More stories

  • in

    Busy GPUs: Sampling and pipelining method speeds up deep learning on large graphs

    Graphs, a potentially extensive web of nodes connected by edges, can be used to express and interrogate relationships between data, like social connections, financial transactions, traffic, energy grids, and molecular interactions. As researchers collect more data and build out these graphical pictures, researchers will need faster and more efficient methods, as well as more computational power, to conduct deep learning on them, in the way of graph neural networks (GNN).  

    Now, a new method, called SALIENT (SAmpling, sLIcing, and data movemeNT), developed by researchers at MIT and IBM Research, improves the training and inference performance by addressing three key bottlenecks in computation. This dramatically cuts down on the runtime of GNNs on large datasets, which, for example, contain on the scale of 100 million nodes and 1 billion edges. Further, the team found that the technique scales well when computational power is added from one to 16 graphical processing units (GPUs). The work was presented at the Fifth Conference on Machine Learning and Systems.

    “We started to look at the challenges current systems experienced when scaling state-of-the-art machine learning techniques for graphs to really big datasets. It turned out there was a lot of work to be done, because a lot of the existing systems were achieving good performance primarily on smaller datasets that fit into GPU memory,” says Tim Kaler, the lead author and a postdoc in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL).

    By vast datasets, experts mean scales like the entire Bitcoin network, where certain patterns and data relationships could spell out trends or foul play. “There are nearly a billion Bitcoin transactions on the blockchain, and if we want to identify illicit activities inside such a joint network, then we are facing a graph of such a scale,” says co-author Jie Chen, senior research scientist and manager of IBM Research and the MIT-IBM Watson AI Lab. “We want to build a system that is able to handle that kind of graph and allows processing to be as efficient as possible, because every day we want to keep up with the pace of the new data that are generated.”

    Kaler and Chen’s co-authors include Nickolas Stathas MEng ’21 of Jump Trading, who developed SALIENT as part of his graduate work; former MIT-IBM Watson AI Lab intern and MIT graduate student Anne Ouyang; MIT CSAIL postdoc Alexandros-Stavros Iliopoulos; MIT CSAIL Research Scientist Tao B. Schardl; and Charles E. Leiserson, the Edwin Sibley Webster Professor of Electrical Engineering at MIT and a researcher with the MIT-IBM Watson AI Lab.     

    For this problem, the team took a systems-oriented approach in developing their method: SALIENT, says Kaler. To do this, the researchers implemented what they saw as important, basic optimizations of components that fit into existing machine-learning frameworks, such as PyTorch Geometric and the deep graph library (DGL), which are interfaces for building a machine-learning model. Stathas says the process is like swapping out engines to build a faster car. Their method was designed to fit into existing GNN architectures, so that domain experts could easily apply this work to their specified fields to expedite model training and tease out insights during inference faster. The trick, the team determined, was to keep all of the hardware (CPUs, data links, and GPUs) busy at all times: while the CPU samples the graph and prepares mini-batches of data that will then be transferred through the data link, the more critical GPU is working to train the machine-learning model or conduct inference. 

    The researchers began by analyzing the performance of a commonly used machine-learning library for GNNs (PyTorch Geometric), which showed a startlingly low utilization of available GPU resources. Applying simple optimizations, the researchers improved GPU utilization from 10 to 30 percent, resulting in a 1.4 to two times performance improvement relative to public benchmark codes. This fast baseline code could execute one complete pass over a large training dataset through the algorithm (an epoch) in 50.4 seconds.                          

    Seeking further performance improvements, the researchers set out to examine the bottlenecks that occur at the beginning of the data pipeline: the algorithms for graph sampling and mini-batch preparation. Unlike other neural networks, GNNs perform a neighborhood aggregation operation, which computes information about a node using information present in other nearby nodes in the graph — for example, in a social network graph, information from friends of friends of a user. As the number of layers in the GNN increase, the number of nodes the network has to reach out to for information can explode, exceeding the limits of a computer. Neighborhood sampling algorithms help by selecting a smaller random subset of nodes to gather; however, the researchers found that current implementations of this were too slow to keep up with the processing speed of modern GPUs. In response, they identified a mix of data structures, algorithmic optimizations, and so forth that improved sampling speed, ultimately improving the sampling operation alone by about three times, taking the per-epoch runtime from 50.4 to 34.6 seconds. They also found that sampling, at an appropriate rate, can be done during inference, improving overall energy efficiency and performance, a point that had been overlooked in the literature, the team notes.      

    In previous systems, this sampling step was a multi-process approach, creating extra data and unnecessary data movement between the processes. The researchers made their SALIENT method more nimble by creating a single process with lightweight threads that kept the data on the CPU in shared memory. Further, SALIENT takes advantage of a cache of modern processors, says Stathas, parallelizing feature slicing, which extracts relevant information from nodes of interest and their surrounding neighbors and edges, within the shared memory of the CPU core cache. This again reduced the overall per-epoch runtime from 34.6 to 27.8 seconds.

    The last bottleneck the researchers addressed was to pipeline mini-batch data transfers between the CPU and GPU using a prefetching step, which would prepare data just before it’s needed. The team calculated that this would maximize bandwidth usage in the data link and bring the method up to perfect utilization; however, they only saw around 90 percent. They identified and fixed a performance bug in a popular PyTorch library that caused unnecessary round-trip communications between the CPU and GPU. With this bug fixed, the team achieved a 16.5 second per-epoch runtime with SALIENT.

    “Our work showed, I think, that the devil is in the details,” says Kaler. “When you pay close attention to the details that impact performance when training a graph neural network, you can resolve a huge number of performance issues. With our solutions, we ended up being completely bottlenecked by GPU computation, which is the ideal goal of such a system.”

