More stories

  • in

    An AI dataset carves new paths to tornado detection

    The return of spring in the Northern Hemisphere touches off tornado season. A tornado’s twisting funnel of dust and debris seems an unmistakable sight. But that sight can be obscured to radar, the tool of meteorologists. It’s hard to know exactly when a tornado has formed, or even why.

    A new dataset could hold answers. It contains radar returns from thousands of tornadoes that have hit the United States in the past 10 years. Storms that spawned tornadoes are flanked by other severe storms, some with nearly identical conditions, that never did. MIT Lincoln Laboratory researchers who curated the dataset, called TorNet, have now released it open source. They hope to enable breakthroughs in detecting one of nature’s most mysterious and violent phenomena.

    “A lot of progress is driven by easily available, benchmark datasets. We hope TorNet will lay a foundation for machine learning algorithms to both detect and predict tornadoes,” says Mark Veillette, the project’s co-principal investigator with James Kurdzo. Both researchers work in the Air Traffic Control Systems Group. 

    Along with the dataset, the team is releasing models trained on it. The models show promise for machine learning’s ability to spot a twister. Building on this work could open new frontiers for forecasters, helping them provide more accurate warnings that might save lives. 

    Swirling uncertainty

    About 1,200 tornadoes occur in the United States every year, causing millions to billions of dollars in economic damage and claiming 71 lives on average. Last year, one unusually long-lasting tornado killed 17 people and injured at least 165 others along a 59-mile path in Mississippi.  

    Yet tornadoes are notoriously difficult to forecast because scientists don’t have a clear picture of why they form. “We can see two storms that look identical, and one will produce a tornado and one won’t. We don’t fully understand it,” Kurdzo says.

    A tornado’s basic ingredients are thunderstorms with instability caused by rapidly rising warm air and wind shear that causes rotation. Weather radar is the primary tool used to monitor these conditions. But tornadoes lay too low to be detected, even when moderately close to the radar. As the radar beam with a given tilt angle travels further from the antenna, it gets higher above the ground, mostly seeing reflections from rain and hail carried in the “mesocyclone,” the storm’s broad, rotating updraft. A mesocyclone doesn’t always produce a tornado.

    With this limited view, forecasters must decide whether or not to issue a tornado warning. They often err on the side of caution. As a result, the rate of false alarms for tornado warnings is more than 70 percent. “That can lead to boy-who-cried-wolf syndrome,” Kurdzo says.  

    In recent years, researchers have turned to machine learning to better detect and predict tornadoes. However, raw datasets and models have not always been accessible to the broader community, stifling progress. TorNet is filling this gap.

    The dataset contains more than 200,000 radar images, 13,587 of which depict tornadoes. The rest of the images are non-tornadic, taken from storms in one of two categories: randomly selected severe storms or false-alarm storms (those that led a forecaster to issue a warning but that didn’t produce a tornado).

    Each sample of a storm or tornado comprises two sets of six radar images. The two sets correspond to different radar sweep angles. The six images portray different radar data products, such as reflectivity (showing precipitation intensity) or radial velocity (indicating if winds are moving toward or away from the radar).

    A challenge in curating the dataset was first finding tornadoes. Within the corpus of weather radar data, tornadoes are extremely rare events. The team then had to balance those tornado samples with difficult non-tornado samples. If the dataset were too easy, say by comparing tornadoes to snowstorms, an algorithm trained on the data would likely over-classify storms as tornadic.

    “What’s beautiful about a true benchmark dataset is that we’re all working with the same data, with the same level of difficulty, and can compare results,” Veillette says. “It also makes meteorology more accessible to data scientists, and vice versa. It becomes easier for these two parties to work on a common problem.”

    Both researchers represent the progress that can come from cross-collaboration. Veillette is a mathematician and algorithm developer who has long been fascinated by tornadoes. Kurdzo is a meteorologist by training and a signal processing expert. In grad school, he chased tornadoes with custom-built mobile radars, collecting data to analyze in new ways.

