immediately see these potential benefits by participating in datathons, Celi says. “They could really witness the magic that happens when that data is curated and analyzed by students and clinicians with different backgrounds from different countries. So we’re calling out our partners in the pharmaceutical industry to organize these events with us!”  More

  • in

    Study: AI models fail to reproduce human judgements about rule violations

    In an effort to improve fairness or reduce backlogs, machine-learning models are sometimes designed to mimic human decision making, such as deciding whether social media posts violate toxic content policies.

    But researchers from MIT and elsewhere have found that these models often do not replicate human decisions about rule violations. If models are not trained with the right data, they are likely to make different, often harsher judgements than humans would.

    In this case, the “right” data are those that have been labeled by humans who were explicitly asked whether items defy a certain rule. Training involves showing a machine-learning model millions of examples of this “normative data” so it can learn a task.

    But data used to train machine-learning models are typically labeled descriptively — meaning humans are asked to identify factual features, such as, say, the presence of fried food in a photo. If “descriptive data” are used to train models that judge rule violations, such as whether a meal violates a school policy that prohibits fried food, the models tend to over-predict rule violations.

    This drop in accuracy could have serious implications in the real world. For instance, if a descriptive model is used to make decisions about whether an individual is likely to reoffend, the researchers’ findings suggest it may cast stricter judgements than a human would, which could lead to higher bail amounts or longer criminal sentences.

    “I think most artificial intelligence/machine-learning researchers assume that the human judgements in data and labels are biased, but this result is saying something worse. These models are not even reproducing already-biased human judgments because the data they’re being trained on has a flaw: Humans would label the features of images and text differently if they knew those features would be used for a judgment. This has huge ramifications for machine learning systems in human processes,” says Marzyeh Ghassemi, an assistant professor and head of the Healthy ML Group in the Computer Science and Artificial Intelligence Laboratory (CSAIL).

    Ghassemi is senior author of a new paper detailing these findings, which was published today in Science Advances. Joining her on the paper are lead author Aparna Balagopalan, an electrical engineering and computer science graduate student; David Madras, a graduate student at the University of Toronto; David H. Yang, a former graduate student who is now co-founder of ML Estimation; Dylan Hadfield-Menell, an MIT assistant professor; and Gillian K. Hadfield, Schwartz Reisman Chair in Technology and Society and professor of law at the University of Toronto.

    Labeling discrepancy

    This study grew out of a different project that explored how a machine-learning model can justify its predictions. As they gathered data for that study, the researchers noticed that humans sometimes give different answers if they are asked to provide descriptive or normative labels about the same data.

    To gather descriptive labels, researchers ask labelers to identify factual features — does this text contain obscene language? To gather normative labels, researchers give labelers a rule and ask if the data violates that rule — does this text violate the platform’s explicit language policy?

    Surprised by this finding, the researchers launched a user study to dig deeper. They gathered four datasets to mimic different policies, such as a dataset of dog images that could be in violation of an apartment’s rule against aggressive breeds. Then they asked groups of participants to provide descriptive or normative labels.

    In each case, the descriptive labelers were asked to indicate whether three factual features were present in the image or text, such as whether the dog appears aggressive. Their responses were then used to craft judgements. (If a user said a photo contained an aggressive dog, then the policy was violated.) The labelers did not know the pet policy. On the other hand, normative labelers were given the policy prohibiting aggressive dogs, and then asked whether it had been violated by each image, and why.

    The researchers found that humans were significantly more likely to label an object as a violation in the descriptive setting. The disparity, which they computed using the absolute difference in labels on average, ranged from 8 percent on a dataset of images used to judge dress code violations to 20 percent for the dog images.

    “While we didn’t explicitly test why this happens, one hypothesis is that maybe how people think about rule violations is different from how they think about descriptive data. Generally, normative decisions are more lenient,” Balagopalan says.

    Yet data are usually gathered with descriptive labels to train a model for a particular machine-learning task. These data are often repurposed later to train different models that perform normative judgements, like rule violations.

    Training troubles

    To study the potential impacts of repurposing descriptive data, the researchers trained two models to judge rule violations using one of their four data settings. They trained one model using descriptive data and the other using normative data, and then compared their performance.

    They found that if descriptive data are used to train a model, it will underperform a model trained to perform the same judgements using normative data. Specifically, the descriptive model is more likely to misclassify inputs by falsely predicting a rule violation. And the descriptive model’s accuracy was even lower when classifying objects that human labelers disagreed about.

    “This shows that the data do really matter. It is important to match the training context to the deployment context if you are training models to detect if a rule has been violated,” Balagopalan says.

    It can be very difficult for users to determine how data have been gathered; this information can be buried in the appendix of a research paper or not revealed by a private company, Ghassemi says.

    Improving dataset transparency is one way this problem could be mitigated. If researchers know how data were gathered, then they know how those data should be used. Another possible strategy is to fine-tune a descriptively trained model on a small amount of normative data. This idea, known as transfer learning, is something the researchers want to explore in future work.