    SALIENT’s speed was evaluated on three standard datasets ogbn-arxiv, ogbn-products, and ogbn-papers100M, as well as in multi-machine settings, with different levels of fanout (amount of data that the CPU would prepare for the GPU), and across several architectures, including the most recent state-of-the-art one, GraphSAGE-RI. In each setting, SALIENT outperformed PyTorch Geometric, most notably on the large ogbn-papers100M dataset, containing 100 million nodes and over a billion edges Here, it was three times faster, running on one GPU, than the optimized baseline that was originally created for this work; with 16 GPUs, SALIENT was an additional eight times faster. 

    While other systems had slightly different hardware and experimental setups, so it wasn’t always a direct comparison, SALIENT still outperformed them. Among systems that achieved similar accuracy, representative performance numbers include 99 seconds using one GPU and 32 CPUs, and 13 seconds using 1,536 CPUs. In contrast, SALIENT’s runtime using one GPU and 20 CPUs was 16.5 seconds and was just two seconds with 16 GPUs and 320 CPUs. “If you look at the bottom-line numbers that prior work reports, our 16 GPU runtime (two seconds) is an order of magnitude faster than other numbers that have been reported previously on this dataset,” says Kaler. The researchers attributed their performance improvements, in part, to their approach of optimizing their code for a single machine before moving to the distributed setting. Stathas says that the lesson here is that for your money, “it makes more sense to use the hardware you have efficiently, and to its extreme, before you start scaling up to multiple computers,” which can provide significant savings on cost and carbon emissions that can come with model training.

    This new capacity will now allow researchers to tackle and dig deeper into bigger and bigger graphs. For example, the Bitcoin network that was mentioned earlier contained 100,000 nodes; the SALIENT system can capably handle a graph 1,000 times (or three orders of magnitude) larger.

    “In the future, we would be looking at not just running this graph neural network training system on the existing algorithms that we implemented for classifying or predicting the properties of each node, but we also want to do more in-depth tasks, such as identifying common patterns in a graph (subgraph patterns), [which] may be actually interesting for indicating financial crimes,” says Chen. “We also want to identify nodes in a graph that are similar in a sense that they possibly would be corresponding to the same bad actor in a financial crime. These tasks would require developing additional algorithms, and possibly also neural network architectures.”

    This research was supported by the MIT-IBM Watson AI Lab and in part by the U.S. Air Force Research Laboratory and the U.S. Air Force Artificial Intelligence Accelerator. More

  • in

    A far-sighted approach to machine learning

    Picture two teams squaring off on a football field. The players can cooperate to achieve an objective, and compete against other players with conflicting interests. That’s how the game works.

    Creating artificial intelligence agents that can learn to compete and cooperate as effectively as humans remains a thorny problem. A key challenge is enabling AI agents to anticipate future behaviors of other agents when they are all learning simultaneously.

    Because of the complexity of this problem, current approaches tend to be myopic; the agents can only guess the next few moves of their teammates or competitors, which leads to poor performance in the long run. 

    Researchers from MIT, the MIT-IBM Watson AI Lab, and elsewhere have developed a new approach that gives AI agents a farsighted perspective. Their machine-learning framework enables cooperative or competitive AI agents to consider what other agents will do as time approaches infinity, not just over a few next steps. The agents then adapt their behaviors accordingly to influence other agents’ future behaviors and arrive at an optimal, long-term solution.

    This framework could be used by a group of autonomous drones working together to find a lost hiker in a thick forest, or by self-driving cars that strive to keep passengers safe by anticipating future moves of other vehicles driving on a busy highway.

    “When AI agents are cooperating or competing, what matters most is when their behaviors converge at some point in the future. There are a lot of transient behaviors along the way that don’t matter very much in the long run. Reaching this converged behavior is what we really care about, and we now have a mathematical way to enable that,” says Dong-Ki Kim, a graduate student in the MIT Laboratory for Information and Decision Systems (LIDS) and lead author of a paper describing this framework.

    The senior author is Jonathan P. How, the Richard C. Maclaurin Professor of Aeronautics and Astronautics and a member of the MIT-IBM Watson AI Lab. Co-authors include others at the MIT-IBM Watson AI Lab, IBM Research, Mila-Quebec Artificial Intelligence Institute, and Oxford University. The research will be presented at the Conference on Neural Information Processing Systems.

    Play video

    In this demo video, the red robot, which has been trained using the researchers’ machine-learning system, is able to defeat the green robot by learning more effective behaviors that take advantage of the constantly changing strategy of its opponent.

    More agents, more problems

    The researchers focused on a problem known as multiagent reinforcement learning. Reinforcement learning is a form of machine learning in which an AI agent learns by trial and error. Researchers give the agent a reward for “good” behaviors that help it achieve a goal. The agent adapts its behavior to maximize that reward until it eventually becomes an expert at a task.

    But when many cooperative or competing agents are simultaneously learning, things become increasingly complex. As agents consider more future steps of their fellow agents, and how their own behavior influences others, the problem soon requires far too much computational power to solve efficiently. This is why other approaches only focus on the short term.

    “The AIs really want to think about the end of the game, but they don’t know when the game will end. They need to think about how to keep adapting their behavior into infinity so they can win at some far time in the future. Our paper essentially proposes a new objective that enables an AI to think about infinity,” says Kim.

    But since it is impossible to plug infinity into an algorithm, the researchers designed their system so agents focus on a future point where their behavior will converge with that of other agents, known as equilibrium. An equilibrium point determines the long-term performance of agents, and multiple equilibria can exist in a multiagent scenario. Therefore, an effective agent actively influences the future behaviors of other agents in such a way that they reach a desirable equilibrium from the agent’s perspective. If all agents influence each other, they converge to a general concept that the researchers call an “active equilibrium.”