    “This dataset also means that a grad student doesn’t have to spend a year or two building a dataset. They can jump right into their research,” Kurdzo says.

    This project was funded by Lincoln Laboratory’s Climate Change Initiative, which aims to leverage the laboratory’s diverse technical strengths to help address climate problems threatening human health and global security.

    Chasing answers with deep learning

    Using the dataset, the researchers developed baseline artificial intelligence (AI) models. They were particularly eager to apply deep learning, a form of machine learning that excels at processing visual data. On its own, deep learning can extract features (key observations that an algorithm uses to make a decision) from images across a dataset. Other machine learning approaches require humans to first manually label features. 

    “We wanted to see if deep learning could rediscover what people normally look for in tornadoes and even identify new things that typically aren’t searched for by forecasters,” Veillette says.

    The results are promising. Their deep learning model performed similar to or better than all tornado-detecting algorithms known in literature. The trained algorithm correctly classified 50 percent of weaker EF-1 tornadoes and over 85 percent of tornadoes rated EF-2 or higher, which make up the most devastating and costly occurrences of these storms.

    They also evaluated two other types of machine-learning models, and one traditional model to compare against. The source code and parameters of all these models are freely available. The models and dataset are also described in a paper submitted to a journal of the American Meteorological Society (AMS). Veillette presented this work at the AMS Annual Meeting in January.

    “The biggest reason for putting our models out there is for the community to improve upon them and do other great things,” Kurdzo says. “The best solution could be a deep learning model, or someone might find that a non-deep learning model is actually better.”

    TorNet could be useful in the weather community for others uses too, such as for conducting large-scale case studies on storms. It could also be augmented with other data sources, like satellite imagery or lightning maps. Fusing multiple types of data could improve the accuracy of machine learning models.

    Taking steps toward operations

    On top of detecting tornadoes, Kurdzo hopes that models might help unravel the science of why they form.

    “As scientists, we see all these precursors to tornadoes — an increase in low-level rotation, a hook echo in reflectivity data, specific differential phase (KDP) foot and differential reflectivity (ZDR) arcs. But how do they all go together? And are there physical manifestations we don’t know about?” he asks.

    Teasing out those answers might be possible with explainable AI. Explainable AI refers to methods that allow a model to provide its reasoning, in a format understandable to humans, of why it came to a certain decision. In this case, these explanations might reveal physical processes that happen before tornadoes. This knowledge could help train forecasters, and models, to recognize the signs sooner. 

    “None of this technology is ever meant to replace a forecaster. But perhaps someday it could guide forecasters’ eyes in complex situations, and give a visual warning to an area predicted to have tornadic activity,” Kurdzo says.

    Such assistance could be especially useful as radar technology improves and future networks potentially grow denser. Data refresh rates in a next-generation radar network are expected to increase from every five minutes to approximately one minute, perhaps faster than forecasters can interpret the new information. Because deep learning can process huge amounts of data quickly, it could be well-suited for monitoring radar returns in real time, alongside humans. Tornadoes can form and disappear in minutes.

    But the path to an operational algorithm is a long road, especially in safety-critical situations, Veillette says. “I think the forecaster community is still, understandably, skeptical of machine learning. One way to establish trust and transparency is to have public benchmark datasets like this one. It’s a first step.”

    The next steps, the team hopes, will be taken by researchers across the world who are inspired by the dataset and energized to build their own algorithms. Those algorithms will in turn go into test beds, where they’ll eventually be shown to forecasters, to start a process of transitioning into operations.

    In the end, the path could circle back to trust.

    “We may never get more than a 10- to 15-minute tornado warning using these tools. But if we could lower the false-alarm rate, we could start to make headway with public perception,” Kurdzo says. “People are going to use those warnings to take the action they need to save their lives.” More

  • in

    Using deep learning to image the Earth’s planetary boundary layer

    Although the troposphere is often thought of as the closest layer of the atmosphere to the Earth’s surface, the planetary boundary layer (PBL) — the lowest layer of the troposphere — is actually the part that most significantly influences weather near the surface. In the 2018 planetary science decadal survey, the PBL was raised as an important scientific issue that has the potential to enhance storm forecasting and improve climate projections.  