    They also want to conduct a similar study with expert labelers, like doctors or lawyers, to see if it leads to the same label disparity.

    “The way to fix this is to transparently acknowledge that if we want to reproduce human judgment, we must only use data that were collected in that setting. Otherwise, we are going to end up with systems that are going to have extremely harsh moderations, much harsher than what humans would do. Humans would see nuance or make another distinction, whereas these models don’t,” Ghassemi says.

    This research was funded, in part, by the Schwartz Reisman Institute for Technology and Society, Microsoft Research, the Vector Institute, and a Canada Research Council Chain. More

  • in

    Researchers create a tool for accurately simulating complex systems

    Researchers often use simulations when designing new algorithms, since testing ideas in the real world can be both costly and risky. But since it’s impossible to capture every detail of a complex system in a simulation, they typically collect a small amount of real data that they replay while simulating the components they want to study.

    Known as trace-driven simulation (the small pieces of real data are called traces), this method sometimes results in biased outcomes. This means researchers might unknowingly choose an algorithm that is not the best one they evaluated, and which will perform worse on real data than the simulation predicted that it should.

    MIT researchers have developed a new method that eliminates this source of bias in trace-driven simulation. By enabling unbiased trace-driven simulations, the new technique could help researchers design better algorithms for a variety of applications, including improving video quality on the internet and increasing the performance of data processing systems.

    The researchers’ machine-learning algorithm draws on the principles of causality to learn how the data traces were affected by the behavior of the system. In this way, they can replay the correct, unbiased version of the trace during the simulation.

    When compared to a previously developed trace-driven simulator, the researchers’ simulation method correctly predicted which newly designed algorithm would be best for video streaming — meaning the one that led to less rebuffering and higher visual quality. Existing simulators that do not account for bias would have pointed researchers to a worse-performing algorithm.

    “Data are not the only thing that matter. The story behind how the data are generated and collected is also important. If you want to answer a counterfactual question, you need to know the underlying data generation story so you only intervene on those things that you really want to simulate,” says Arash Nasr-Esfahany, an electrical engineering and computer science (EECS) graduate student and co-lead author of a paper on this new technique.

    He is joined on the paper by co-lead authors and fellow EECS graduate students Abdullah Alomar and Pouya Hamadanian; recent graduate student Anish Agarwal PhD ’21; and senior authors Mohammad Alizadeh, an associate professor of electrical engineering and computer science; and Devavrat Shah, the Andrew and Erna Viterbi Professor in EECS and a member of the Institute for Data, Systems, and Society and of the Laboratory for Information and Decision Systems. The research was recently presented at the USENIX Symposium on Networked Systems Design and Implementation.

    Specious simulations

    The MIT researchers studied trace-driven simulation in the context of video streaming applications.

    In video streaming, an adaptive bitrate algorithm continually decides the video quality, or bitrate, to transfer to a device based on real-time data on the user’s bandwidth. To test how different adaptive bitrate algorithms impact network performance, researchers can collect real data from users during a video stream for a trace-driven simulation.

    They use these traces to simulate what would have happened to network performance had the platform used a different adaptive bitrate algorithm in the same underlying conditions.

    Researchers have traditionally assumed that trace data are exogenous, meaning they aren’t affected by factors that are changed during the simulation. They would assume that, during the period when they collected the network performance data, the choices the bitrate adaptation algorithm made did not affect those data.

    But this is often a false assumption that results in biases about the behavior of new algorithms, making the simulation invalid, Alizadeh explains.

    “We recognized, and others have recognized, that this way of doing simulation can induce errors. But I don’t think people necessarily knew how significant those errors could be,” he says.

    To develop a solution, Alizadeh and his collaborators framed the issue as a causal inference problem. To collect an unbiased trace, one must understand the different causes that affect the observed data. Some causes are intrinsic to a system, while others are affected by the actions being taken.

    In the video streaming example, network performance is affected by the choices the bitrate adaptation algorithm made — but it’s also affected by intrinsic elements, like network capacity.

    “Our task is to disentangle these two effects, to try to understand what aspects of the behavior we are seeing are intrinsic to the system and how much of what we are observing is based on the actions that were taken. If we can disentangle these two effects, then we can do unbiased simulations,” he says.

    Learning from data

    But researchers often cannot directly observe intrinsic properties. This is where the new tool, called CausalSim, comes in. The algorithm can learn the underlying characteristics of a system using only the trace data.

    CausalSim takes trace data that were collected through a randomized control trial, and estimates the underlying functions that produced those data. The model tells the researchers, under the exact same underlying conditions that a user experienced, how a new algorithm would change the outcome.

    Using a typical trace-driven simulator, bias might lead a researcher to select a worse-performing algorithm, even though the simulation indicates it should be better. CausalSim helps researchers select the best algorithm that was tested.

    The MIT researchers observed this in practice. When they used CausalSim to design an improved bitrate adaptation algorithm, it led them to select a new variant that had a stall rate that was nearly 1.4 times lower than a well-accepted competing algorithm, while achieving the same video quality. The stall rate is the amount of time a user spent rebuffering the video.