    The machine-learning framework they developed, known as FURTHER (which stands for FUlly Reinforcing acTive influence witH averagE Reward), enables agents to learn how to adapt their behaviors as they interact with other agents to achieve this active equilibrium.

    FURTHER does this using two machine-learning modules. The first, an inference module, enables an agent to guess the future behaviors of other agents and the learning algorithms they use, based solely on their prior actions.

    This information is fed into the reinforcement learning module, which the agent uses to adapt its behavior and influence other agents in a way that maximizes its reward.

    “The challenge was thinking about infinity. We had to use a lot of different mathematical tools to enable that, and make some assumptions to get it to work in practice,” Kim says.

    Winning in the long run

    They tested their approach against other multiagent reinforcement learning frameworks in several different scenarios, including a pair of robots fighting sumo-style and a battle pitting two 25-agent teams against one another. In both instances, the AI agents using FURTHER won the games more often.

    Since their approach is decentralized, which means the agents learn to win the games independently, it is also more scalable than other methods that require a central computer to control the agents, Kim explains.

    The researchers used games to test their approach, but FURTHER could be used to tackle any kind of multiagent problem. For instance, it could be applied by economists seeking to develop sound policy in situations where many interacting entitles have behaviors and interests that change over time.

    Economics is one application Kim is particularly excited about studying. He also wants to dig deeper into the concept of an active equilibrium and continue enhancing the FURTHER framework.

    This research is funded, in part, by the MIT-IBM Watson AI Lab. More

  • in

    Investigating at the interface of data science and computing

    A visual model of Guy Bresler’s research would probably look something like a Venn diagram. He works at the four-way intersection where theoretical computer science, statistics, probability, and information theory collide.

    “There are always new things to do be done at the interface. There are always opportunities for entirely new questions to ask,” says Bresler, an associate professor who recently earned tenure in MIT’s Department of Electrical Engineering and Computer Science (EECS).

    A theoretician, he aims to understand the delicate interplay between structure in data, the complexity of models, and the amount of computation needed to learn those models. Recently, his biggest focus has been trying to unveil fundamental phenomena that are broadly responsible for determining the computational complexity of statistics problems — and finding the “sweet spot” where available data and computation resources enable researchers to effectively solve a problem.

    When trying to solve a complex statistics problem, there is often a tug-of-war between data and computation. Without enough data, the computation needed to solve a statistical problem can be intractable, or at least consume a staggering amount of resources. But get just enough data and suddenly the intractable becomes solvable; the amount of computation needed to come up with a solution drops dramatically.

    The majority of modern statistical problems exhibits this sort of trade-off between computation and data, with applications ranging from drug development to weather prediction. Another well-studied and practically important example is cryo-electron microscopy, Bresler says. With this technique, researchers use an electron microscope to take images of molecules in different orientations. The central challenge is how to solve the inverse problem — determining the molecule’s structure given the noisy data. Many statistical problems can be formulated as inverse problems of this sort.

    One aim of Bresler’s work is to elucidate relationships between the wide variety of different statistics problems currently being studied. The dream is to classify statistical problems into equivalence classes, as has been done for other types of computational problems in the field of computational complexity. Showing these sorts of relationships means that, instead of trying to understand each problem in isolation, researchers can transfer their understanding from a well-studied problem to a poorly understood one, he says.

    Adopting a theoretical approach

    For Bresler, a desire to theoretically understand various basic phenomena inspired him to follow a path into academia.

    Both of his parents worked as professors and showed how fulfilling academia can be, he says. His earliest introduction to the theoretical side of engineering came from his father, who is an electrical engineer and theoretician studying signal processing. Bresler was inspired by his work from an early age. As an undergraduate at the University of Illinois at Urbana-Champaign, he bounced between physics, math, and computer science courses. But no matter the topic, he gravitated toward the theoretical viewpoint.

    In graduate school at the University of California at Berkeley, Bresler enjoyed the opportunity to work in a wide variety of topics spanning probability, theoretical computer science, and mathematics. His driving motivator was a love of learning new things.

    “Working at the interface of multiple fields with new questions, there is a feeling that one had better learn as much as possible if one is to have any chance of finding the right tools to answer those questions,” he says.

    That curiosity led him to MIT for a postdoc in the Laboratory for Information and Decision Systems (LIDS) in 2013, and then he joined the faculty two years later as an assistant professor in EECS. He was named an associate professor in 2019.

    Bresler says he was drawn to the intellectual atmosphere at MIT, as well as the supportive environment for launching bold research quests and trying to make progress in new areas of study.

    Opportunities for collaboration

    “What really struck me was how vibrant and energetic and collaborative MIT is. I have this mental list of more than 20 people here who I would love to have lunch with every single week and collaborate with on research. So just based on sheer numbers, joining MIT was a clear win,” he says.

    He’s especially enjoyed collaborating with his students, who continually teach him new things and ask deep questions that drive exciting research projects. One such student, Matthew Brennan, who was one of Bresler’s closest collaborators, tragically and unexpectedly passed away in January, 2021.

    The shock from Brennan’s death is still raw for Bresler, and it derailed his research for a time.

    “Beyond his own prodigious capabilities and creativity, he had this amazing ability to listen to an idea of mine that was almost completely wrong, extract from it a useful piece, and then pass the ball back,” he says. “We had the same vision for what we wanted to achieve in the work, and we were driven to try to tell a certain story. At the time, almost nobody was pursuing this particular line of work, and it was in a way kind of lonely. But he trusted me, and we encouraged one another to keep at it when things seemed bleak.”

    Those lessons in perseverance fuel Bresler as he and his students continue exploring questions that, by their nature, are difficult to answer.

