More stories

  • in

    Study: Covid-19 has reduced diverse urban interactions

    The Covid-19 pandemic has reduced how often urban residents intersect with people from different income brackets, according to a new study led by MIT researchers.

    Examining the movement of people in four U.S. cities before and after the onset of the pandemic, the study found a 15 to 30 percent decrease in the number of visits residents were making to areas that are socioeconomically different than their own. In turn, this has reduced people’s opportunities to interact with others from varied social and economic spheres.

    “Income diversity of urban encounters decreased during the pandemic, and not just in the lockdown stages,” says Takahiro Yabe, a postdoc at the Media Lab and co-author of a newly published paper detailing the study’s results. “It decreased in the long term as well, after mobility patterns recovered.”

    Indeed, the study found a large immediate dropoff in urban movement in the spring of 2020, when new policies temporarily shuttered many types of institutions and businesses in the U.S. and much of the world due to the emergence of the deadly Covid-19 virus. But even after such restrictions were lifted and the overall amount of urban movement approached prepandemic levels, movement patterns within cities have narrowed; people now visit fewer places.

    “We see that changes like working from home, less exploration, more online shopping, all these behaviors add up,” says Esteban Moro, a research scientist at MIT’s Sociotechnical Systems Research Center (SSRC) and another of the paper’s co-authors. “Working from home is amazing and shopping online is great, but we are not seeing each other at the rates we were before.”

    The paper, “Behavioral changes during the Covid-19 pandemic decreased income diversity of urban encounters,” appears in Nature Communications. The co-authors are Yabe; Bernardo García Bulle Bueno, a doctoral candidate at MIT’s Institute for Data, Systems, and Society (IDSS); Xiaowen Dong, an associate professor at Oxford University; Alex Pentland, professor of media arts and sciences at MIT and the Toshiba Professor at the Media Lab; and Moro, who is also an associate professor at the University Carlos III of Madrid.

    A decline in exploration

    To conduct the study, the researchers examined anonymized cellphone data from 1 million users over a three-year period, starting in early 2019, with data focused on four U.S. cities: Boston, Dallas, Los Angeles, and Seattle. The researchers recorded visits to 433,000 specific “point of interest” locations in those cities, corroborated in part with records from Infogroup’s U.S. Business Database, an annual census of company information.  

    The researchers used U.S. Census Bureau data to categorize the socioeconomic status of the people in the study, placing everyone into one of four income quartiles, based on the average income of the census block (a small area) in which they live. The scholars made the same income-level assessment for every census block in the four cities, then recorded instances in which someone spent from 10 minutes to four hours in a census block other than their own, to see how often people visited areas in different income quartiles. 

    Ultimately, the researchers found that by late 2021, the amount of urban movement overall was returning to prepandemic levels, but the scope of places residents were visiting had become more restricted.

    Among other things, people made many fewer visits to museums, leisure venues, transport sites, and coffee shops. Visits to grocery stores remained fairly constant — but people tend not to leave their socioeconomic circles for grocery shopping.

    “Early in the pandemic, people reduced their mobility radius significantly,” Yabe says. “By late 2021, that decrease flattened out, and the average dwell time people spent at places other than work and home recovered to prepandemic levels. What’s different is that exploration substantially decreased, around 5 to 10 percent. We also see less visitation to fun places.” He adds: “Museums are the most diverse places you can find, parks — they took the biggest hit during the pandemic. Places that are [more] segregated, like grocery stores, did not.”

    Overall, Moro notes, “When we explore less, we go to places that are less diverse.”

    Different cities, same pattern

    Because the study encompassed four cities with different types of policies about reopening public sites and businesses during the pandemic, the researchers could also evaluate what impact public health policies had on urban movement. But even in these different settings, the same phenomenon emerged, with a narrower range of mobility occurring by late 2021.

    “Despite the substantial differences in how cities dealt with Covid-19, the decrease in diversity and the behavioral changes were surprisingly similar across the four cities,” Yabe observes.