    “The PBL is where the surface interacts with the atmosphere, including exchanges of moisture and heat that help lead to severe weather and a changing climate,” says Adam Milstein, a technical staff member in Lincoln Laboratory’s Applied Space Systems Group. “The PBL is also where humans live, and the turbulent movement of aerosols throughout the PBL is important for air quality that influences human health.” 

    Although vital for studying weather and climate, important features of the PBL, such as its height, are difficult to resolve with current technology. In the past four years, Lincoln Laboratory staff have been studying the PBL, focusing on two different tasks: using machine learning to make 3D-scanned profiles of the atmosphere, and resolving the vertical structure of the atmosphere more clearly in order to better predict droughts.  

    This PBL-focused research effort builds on more than a decade of related work on fast, operational neural network algorithms developed by Lincoln Laboratory for NASA missions. These missions include the Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission as well as Aqua, a satellite that collects data about Earth’s water cycle and observes variables such as ocean temperature, precipitation, and water vapor in the atmosphere. These algorithms retrieve temperature and humidity from the satellite instrument data and have been shown to significantly improve the accuracy and usable global coverage of the observations over previous approaches. For TROPICS, the algorithms help retrieve data that are used to characterize a storm’s rapidly evolving structures in near-real time, and for Aqua, it has helped increase forecasting models, drought monitoring, and fire prediction. 

    These operational algorithms for TROPICS and Aqua are based on classic “shallow” neural networks to maximize speed and simplicity, creating a one-dimensional vertical profile for each spectral measurement collected by the instrument over each location. While this approach has improved observations of the atmosphere down to the surface overall, including the PBL, laboratory staff determined that newer “deep” learning techniques that treat the atmosphere over a region of interest as a three-dimensional image are needed to improve PBL details further.

    “We hypothesized that deep learning and artificial intelligence (AI) techniques could improve on current approaches by incorporating a better statistical representation of 3D temperature and humidity imagery of the atmosphere into the solutions,” Milstein says. “But it took a while to figure out how to create the best dataset — a mix of real and simulated data; we needed to prepare to train these techniques.”

    The team collaborated with Joseph Santanello of the NASA Goddard Space Flight Center and William Blackwell, also of the Applied Space Systems Group, in a recent NASA-funded effort showing that these retrieval algorithms can improve PBL detail, including more accurate determination of the PBL height than the previous state of the art. 

    While improved knowledge of the PBL is broadly useful for increasing understanding of climate and weather, one key application is prediction of droughts. According to a Global Drought Snapshot report released last year, droughts are a pressing planetary issue that the global community needs to address. Lack of humidity near the surface, specifically at the level of the PBL, is the leading indicator of drought. While previous studies using remote-sensing techniques have examined the humidity of soil to determine drought risk, studying the atmosphere can help predict when droughts will happen.  

    In an effort funded by Lincoln Laboratory’s Climate Change Initiative, Milstein, along with laboratory staff member Michael Pieper, are working with scientists at NASA’s Jet Propulsion Laboratory (JPL) to use neural network techniques to improve drought prediction over the continental United States. While the work builds off of existing operational work JPL has done incorporating (in part) the laboratory’s operational “shallow” neural network approach for Aqua, the team believes that this work and the PBL-focused deep learning research work can be combined to further improve the accuracy of drought prediction. 

    “Lincoln Laboratory has been working with NASA for more than a decade on neural network algorithms for estimating temperature and humidity in the atmosphere from space-borne infrared and microwave instruments, including those on the Aqua spacecraft,” Milstein says. “Over that time, we have learned a lot about this problem by working with the science community, including learning about what scientific challenges remain. Our long experience working on this type of remote sensing with NASA scientists, as well as our experience with using neural network techniques, gave us a unique perspective.”