    One area he’s worked in on-and-off for over a decade involves learning graphical models from data. Models of certain types of data, such as time-series data consisting of temperature readings, are often constructed by domain experts who have relevant knowledge and can build a reasonable model, he explains.

    But for many types of data with complex dependencies, such as social network or biological data, it is not at all clear what structure a model should take. Bresler’s work seeks to estimate a structured model from data, which could then be used for downstream applications like making recommendations or better predicting the weather.

    The basic question of identifying good models, whether algorithmically in a complex setting or analytically, by specifying a useful toy model for theoretical analysis, connects the abstract work with engineering practice, he says.

    “In general, modeling is an art. Real life is complicated and if you write down some super-complicated model that tries to capture every feature of a problem, it is doomed,” says Bresler. “You have to think about the problem and understand the practical side of things on some level to identify the correct features of the problem to be modeled, so that you can hope to actually solve it and gain insight into what one should do in practice.”

    Outside the lab, Bresler often finds himself solving very different kinds of problems. He is an avid rock climber and spends much of his free time bouldering throughout New England.

    “I really love it. It is a good excuse to get outside and get sucked into a whole different world. Even though there is problem solving involved, and there are similarities at the philosophical level, it is totally orthogonal to sitting down and doing math,” he says. More

  • in

    Neurodegenerative disease can progress in newly identified patterns

    Neurodegenerative diseases — like amyotrophic lateral sclerosis (ALS, or Lou Gehrig’s disease), Alzheimer’s, and Parkinson’s — are complicated, chronic ailments that can present with a variety of symptoms, worsen at different rates, and have many underlying genetic and environmental causes, some of which are unknown. ALS, in particular, affects voluntary muscle movement and is always fatal, but while most people survive for only a few years after diagnosis, others live with the disease for decades. Manifestations of ALS can also vary significantly; often slower disease development correlates with onset in the limbs and affecting fine motor skills, while the more serious, bulbar ALS impacts swallowing, speaking, breathing, and mobility. Therefore, understanding the progression of diseases like ALS is critical to enrollment in clinical trials, analysis of potential interventions, and discovery of root causes.

    However, assessing disease evolution is far from straightforward. Current clinical studies typically assume that health declines on a downward linear trajectory on a symptom rating scale, and use these linear models to evaluate whether drugs are slowing disease progression. However, data indicate that ALS often follows nonlinear trajectories, with periods where symptoms are stable alternating with periods when they are rapidly changing. Since data can be sparse, and health assessments often rely on subjective rating metrics measured at uneven time intervals, comparisons across patient populations are difficult. These heterogenous data and progression, in turn, complicate analyses of invention effectiveness and potentially mask disease origin.

    Now, a new machine-learning method developed by researchers from MIT, IBM Research, and elsewhere aims to better characterize ALS disease progression patterns to inform clinical trial design.

    “There are groups of individuals that share progression patterns. For example, some seem to have really fast-progressing ALS and others that have slow-progressing ALS that varies over time,” says Divya Ramamoorthy PhD ’22, a research specialist at MIT and lead author of a new paper on the work that was published this month in Nature Computational Science. “The question we were asking is: can we use machine learning to identify if, and to what extent, those types of consistent patterns across individuals exist?”

    Their technique, indeed, identified discrete and robust clinical patterns in ALS progression, many of which are non-linear. Further, these disease progression subtypes were consistent across patient populations and disease metrics. The team additionally found that their method can be applied to Alzheimer’s and Parkinson’s diseases as well.

    Joining Ramamoorthy on the paper are MIT-IBM Watson AI Lab members Ernest Fraenkel, a professor in the MIT Department of Biological Engineering; Research Scientist Soumya Ghosh of IBM Research; and Principal Research Scientist Kenney Ng, also of IBM Research. Additional authors include Kristen Severson PhD ’18, a senior researcher at Microsoft Research and former member of the Watson Lab and of IBM Research; Karen Sachs PhD ’06 of Next Generation Analytics; a team of researchers with Answer ALS; Jonathan D. Glass and Christina N. Fournier of the Emory University School of Medicine; the Pooled Resource Open-Access ALS Clinical Trials Consortium; ALS/MND Natural History Consortium; Todd M. Herrington of Massachusetts General Hospital (MGH) and Harvard Medical School; and James D. Berry of MGH.

    Play video

    MIT Professor Ernest Fraenkel describes early stages of his research looking at root causes of amyotrophic lateral sclerosis (ALS).

    Reshaping health decline

    After consulting with clinicians, the team of machine learning researchers and neurologists let the data speak for itself. They designed an unsupervised machine-learning model that employed two methods: Gaussian process regression and Dirichlet process clustering. These inferred the health trajectories directly from patient data and automatically grouped similar trajectories together without prescribing the number of clusters or the shape of the curves, forming ALS progression “subtypes.” Their method incorporated prior clinical knowledge in the way of a bias for negative trajectories — consistent with expectations for neurodegenerative disease progressions — but did not assume any linearity. “We know that linearity is not reflective of what’s actually observed,” says Ng. “The methods and models that we use here were more flexible, in the sense that, they capture what was seen in the data,” without the need for expensive labeled data and prescription of parameters.

    Primarily, they applied the model to five longitudinal datasets from ALS clinical trials and observational studies. These used the gold standard to measure symptom development: the ALS functional rating scale revised (ALSFRS-R), which captures a global picture of patient neurological impairment but can be a bit of a “messy metric.” Additionally, performance on survivability probabilities, forced vital capacity (a measurement of respiratory function), and subscores of ALSFRS-R, which looks at individual bodily functions, were incorporated.