    The researchers emphasize that these changes in urban movement can have long-term societal effects. Prior research has shown a significant association between a diversity of social connections and greater economic success for people in lower-income groups. And while some interactions between people in different income quartiles might be brief and transactional, the evidence suggests that, on aggregate, other more substantial connections have also been reduced. Additionally, the scholars note, the narrowing of experience can also weaken civic ties and valuable political connections.

    “It’s creating an urban fabric that is actually more brittle, in the sense that we are less exposed to other people,” Moro says. “We don’t get to know other people in the city, and that is very important for policies and public opinion. We need to convince people that new policies and laws would be fair. And the only way to do that is to know other people’s needs. If we don’t see them around the city, that will be impossible.”

    At the same time, Yabe adds, “I think there is a lot we can do from a policy standpoint to bring people back to places that used to be a lot more diverse.” The researchers are currently developing further studies related to cultural and public institutions, as well and transportation issues, to try to evaluate urban connectivity in additional detail.

    “The quantity of our mobility has recovered,” Yabe says. “The quality has really changed, and we’re more segregated as a result.” More

  • in

    Driving toward data justice

    As a person with a mixed-race background who has lived in four different cities, Amelia Dogan describes her early life as “growing up in a lot of in-betweens.” Now an MIT senior, she continues to link different perspectives together, working at the intersection of urban planning, computer science, and social justice.

    Dogan was born in Canada but spent her high school years in Philadelphia, where she developed a strong affinity for the city.  

    “I love Philadelphia to death,” says Dogan. “It’s my favorite place in the world. The energy in the city is amazing — I’m so sad I wasn’t there for the Super Bowl this year — but it is a city with really big disparities. That drives me to do the research that I do and shapes the things that I care about.”

    Dogan is double-majoring in urban science and planning with computer science and in American studies. She decided on the former after participating in the pre-orientation program offered by the Department of Urban Studies and Planning, which provides an introduction to both the department and the city of Boston. She followed that up with a UROP research project with the West Philadelphia Landscape Project, putting together historical census data on housing and race to find patterns for use in community advocacy.

    After taking WGS.231 (Writing About Race), a course offered by the Program in Women’s and Gender Studies, her first year at MIT, Dogan realized there was a lot of crosstalk between urban planning, computer science, and the social sciences.

    “There’s a lot of critical social theory that I want to have background in to make me a better planner or a better computer scientist,” says Dogan. “There’s also a lot of issues around fairness and participation in computer science, and a lot of computer scientists are trying to reinvent the wheel when there’s already really good, critical social science research and theory behind this.”

    Data science and feminism

    Dogan’s first year at MIT was interrupted by the onset of the Covid-19 pandemic, but there was a silver lining. An influx of funding to keep students engaged while attending school virtually enabled her to join the Data + Feminism Lab to work on a case study examining three places in Philadelphia with historical names that were renamed after activist efforts.

    In her first year at MIT, Dogan worked several UROPs to hone her own skills and find the best research fit. Besides the West Philadelphia Land Project, she worked on two projects within the MIT Sloan School of Management. The first involved searching for connections between entrepreneurship and immigration among Fortune 500 founders. The second involved interviewing warehouse workers and writing a report on their quality of life.

    Dogan has now spent three years in the Data + Feminism Lab under Associate Professor Catherine D’Ignazio, where she is particularly interested in how technology can be used by marginalized communities to invert historical power imbalances. A key concept in the lab’s work is that of counterdata, which are produced by civil society groups or individuals in order to counter missing data or to challenge existing official data.

    Most recently, she completed a SuperUROP project investigating how femicide data activist organizations use social media. She analyzed 600 social media posts by organizations across the U.S. and Canada. The work built off the lab’s greater body of work with these groups, which Dogan has contributed to by annotating news articles for machine-learning models.

    “Catherine works a lot at the intersection of data issues and feminism. It just seemed like the right fit for me,” says Dogan. “She’s my academic advisor, she’s my research advisor, and is also a really good mentor.”