    By contrast, an expert-designed trace-driven simulator predicted the opposite. It indicated that this new variant should cause a stall rate that was nearly 1.3 times higher. The researchers tested the algorithm on real-world video streaming and confirmed that CausalSim was correct.

    “The gains we were getting in the new variant were very close to CausalSim’s prediction, while the expert simulator was way off. This is really exciting because this expert-designed simulator has been used in research for the past decade. If CausalSim can so clearly be better than this, who knows what we can do with it?” says Hamadanian.

    During a 10-month experiment, CausalSim consistently improved simulation accuracy, resulting in algorithms that made about half as many errors as those designed using baseline methods.

    In the future, the researchers want to apply CausalSim to situations where randomized control trial data are not available or where it is especially difficult to recover the causal dynamics of the system. They also want to explore how to design and monitor systems to make them more amenable to causal analysis. More

  • in

    Driving toward data justice

    As a person with a mixed-race background who has lived in four different cities, Amelia Dogan describes her early life as “growing up in a lot of in-betweens.” Now an MIT senior, she continues to link different perspectives together, working at the intersection of urban planning, computer science, and social justice.

    Dogan was born in Canada but spent her high school years in Philadelphia, where she developed a strong affinity for the city.  

    “I love Philadelphia to death,” says Dogan. “It’s my favorite place in the world. The energy in the city is amazing — I’m so sad I wasn’t there for the Super Bowl this year — but it is a city with really big disparities. That drives me to do the research that I do and shapes the things that I care about.”

    Dogan is double-majoring in urban science and planning with computer science and in American studies. She decided on the former after participating in the pre-orientation program offered by the Department of Urban Studies and Planning, which provides an introduction to both the department and the city of Boston. She followed that up with a UROP research project with the West Philadelphia Landscape Project, putting together historical census data on housing and race to find patterns for use in community advocacy.

    After taking WGS.231 (Writing About Race), a course offered by the Program in Women’s and Gender Studies, her first year at MIT, Dogan realized there was a lot of crosstalk between urban planning, computer science, and the social sciences.

    “There’s a lot of critical social theory that I want to have background in to make me a better planner or a better computer scientist,” says Dogan. “There’s also a lot of issues around fairness and participation in computer science, and a lot of computer scientists are trying to reinvent the wheel when there’s already really good, critical social science research and theory behind this.”

    Data science and feminism

    Dogan’s first year at MIT was interrupted by the onset of the Covid-19 pandemic, but there was a silver lining. An influx of funding to keep students engaged while attending school virtually enabled her to join the Data + Feminism Lab to work on a case study examining three places in Philadelphia with historical names that were renamed after activist efforts.

    In her first year at MIT, Dogan worked several UROPs to hone her own skills and find the best research fit. Besides the West Philadelphia Land Project, she worked on two projects within the MIT Sloan School of Management. The first involved searching for connections between entrepreneurship and immigration among Fortune 500 founders. The second involved interviewing warehouse workers and writing a report on their quality of life.

    Dogan has now spent three years in the Data + Feminism Lab under Associate Professor Catherine D’Ignazio, where she is particularly interested in how technology can be used by marginalized communities to invert historical power imbalances. A key concept in the lab’s work is that of counterdata, which are produced by civil society groups or individuals in order to counter missing data or to challenge existing official data.

    Most recently, she completed a SuperUROP project investigating how femicide data activist organizations use social media. She analyzed 600 social media posts by organizations across the U.S. and Canada. The work built off the lab’s greater body of work with these groups, which Dogan has contributed to by annotating news articles for machine-learning models.

    “Catherine works a lot at the intersection of data issues and feminism. It just seemed like the right fit for me,” says Dogan. “She’s my academic advisor, she’s my research advisor, and is also a really good mentor.”

    Advocating for the student experience

    Outside of the classroom, Dogan is a strong advocate for improving the student experience, particularly when it intersects with identity. An executive board member of the Asian American Initiative (AAI), she also sits on the student advisory council for the Office of Minority Education.

    “Doing that institutional advocacy has been important to me, because it’s for things that I expected coming into college and had not come in prepared to fight for,” says Dogan. As a high schooler, she participated in programs run by the University of Pennsylvania’s Pan-Asian American Community House and was surprised to find that MIT did not have an equivalent organization.

    “Building community based upon identity is something that I’ve been really passionate about,” says Dogan. “For the past two years, I’ve been working with AAI on a list of recommendations for MIT. I’ve talked to alums from the ’90s who were a part of an Asian American caucus who were asking for the same things.”

    She also holds a leadership role with MIXED @ MIT, a student group focused on creating space for mixed-heritage students to explore and discuss their identities.

    Following graduation, Dogan plans to pursue a PhD in information science at the University of Washington. Her breadth of skills has given her a range of programs to choose from. No matter where she goes next, Dogan wants to pursue a career where she can continue to make a tangible impact.

    “I would love to be doing community-engaged research around data justice, using citizen science and counterdata for policy and social change,” she says. More