    New regimes of progression and utility

    When their population-level model was trained and tested on these metrics, four dominant patterns of disease popped out of the many trajectories — sigmoidal fast progression, stable slow progression, unstable slow progression, and unstable moderate progression — many with strong nonlinear characteristics. Notably, it captured trajectories where patients experienced a sudden loss of ability, called a functional cliff, which would significantly impact treatments, enrollment in clinical trials, and quality of life.

    The researchers compared their method against other commonly used linear and nonlinear approaches in the field to separate the contribution of clustering and linearity to the model’s accuracy. The new work outperformed them, even patient-specific models, and found that subtype patterns were consistent across measures. Impressively, when data were withheld, the model was able to interpolate missing values, and, critically, could forecast future health measures. The model could also be trained on one ALSFRS-R dataset and predict cluster membership in others, making it robust, generalizable, and accurate with scarce data. So long as 6-12 months of data were available, health trajectories could be inferred with higher confidence than conventional methods.

    The researchers’ approach also provided insights into Alzheimer’s and Parkinson’s diseases, both of which can have a range of symptom presentations and progression. For Alzheimer’s, the new technique could identify distinct disease patterns, in particular variations in the rates of conversion of mild to severe disease. The Parkinson’s analysis demonstrated a relationship between progression trajectories for off-medication scores and disease phenotypes, such as the tremor-dominant or postural instability/gait difficulty forms of Parkinson’s disease.

    The work makes significant strides to find the signal amongst the noise in the time-series of complex neurodegenerative disease. “The patterns that we see are reproducible across studies, which I don’t believe had been shown before, and that may have implications for how we subtype the [ALS] disease,” says Fraenkel. As the FDA has been considering the impact of non-linearity in clinical trial designs, the team notes that their work is particularly pertinent.

    As new ways to understand disease mechanisms come online, this model provides another tool to pick apart illnesses like ALS, Alzheimer’s, and Parkinson’s from a systems biology perspective.

    “We have a lot of molecular data from the same patients, and so our long-term goal is to see whether there are subtypes of the disease,” says Fraenkel, whose lab looks at cellular changes to understand the etiology of diseases and possible targets for cures. “One approach is to start with the symptoms … and see if people with different patterns of disease progression are also different at the molecular level. That might lead you to a therapy. Then there’s the bottom-up approach, where you start with the molecules” and try to reconstruct biological pathways that might be affected. “We’re going [to be tackling this] from both ends … and finding if something meets in the middle.”

    This research was supported, in part, by the MIT-IBM Watson AI Lab, the Muscular Dystrophy Association, Department of Veterans Affairs of Research and Development, the Department of Defense, NSF Gradate Research Fellowship Program, Siebel Scholars Fellowship, Answer ALS, the United States Army Medical Research Acquisition Activity, National Institutes of Health, and the NIH/NINDS. More

  • in

    New program to support translational research in AI, data science, and machine learning

    The MIT School of Engineering and Pillar VC today announced the MIT-Pillar AI Collective, a one-year pilot program funded by a gift from Pillar VC that will provide seed grants for projects in artificial intelligence, machine learning, and data science with the goal of supporting translational research. The program will support graduate students and postdocs through access to funding, mentorship, and customer discovery.

    Administered by the MIT Deshpande Center for Technological Innovation, the MIT-Pillar AI Collective will center on the market discovery process, advancing projects through market research, customer discovery, and prototyping. Graduate students and postdocs will aim to emerge from the program having built minimum viable products, with support from Pillar VC and experienced industry leaders.

    “We are grateful for this support from Pillar VC and to join forces to converge the commercialization of translational research in AI, data science, and machine learning, with an emphasis on identifying and cultivating prospective entrepreneurs,” says Anantha Chandrakasan, dean of the MIT School of Engineering and Vannevar Bush Professor of Electrical Engineering and Computer Science. “Pillar’s focus on mentorship for our graduate students and postdoctoral researchers, and centering the program within the Deshpande Center, will undoubtedly foster big ideas in AI and create an environment for prospective companies to launch and thrive.” 

    Founded by Jamie Goldstein ’89, Pillar VC is committed to growing companies and investing in personal and professional development, coaching, and community.

    “Many of the most promising companies of the future are living at MIT in the form of transformational research in the fields of data science, AI, and machine learning,” says Goldstein. “We’re honored by the chance to help unlock this potential and catalyze a new generation of founders by surrounding students and postdoctoral researchers with the resources and mentorship they need to move from the lab to industry.”

    The program will launch with the 2022-23 academic year. Grants will be open only to MIT faculty and students, with an emphasis on funding for graduate students in their final year, as well as postdocs. Applications must be submitted by MIT employees with principal investigator status. A selection committee composed of three MIT representatives will include Devavrat Shah, faculty director of the Deshpande Center, the Andrew (1956) and Erna Viterbi Professor in the Department of Electrical Engineering and Computer Science and the Institute for Data, Systems, and Society; the chair of the selection committee; and a representative from the MIT Schwarzman College of Computing. The committee will also include representation from Pillar VC. Funding will be provided for up to nine research teams.

    “The Deshpande Center will serve as the perfect home for the new collective, given its focus on moving innovative technologies from the lab to the marketplace in the form of breakthrough products and new companies,” adds Chandrakasan. 

    “The Deshpande Center has a 20-year history of guiding new technologies toward commercialization, where they can have a greater impact,” says Shah. “This new collective will help the center expand its own impact by helping more projects realize their market potential and providing more support to researchers in the fast-growing fields of AI, machine learning, and data science.” More

  • in

    Q&A: Global challenges surrounding the deployment of AI

    The AI Policy Forum (AIPF) is an initiative of the MIT Schwarzman College of Computing to move the global conversation about the impact of artificial intelligence from principles to practical policy implementation. Formed in late 2020, AIPF brings together leaders in government, business, and academia to develop approaches to address the societal challenges posed by the rapid advances and increasing applicability of AI.