    Advocating for the student experience

    Outside of the classroom, Dogan is a strong advocate for improving the student experience, particularly when it intersects with identity. An executive board member of the Asian American Initiative (AAI), she also sits on the student advisory council for the Office of Minority Education.

    “Doing that institutional advocacy has been important to me, because it’s for things that I expected coming into college and had not come in prepared to fight for,” says Dogan. As a high schooler, she participated in programs run by the University of Pennsylvania’s Pan-Asian American Community House and was surprised to find that MIT did not have an equivalent organization.

    “Building community based upon identity is something that I’ve been really passionate about,” says Dogan. “For the past two years, I’ve been working with AAI on a list of recommendations for MIT. I’ve talked to alums from the ’90s who were a part of an Asian American caucus who were asking for the same things.”

    She also holds a leadership role with MIXED @ MIT, a student group focused on creating space for mixed-heritage students to explore and discuss their identities.

    Following graduation, Dogan plans to pursue a PhD in information science at the University of Washington. Her breadth of skills has given her a range of programs to choose from. No matter where she goes next, Dogan wants to pursue a career where she can continue to make a tangible impact.

    “I would love to be doing community-engaged research around data justice, using citizen science and counterdata for policy and social change,” she says. More

  • in

    MIT PhD students honored for their work to solve critical issues in water and food

    In 2017, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) initiated the J-WAFS Fellowship Program for outstanding MIT PhD students working to solve humankind’s water-related challenges. Since then, J-WAFS has awarded 18 fellowships to students who have gone on to create innovations like a pump that can maximize energy efficiency even with changing flow rates, and a low-cost water filter made out of sapwood xylem that has seen real-world use in rural India. Last year, J-WAFS expanded eligibility to students with food-related research. The 2022 fellows included students working on micronutrient deficiency and plastic waste from traditional food packaging materials. 

    Today, J-WAFS has announced the award of the 2023-24 fellowships to Gokul Sampath and Jie Yun. A doctoral student in the Department of Urban Studies and planning, Sampath has been awarded the Rasikbhai L. Meswani Fellowship for Water Solutions, which is supported through a generous gift from Elina and Nikhil Meswani and family. Yun, who is in the Department of Civil and Environmental Engineering, received a J-WAFS Fellowship for Water and Food Solutions, which is funded by the J-WAFS Research Affiliate Program. Currently, Xylem, Inc. and GoAigua are J-WAFS’ Research Affiliate companies. A review committee comprised of MIT faculty and staff selected Sampath and Yun from a competitive field of outstanding graduate students working in water and food who were nominated by their faculty advisors. Sampath and Yun will receive one academic semester of funding, along with opportunities for networking and mentoring to advance their research.

    “Both Yun and Sampath have demonstrated excellence in their research,” says J-WAFS executive director Renee J. Robins. “They also stood out in their communication skills and their passion to work on issues of agricultural sustainability and resilience and access to safe water. We are so pleased to have them join our inspiring group of J-WAFS fellows,” she adds.

    Using behavioral health strategies to address the arsenic crisis in India and Bangladesh

    Gokul Sampath’s research centers on ways to improve access to safe drinking water in developing countries. A PhD candidate in the International Development Group in the Department of Urban Studies and Planning, his current work examines the issue of arsenic in drinking water sources in India and Bangladesh. In Eastern India, millions of shallow tube wells provide rural households a personal water source that is convenient, free, and mostly safe from cholera. Unfortunately, it is now known that one-in-four of these wells is contaminated with naturally occurring arsenic at levels dangerous to human health. As a result, approximately 40 million people across the region are at elevated risk of cancer, stroke, and heart disease from arsenic consumed through drinking water and cooked food. 

    Since the discovery of arsenic in wells in the late 1980s, governments and nongovernmental organizations have sought to address the problem in rural villages by providing safe community water sources. Yet despite access to safe alternatives, many households still consume water from their contaminated home wells. Sampath’s research seeks to understand the constraints and trade-offs that account for why many villagers don’t collect water from arsenic-safe government wells in the village, even when they know their own wells at home could be contaminated.