    According to Milstein, the next step for this project is to compare the deep learning results to datasets from the National Oceanic and Atmospheric Administration, NASA, and the Department of Energy collected directly in the PBL using radiosondes, a type of instrument flown on a weather balloon. “These direct measurements can be considered a kind of ‘ground truth’ to quantify the accuracy of the techniques we have developed,” Milstein says.

    This improved neural network approach holds promise to demonstrate drought prediction that can exceed the capabilities of existing indicators, Milstein says, and to be a tool that scientists can rely on for decades to come. More

  • in

    Looking forward to forecast the risks of a changing climate

    On April 11, MIT announced five multiyear flagship projects in the first-ever Climate Grand Challenges, a new initiative to tackle complex climate problems and deliver breakthrough solutions to the world as quickly as possible. This article is the third in a five-part series highlighting the most promising concepts to emerge from the competition, and the interdisciplinary research teams behind them.

    Extreme weather events that were once considered rare have become noticeably less so, from intensifying hurricane activity in the North Atlantic to wildfires generating massive clouds of ozone-damaging smoke. But current climate models are unprepared when it comes to estimating the risk that these increasingly extreme events pose — and without adequate modeling, governments are left unable to take necessary precautions to protect their communities.

    MIT Department of Earth, Atmospheric and Planetary Science (EAPS) Professor Paul O’Gorman researches this trend by studying how climate affects the atmosphere and incorporating what he learns into climate models to improve their accuracy. One particular focus for O’Gorman has been changes in extreme precipitation and midlatitude storms that hit areas like New England.

    “These extreme events are having a lot of impact, but they’re also difficult to model or study,” he says. Seeing the pressing need for better climate models that can be used to develop preparedness plans and climate change mitigation strategies, O’Gorman and collaborators Kerry Emanuel, the Cecil and Ida Green Professor of Atmospheric Science in EAPS, and Miho Mazereeuw, associate professor in MIT’s Department of Architecture, are leading an interdisciplinary group of scientists, engineers, and designers to tackle this problem with their MIT Climate Grand Challenges flagship project, “Preparing for a new world of weather and climate extremes.”

    “We know already from observations and from climate model predictions that weather and climate extremes are changing and will change more,” O’Gorman says. “The grand challenge is preparing for those changing extremes.”

    Their proposal is one of five flagship projects recently announced by the MIT Climate Grand Challenges initiative — an Institute-wide effort catalyzing novel research and engineering innovations to address the climate crisis. Selected from a field of almost 100 submissions, the team will receive additional funding and exposure to help accelerate and scale their project goals. Other MIT collaborators on the proposal include researchers from the School of Engineering, the School of Architecture and Planning, the Office of Sustainability, the Center for Global Change Science, and the Institute for Data, Systems and Society.

    Weather risk modeling

    Fifteen years ago, Kerry Emanuel developed a simple hurricane model. It was based on physics equations, rather than statistics, and could run in real time, making it useful for modeling risk assessment. Emanuel wondered if similar models could be used for long-term risk assessment of other things, such as changes in extreme weather because of climate change.

    “I discovered, somewhat to my surprise and dismay, that almost all extant estimates of long-term weather risks in the United States are based not on physical models, but on historical statistics of the hazards,” says Emanuel. “The problem with relying on historical records is that they’re too short; while they can help estimate common events, they don’t contain enough information to make predictions for more rare events.”

    Another limitation of weather risk models which rely heavily on statistics: They have a built-in assumption that the climate is static.

    “Historical records rely on the climate at the time they were recorded; they can’t say anything about how hurricanes grow in a warmer climate,” says Emanuel. The models rely on fixed relationships between events; they assume that hurricane activity will stay the same, even while science is showing that warmer temperatures will most likely push typical hurricane activity beyond the tropics and into a much wider band of latitudes.

    As a flagship project, the goal is to eliminate this reliance on the historical record by emphasizing physical principles (e.g., the laws of thermodynamics and fluid mechanics) in next-generation models. The downside to this is that there are many variables that have to be included. Not only are there planetary-scale systems to consider, such as the global circulation of the atmosphere, but there are also small-scale, extremely localized events, like thunderstorms, that influence predictive outcomes.