    The co-chairs of the AI Policy Forum are Aleksander Madry, the Cadence Design Systems Professor; Asu Ozdaglar, deputy dean of academics for the MIT Schwarzman College of Computing and head of the Department of Electrical Engineering and Computer Science; and Luis Videgaray, senior lecturer at MIT Sloan School of Management and director of MIT AI Policy for the World Project. Here, they discuss talk some of the key issues facing the AI policy landscape today and the challenges surrounding the deployment of AI. The three are co-organizers of the upcoming AI Policy Forum Summit on Sept. 28, which will further explore the issues discussed here.

    Q: Can you talk about the ­ongoing work of the AI Policy Forum and the AI policy landscape generally?

    Ozdaglar: There is no shortage of discussion about AI at different venues, but conversations are often high-level, focused on questions of ethics and principles, or on policy problems alone. The approach the AIPF takes to its work is to target specific questions with actionable policy solutions and engage with the stakeholders working directly in these areas. We work “behind the scenes” with smaller focus groups to tackle these challenges and aim to bring visibility to some potential solutions alongside the players working directly on them through larger gatherings.

    Q: AI impacts many sectors, which makes us naturally worry about its trustworthiness. Are there any emerging best practices for development and deployment of trustworthy AI?

    Madry: The most important thing to understand regarding deploying trustworthy AI is that AI technology isn’t some natural, preordained phenomenon. It is something built by people. People who are making certain design decisions.

    We thus need to advance research that can guide these decisions as well as provide more desirable solutions. But we also need to be deliberate and think carefully about the incentives that drive these decisions. 

    Now, these incentives stem largely from the business considerations, but not exclusively so. That is, we should also recognize that proper laws and regulations, as well as establishing thoughtful industry standards have a big role to play here too.

    Indeed, governments can put in place rules that prioritize the value of deploying AI while being keenly aware of the corresponding downsides, pitfalls, and impossibilities. The design of such rules will be an ongoing and evolving process as the technology continues to improve and change, and we need to adapt to socio-political realities as well.

    Q: Perhaps one of the most rapidly evolving domains in AI deployment is in the financial sector. From a policy perspective, how should governments, regulators, and lawmakers make AI work best for consumers in finance?

    Videgaray: The financial sector is seeing a number of trends that present policy challenges at the intersection of AI systems. For one, there is the issue of explainability. By law (in the U.S. and in many other countries), lenders need to provide explanations to customers when they take actions deleterious in whatever way, like denial of a loan, to a customer’s interest. However, as financial services increasingly rely on automated systems and machine learning models, the capacity of banks to unpack the “black box” of machine learning to provide that level of mandated explanation becomes tenuous. So how should the finance industry and its regulators adapt to this advance in technology? Perhaps we need new standards and expectations, as well as tools to meet these legal requirements.

    Meanwhile, economies of scale and data network effects are leading to a proliferation of AI outsourcing, and more broadly, AI-as-a-service is becoming increasingly common in the finance industry. In particular, we are seeing fintech companies provide the tools for underwriting to other financial institutions — be it large banks or small, local credit unions. What does this segmentation of the supply chain mean for the industry? Who is accountable for the potential problems in AI systems deployed through several layers of outsourcing? How can regulators adapt to guarantee their mandates of financial stability, fairness, and other societal standards?

    Q: Social media is one of the most controversial sectors of the economy, resulting in many societal shifts and disruptions around the world. What policies or reforms might be needed to best ensure social media is a force for public good and not public harm?

    Ozdaglar: The role of social media in society is of growing concern to many, but the nature of these concerns can vary quite a bit — with some seeing social media as not doing enough to prevent, for example, misinformation and extremism, and others seeing it as unduly silencing certain viewpoints. This lack of unified view on what the problem is impacts the capacity to enact any change. All of that is additionally coupled with the complexities of the legal framework in the U.S. spanning the First Amendment, Section 230 of the Communications Decency Act, and trade laws.

    However, these difficulties in regulating social media do not mean that there is nothing to be done. Indeed, regulators have begun to tighten their control over social media companies, both in the United States and abroad, be it through antitrust procedures or other means. In particular, Ofcom in the U.K. and the European Union is already introducing new layers of oversight to platforms. Additionally, some have proposed taxes on online advertising to address the negative externalities caused by current social media business model. So, the policy tools are there, if the political will and proper guidance exists to implement them. More

  • in

    Empowering Cambridge youth through data activism

    For over 40 years, the Mayor’s Summer Youth Employment Program (MSYEP, or the Mayor’s Program) in Cambridge, Massachusetts, has been providing teenagers with their first work experience, but 2022 brought a new offering. Collaborating with MIT’s Personal Robots research group (PRG) and Responsible AI for Social Empowerment and Education (RAISE) this summer, MSYEP created a STEAM-focused learning site at the Institute. Eleven students joined the program to learn coding and programming skills through the lens of “Data Activism.”

    MSYEP’s partnership with MIT provides an opportunity for Cambridge high schoolers to gain exposure to more pathways for their future careers and education. The Mayor’s Program aims to respect students’ time and show the value of their work, so participants are compensated with an hourly wage as they learn workforce skills at MSYEP worksites. In conjunction with two ongoing research studies at MIT, PRG and RAISE developed the six-week Data Activism curriculum to equip students with critical-thinking skills so they feel prepared to utilize data science to challenge social injustice and empower their community.

    Rohan Kundargi, K-12 Community Outreach Administrator for MIT Office of Government and Community Relations (OGCR), says, “I see this as a model for a new type of partnership between MIT and Cambridge MSYEP. Specifically, an MIT research project that involves students from Cambridge getting paid to learn, research, and develop their own skills!”