    Before coming to MIT, Sampath received a master’s degree in Middle East, South Asian, and African studies from Columbia University, as well as a bachelor’s degree in microbiology and history from the University of California at Davis. He has long worked on water management in India, beginning in 2015 as a Fulbright scholar studying households’ water source choices in arsenic-affected areas of the state of West Bengal. He also served as a senior research associate with the Abdul Latif Jameel Poverty Action Lab, where he conducted randomized evaluations of market incentives for groundwater conservation in Gujarat, India. Sampath’s advisor, Bishwapriya Sanyal, the Ford International Professor of Urban Development and Planning at MIT, says Sampath has shown “remarkable hard work and dedication.” In addition to his classes and research, Sampath taught the department’s undergraduate Introduction to International Development course, for which he received standout evaluations from students.

    This summer, Sampath will travel to India to conduct field work in four arsenic-affected villages in West Bengal to understand how social influence shapes villagers’ choices between arsenic-safe and unsafe water sources. Through longitudinal surveys, he hopes to connect data on the social ties between families in villages and the daily water source choices they make. Exclusionary practices in Indian village communities, especially the segregation of water sources on the basis of caste and religion, has long been suspected to be a barrier to equitable drinking water access in Indian villages. Yet despite this, planners seeking to expand safe water access in diverse Indian villages have rarely considered the way social divisions within communities might be working against their efforts. Sampath hopes to test whether the injunctive norms enabled by caste ties constrain villagers’ ability to choose the safest water source among those shared within the village. When he returns to MIT in the fall, he plans to dive into analyzing his survey data and start work on a publication.

    Understanding plant responses to stress to improve crop drought resistance and yield

    Plants, including crops, play a fundamental role in Earth’s ecosystems through their effects on climate, air quality, and water availability. At the same time, plants grown for agriculture put a burden on the environment as they require energy, irrigation, and chemical inputs. Understanding plant/environment interactions is becoming more and more important as intensifying drought is straining agricultural systems. Jie Yun, a PhD student in the Department of Civil and Environmental Engineering, is studying plant response to drought stress in the hopes of improving agricultural sustainability and yield under climate change.  Yun’s research focuses on genotype-by-environment interaction (GxE.) This relates to the observation that plant varieties respond to environmental changes differently. The effects of GxE in crop breeding can be exploited because differing environmental responses among varieties enables breeders to select for plants that demonstrate high stress-tolerant genotypes under particular growing conditions. Yun bases her studies on Brachypodium, a model grass species related to wheat, oat, barley, rye, and perennial forage grasses. By experimenting with this species, findings can be directly applied to cereal and forage crop improvement. For the first part of her thesis, Yun collaborated with Professor Caroline Uhler’s group in the Department of Electrical Engineering and Computer Science and the Institute for Data, Systems, and Society. Uhler’s computational tools helped Yun to evaluate gene regulatory networks and how they relate to plant resilience and environmental adaptation. This work will help identify the types of genes and pathways that drive differences in drought stress response among plant varieties.  David Des Marais, the Cecil and Ida Green Career Development Professor in the Department of Civil and Environmental Engineering, is Yun’s advisor. He notes, “throughout Jie’s time [at MIT] I have been struck by her intellectual curiosity, verging on fearlessness.” When she’s not mentoring undergraduate students in Des Marais’ lab, Yun is working on the second part of her project: how carbon allocation in plants and growth is affected by soil drying. One result of this work will be to understand which populations of plants harbor the necessary genetic diversity to adapt or acclimate to climate change. Another likely impact is identifying targets for the genetic improvement of crop species to increase crop yields with less water supply. Growing up in China, Yun witnessed environmental issues springing from the development of the steel industry, which caused contamination of rivers in her hometown. On one visit to her aunt’s house in rural China, she learned that water pollution was widespread after noticing wastewater was piped outside of the house into nearby farmland without being treated. These experiences led Yun to study water supply and sewage engineering for her undergraduate degree at Shenyang Jianzhu University. She then went on to complete a master’s program in civil and environmental engineering at Carnegie Mellon University. It was there that Yun discovered a passion for plant-environment interactions; during an independent study on perfluorooctanoic sulfonate, she realized the amazing ability of plants to adapt to environmental changes, toxins, and stresses. Her goal is to continue researching plant and environment interactions and to translate the latest scientific findings into applications that can improve food security. More