    Trying to compute all of these at once is costly and time-consuming — and the results often can’t tell you the risk in a specific location. But there is a way to correct for this: “What’s done is to use a global model, and then use a method called downscaling, which tries to infer what would happen on very small scales that aren’t properly resolved by the global model,” explains O’Gorman. The team hopes to improve downscaling techniques so that they can be used to calculate the risk of very rare but impactful weather events.

    Global climate models, or general circulation models (GCMs), Emanuel explains, are constructed a bit like a jungle gym. Like the playground bars, the Earth is sectioned in an interconnected three-dimensional framework — only it’s divided 100 to 200 square kilometers at a time. Each node comprises a set of computations for characteristics like wind, rainfall, atmospheric pressure, and temperature within its bounds; the outputs of each node are connected to its neighbor. This framework is useful for creating a big picture idea of Earth’s climate system, but if you tried to zoom in on a specific location — like, say, to see what’s happening in Miami or Mumbai — the connecting nodes are too far apart to make predictions on anything specific to those areas.

    Scientists work around this problem by using downscaling. They use the same blueprint of the jungle gym, but within the nodes they weave a mesh of smaller features, incorporating equations for things like topography and vegetation or regional meteorological models to fill in the blanks. By creating a finer mesh over smaller areas they can predict local effects without needing to run the entire global model.

    Of course, even this finer-resolution solution has its trade-offs. While we might be able to gain a clearer picture of what’s happening in a specific region by nesting models within models, it can still make for a computing challenge to crunch all that data at once, with the trade-off being expense and time, or predictions that are limited to shorter windows of duration — where GCMs can be run considering decades or centuries, a particularly complex local model may be restricted to predictions on timescales of just a few years at a time.

    “I’m afraid that most of the downscaling at present is brute force, but I think there’s room to do it in better ways,” says Emanuel, who sees the problem of finding new and novel methods of achieving this goal as an intellectual challenge. “I hope that through the Grand Challenges project we might be able to get students, postdocs, and others interested in doing this in a very creative way.”

    Adapting to weather extremes for cities and renewable energy

    Improving climate modeling is more than a scientific exercise in creativity, however. There’s a very real application for models that can accurately forecast risk in localized regions.

    Another problem is that progress in climate modeling has not kept up with the need for climate mitigation plans, especially in some of the most vulnerable communities around the globe.

    “It is critical for stakeholders to have access to this data for their own decision-making process. Every community is composed of a diverse population with diverse needs, and each locality is affected by extreme weather events in unique ways,” says Mazereeuw, the director of the MIT Urban Risk Lab. 

    A key piece of the team’s project is building on partnerships the Urban Risk Lab has developed with several cities to test their models once they have a usable product up and running. The cities were selected based on their vulnerability to increasing extreme weather events, such as tropical cyclones in Broward County, Florida, and Toa Baja, Puerto Rico, and extratropical storms in Boston, Massachusetts, and Cape Town, South Africa.

    In their proposal, the team outlines a variety of deliverables that the cities can ultimately use in their climate change preparations, with ideas such as online interactive platforms and workshops with stakeholders — such as local governments, developers, nonprofits, and residents — to learn directly what specific tools they need for their local communities. By doing so, they can craft plans addressing different scenarios in their region, involving events such as sea-level rise or heat waves, while also providing information and means of developing adaptation strategies for infrastructure under these conditions that will be the most effective and efficient for them.

    “We are acutely aware of the inequity of resources both in mitigating impacts and recovering from disasters. Working with diverse communities through workshops allows us to engage a lot of people, listen, discuss, and collaboratively design solutions,” says Mazereeuw.

    By the end of five years, the team is hoping that they’ll have better risk assessment and preparedness tool kits, not just for the cities that they’re partnering with, but for others as well.

    “MIT is well-positioned to make progress in this area,” says O’Gorman, “and I think it’s an important problem where we can make a difference.” More