    Cross-Cambridge collaboration

    Cambridge’s Office of Workforce Development initially contacted MIT OGCR about hosting a potential MSYEP worksite that taught Cambridge teens how to code. When Kundargi reached out to MIT pK-12 collaborators, MIT PRG’s graduate research assistant Raechel Walker proposed the Data Activism curriculum. Walker defines “data activism” as utilizing data, computing, and art to analyze how power operates in the world, challenge power, and empathize with people who are oppressed.

    Walker says, “I wanted students to feel empowered to incorporate their own expertise, talents, and interests into every activity. In order for students to fully embrace their academic abilities, they must remain comfortable with bringing their full selves into data activism.”

    As Kundargi and Walker recruited students for the Data Activism learning site, they wanted to make sure the cohort of students — the majority of whom are individuals of color — felt represented at MIT and felt they had the agency for their voice to be heard. “The pioneers in this field are people who look like them,” Walker says, speaking of well-known data activists Timnit Gebru, Rediet Abebe, and Joy Buolamwini.

    When the program began this summer, some of the students were not aware of the ways data science and artificial intelligence exacerbate systemic oppression in society, or some of the tools currently being used to mitigate those societal harms. As a result, Walker says, the students wanted to learn more about discriminatory design in every aspect of life. They were also interested in creating responsible machine learning algorithms and AI fairness metrics.

    A different side of STEAM

    The development and execution of the Data Activism curriculum contributed to Walker’s and postdoc Xiaoxue Du’s respective research at PRG. Walker is studying AI education, specifically creating and teaching data activism curricula for minoritized communities. Du’s research explores processes, assessments, and curriculum design that prepares educators to use, adapt, and integrate AI literacy curricula. Additionally, her research targets how to leverage more opportunities for students with diverse learning needs.

    The Data Activism curriculum utilizes a “libertatory computing” framework, a term Walker coined in her position paper with Professor Cynthia Breazeal, director of MIT RAISE, dean for digital learning, and head of PRG, and Eman Sherif, a then-undergraduate researcher from University of California at San Diego, titled “Liberty Computing for African American Students.” This framework ensures that students, especially minoritized students, acquire a sound racial identity, critical consciousness, collective obligation, liberation centered academic/achievement identity, as well as the activism skills to use computing to transform a multi-layered system of barriers in which racism persists. Walker says, “We encouraged students to demonstrate competency in every pillar because all of the pillars are interconnected and build upon each other.”

    Walker developed a series of interactive coding and project-based activities that focused on understanding systemic racism, utilizing data science to analyze systemic oppression, data drawing, responsible machine learning, how racism can be embedded into AI, and different AI fairness metrics.

    This was the students’ first time learning how to create data visualizations using the programming language Python and the data analysis tool Pandas. In one project meant to examine how different systems of oppression can affect different aspects of students’ own identities, students created datasets with data from their respective intersectional identities. Another activity highlighted African American achievements, where students analyzed two datasets about African American scientists, activists, artists, scholars, and athletes. Using the data visualizations, students then created zines about the African Americans who inspired them.

    RAISE hired Olivia Dias, Sophia Brady, Lina Henriquez, and Zeynep Yalcin through the MIT Undergraduate Research Opportunity Program (UROP) and PRG hired freelancer Matt Taylor to work with Walker on developing the curriculum and designing interdisciplinary experience projects. Walker and the four undergraduate researchers constructed an intersectional data analysis activity about different examples of systemic oppression. PRG also hired three high school students to test activities and offer insights about making the curriculum engaging for program participants. Throughout the program, the Data Activism team taught students in small groups, continually asked students how to improve each activity, and structured each lesson based on the students’ interests. Walker says Dias, Brady, Henriquez, and Yalcin were invaluable to cultivating a supportive classroom environment and helping students complete their projects.

    Cambridge Rindge and Latin School senior Nina works on her rubber block stamp that depicts the importance of representation in media and greater representation in the tech industry.

    Photo: Katherine Ouellette

    Previous item
    Next item

    Student Nina says, “It’s opened my eyes to a different side of STEM. I didn’t know what ‘data’ meant before this program, or how intersectionality can affect AI and data.” Before MSYEP, Nina took Intro to Computer Science and AP Computer Science, but she has been coding since Girls Who Code first sparked her interest in middle school. “The community was really nice. I could talk with other girls. I saw there needs to be more women in STEM, especially in coding.” Now she’s interested in applying to colleges with strong computer science programs so she can pursue a coding-related career.

    From MSYEP to the mayor’s office

    Mayor Sumbul Siddiqui visited the Data Activism learning site on Aug. 9, accompanied by Breazeal. A graduate of MSYEP herself, Siddiqui says, “Through hands-on learning through computer programming, Cambridge high school students have the unique opportunity to see themselves as data scientists. Students were able learn ways to combat discrimination that occurs through artificial intelligence.” In an Instagram post, Siddiqui also said, “I had a blast visiting the students and learning about their projects.”

    Students worked on an activity that asked them to envision how data science might be used to support marginalized communities. They transformed their answers into block-printed T-shirt designs, carving pictures of their hopes into rubber block stamps. Some students focused on the importance of data privacy, like Jacob T., who drew a birdcage to represent data stored and locked away by third party apps. He says, “I want to open that cage and restore my data to myself and see what can be done with it.”

    The subject of Cambridge Community Charter School student Jacob T.’s project was the importance of data privacy. For his T-shirt design, he drew a birdcage to represent data stored and locked away by third party apps. (From right to left:) Breazeal, Jacob T. Kiki, Raechel Walker, and Zeynep Yalcin.