  • in

    Can your phone tell if a bridge is in good shape?

    Want to know if the Golden Gate Bridge is holding up well? There could be an app for that.

    A new study involving MIT researchers shows that mobile phones placed in vehicles, equipped with special software, can collect useful structural integrity data while crossing bridges. In so doing, they could become a less expensive alternative to sets of sensors attached to bridges themselves.

    “The core finding is that information about structural health of bridges can be extracted from smartphone-collected accelerometer data,” says Carlo Ratti, director of the MIT Sensable City Laboratory and co-author of a new paper summarizing the study’s findings.

    The research was conducted, in part, on the Golden Gate Bridge itself. The study showed that mobile devices can capture the same kind of information about bridge vibrations that stationary sensors compile. The researchers also estimate that, depending on the age of a road bridge, mobile-device monitoring could add from 15 percent to 30 percent more years to the structure’s lifespan.

    “These results suggest that massive and inexpensive datasets collected by smartphones could play an important role in monitoring the health of existing transportation infrastructure,” the authors write in their new paper.

    The study, “Crowdsourcing Bridge Vital Signs with Smartphone Vehicle Trips,” is being published in Communications Engineering.

    The authors are Thomas J. Matarazzo, an assistant professor of civil and mechanical engineering at the United States Military Academy at West Point; Daniel Kondor, a postdoc at the Complexity Science Hub in Vienna; Sebastiano Milardo, a researcher at the Senseable City Lab; Soheil S. Eshkevari, a senior research scientist at DiDi Labs and a former member of Senseable City Lab; Paolo Santi, principal research scientist at the Senseable City Lab and research director at the Italian National Research Council; Shamim N. Pakzad, a professor and chair of the Department of Civil and Environmental Engineering at Lehigh University; Markus J. Buehler, the Jerry McAfee Professor in Engineering and professor of civil and environmental engineering and of mechanical engineering at MIT; and Ratti, who is also professor of the practice in MIT’s Department of Urban Studies and Planning.

    Bridges naturally vibrate, and to study the essential “modal frequencies” of those vibrations in many directions, engineers typically place sensors, such as accelerometers, on bridges themselves. Changes in the modal frequencies over time may indicate changes in a bridge’s structural integrity.

    To conduct the study, the researchers developed an Android-based mobile phone application to collect accelerometer data when the devices were placed in vehicles passing over the bridge. They could then see how well those data matched up with data record by sensors on bridges themselves, to see if the mobile-phone method worked.

    “In our work, we designed a methodology for extracting modal vibration frequencies from noisy data collected from smartphones,” Santi says. “As data from multiple trips over a bridge are recorded, noise generated by engine, suspension and traffic vibrations, [and] asphalt, tend to cancel out, while the underlying dominant frequencies emerge.”

    In the case of the Golden Gate Bridge, the researchers drove over the bridge 102 times with their devices running, and the team used 72 trips by Uber drivers with activated phones as well. The team then compared the resulting data to that from a group of 240 sensors that had been placed on the Golden Gate Bridge for three months.

    The outcome was that the data from the phones converged with that from the bridge’s sensors; for 10 particular types of low-frequency vibrations engineers measure on the bridge, there was a close match, and in five cases, there was no discrepancy between the methods at all.

    “We were able to show that many of these frequencies correspond very accurately to the prominent modal frequencies of the bridge,” Santi says.  