    Photo: Katherine Ouellette

    Previous item
    Next item

    Many students wanted to see more representation in both the media they consume and across various professional fields. Nina talked about the importance of representation in media and how that could contribute to greater representation in the tech industry, while Kiki talked about encouraging more women to pursue STEM fields. Jesmin said, “I wanted to show that data science is accessible to everyone, no matter their origin or language you speak. I wrote ‘hello’ in Bangla, Arabic, and English, because I speak all three languages and they all resonate with me.”

    Student Jesmin (left) explains the concept of her T-shirt design to Mayor Siddiqui. She wants data science to be accessible to everyone, no matter their origin or language, so she drew a globe and wrote ‘hello’ in the three languages she speaks: Bangla, Arabic, and English.

    Photo: Katherine Ouellette

    Previous item
    Next item

    “Overall, I hope the students continue to use their data activism skills to re-envision a society that supports marginalized groups,” says Walker. “Moreover, I hope they are empowered to become data scientists and understand how their race can be a positive part of their identity.” More

  • in

    Computing for the health of the planet

    The health of the planet is one of the most important challenges facing humankind today. From climate change to unsafe levels of air and water pollution to coastal and agricultural land erosion, a number of serious challenges threaten human and ecosystem health.

    Ensuring the health and safety of our planet necessitates approaches that connect scientific, engineering, social, economic, and political aspects. New computational methods can play a critical role by providing data-driven models and solutions for cleaner air, usable water, resilient food, efficient transportation systems, better-preserved biodiversity, and sustainable sources of energy.

    The MIT Schwarzman College of Computing is committed to hiring multiple new faculty in computing for climate and the environment, as part of MIT’s plan to recruit 20 climate-focused faculty under its climate action plan. This year the college undertook searches with several departments in the schools of Engineering and Science for shared faculty in computing for health of the planet, one of the six strategic areas of inquiry identified in an MIT-wide planning process to help focus shared hiring efforts. The college also undertook searches for core computing faculty in the Department of Electrical Engineering and Computer Science (EECS).

    The searches are part of an ongoing effort by the MIT Schwarzman College of Computing to hire 50 new faculty — 25 shared with other academic departments and 25 in computer science and artificial intelligence and decision-making. The goal is to build capacity at MIT to help more deeply infuse computing and other disciplines in departments.

    Four interdisciplinary scholars were hired in these searches. They will join the MIT faculty in the coming year to engage in research and teaching that will advance physical understanding of low-carbon energy solutions, Earth-climate modeling, biodiversity monitoring and conservation, and agricultural management through high-performance computing, transformational numerical methods, and machine-learning techniques.

    “By coordinating hiring efforts with multiple departments and schools, we were able to attract a cohort of exceptional scholars in this area to MIT. Each of them is developing and using advanced computational methods and tools to help find solutions for a range of climate and environmental issues,” says Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing and the Henry Warren Ellis Professor of Electrical Engineering and Computer Science. “They will also help strengthen cross-departmental ties in computing across an important, critical area for MIT and the world.”

    “These strategic hires in the area of computing for climate and the environment are an incredible opportunity for the college to deepen its academic offerings and create new opportunity for collaboration across MIT,” says Anantha P. Chandrakasan, dean of the MIT School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science. “The college plays a pivotal role in MIT’s overarching effort to hire climate-focused faculty — introducing the critical role of computing to address the health of the planet through innovative research and curriculum.”

    The four new faculty members are:

    Sara Beery will join MIT as an assistant professor in the Faculty of Artificial Intelligence and Decision-Making in EECS in September 2023. Beery received her PhD in computing and mathematical sciences at Caltech in 2022, where she was advised by Pietro Perona. Her research focuses on building computer vision methods that enable global-scale environmental and biodiversity monitoring across data modalities, tackling real-world challenges including strong spatiotemporal correlations, imperfect data quality, fine-grained categories, and long-tailed distributions. She partners with nongovernmental organizations and government agencies to deploy her methods in the wild worldwide and works toward increasing the diversity and accessibility of academic research in artificial intelligence through interdisciplinary capacity building and education.

    Priya Donti will join MIT as an assistant professor in the faculties of Electrical Engineering and Artificial Intelligence and Decision-Making in EECS in academic year 2023-24. Donti recently finished her PhD in the Computer Science Department and the Department of Engineering and Public Policy at Carnegie Mellon University, co-advised by Zico Kolter and Inês Azevedo. Her work focuses on machine learning for forecasting, optimization, and control in high-renewables power grids. Specifically, her research explores methods to incorporate the physics and hard constraints associated with electric power systems into deep learning models. Donti is also co-founder and chair of Climate Change AI, a nonprofit initiative to catalyze impactful work at the intersection of climate change and machine learning that is currently running through the Cornell Tech Runway Startup Postdoc Program.

    Ericmoore Jossou will join MIT as an assistant professor in a shared position between the Department of Nuclear Science and Engineering and the faculty of electrical engineering in EECS in July 2023. He is currently an assistant scientist at the Brookhaven National Laboratory, a U.S. Department of Energy-affiliated lab that conducts research in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience, and national security. His research at MIT will focus on understanding the processing-structure-properties correlation of materials for nuclear energy applications through advanced experiments, multiscale simulations, and data science. Jossou obtained his PhD in mechanical engineering in 2019 from the University of Saskatchewan.

    Sherrie Wang will join MIT as an assistant professor in a shared position between the Department of Mechanical Engineering and the Institute for Data, Systems, and Society in academic year 2023-24. Wang is currently a Ciriacy-Wantrup Postdoctoral Fellow at the University of California at Berkeley, hosted by Solomon Hsiang and the Global Policy Lab. She develops machine learning for Earth observation data. Her primary application areas are improving agricultural management and forecasting climate phenomena. She obtained her PhD in computational and mathematical engineering from Stanford University in 2021, where she was advised by David Lobell. More