    However, only 1 percent of all bridges in the U.S. are suspension bridges. About 41 percent are much smaller concrete span bridges. So, the researchers also examined how well their method would fare in that setting.

    To do so, they studied a bridge in Ciampino, Italy, comparing 280 vehicle trips over the bridge to six sensors that had been placed on the bridge for seven months. Here, the researchers were also encouraged by the findings, though they found up to a 2.3 percent divergence between methods for certain modal frequencies over all 280 trips, and a 5.5 percent divergence over a smaller sample. That suggests a larger volume of trips could yield more useful data.

    “Our initial results suggest that only a [modest amount] of trips over the span of a few weeks are sufficient to obtain useful information about bridge modal frequencies,” Santi says.

    Looking at the method as a whole, Buehler observes, “Vibrational signatures are emerging as a powerful tool to assess properties of large and complex systems, ranging from viral properties of pathogens to structural integrity of bridges as shown in this study. It’s a universal signal found widely in the natural and built environment that we’re just now beginning to explore as a diagnostic and generative tool in engineering.”

    As Ratti acknowledges, there are ways to refine and expand the research, including accounting for the effects of the smartphone mount in the vehicle, the influence of the vehicle type on the data, and more.

    “We still have work to do, but we believe that our approach could be scaled up easily — all the way to the level of an entire country,” Ratti says. “It might not reach the accuracy that one can get using fixed sensors installed on a bridge, but it could become a very interesting early-warning system. Small anomalies could then suggest when to carry out further analyses.”

    The researchers received support from Anas S.p.A., Allianz, Brose, Cisco, Dover Corporation, Ford, the Amsterdam Institute for Advanced Metropolitan Solutions, the Fraunhofer Institute, the former Kuwait-MIT Center for Natural Resources and the Environment, Lab Campus, RATP, Singapore–MIT Alliance for Research and Technology (SMART), SNCF Gares & Connexions, UBER, and the U.S. Department of Defense High-Performance Computing Modernization Program. More

  • in

    Visualizing migration stories

    On July 27, 2020, 51 people migrating to the United States were found dead in an overheated trailer near the Mexican border. Understanding why migrants willingly take such risks is the topic of a recent exhibition and report, co-authored by researchers at MIT’s Civic Data Design Lab (CDDL). The research has been used by the U.S. Senate and the United Nations to develop new policies to address the challenges, dangers, and opportunities presented by migration in the Americas.

    To illustrate these motivations and risks, researchers at CDDL have designed an exhibition featuring digital and physical visualizations that encourage visitors to engage with migrants’ experiences more fully. “Distance Unknown” made its debut at the United Nations World Food Program (WFP) executive board meeting in Rome earlier this summer, with plans for additional exhibition stops over the next year.

    The exhibition is inspired by the 2021 report about migration, co-authored by CDDL, that highlighted economic distress as the main factor pushing migrants from Central America to the United States. The report’s findings were cited in a January 2022 letter from 35 U.S. senators to Homeland Security Secretary Alejandro Mayorkas and Secretary of State Antony Blinken (who leads the Biden administration’s migration task force) that advocated for addressing humanitarian needs in Central America. In June, the United States joined 20 countries in issuing the Los Angeles Declaration on Migration and Protection, which proposed expanded legal avenues to migration.

    “This exhibition takes a unique approach to visualizing migration stories by humanizing the data. Visitors to the exhibition can see the data in aggregate, but then they can dive deeper and learn migrants’ individual motivations,” says Sarah Williams, associate professor of technology and urban planning, director of the Civic Data Design Lab and the Norman B. Leventhal Center for Advanced Urbanism, and the lead designer of the exhibition.

    The data for the exhibition were taken from a survey of over 5,000 people in El Salvador, Guatemala, and Honduras conducted by the WFP and analyzed in the subsequent report. The report showed that approximately 43 percent of people surveyed in 2021 were considering migrating in the prior year, compared to 8 percent in 2019 — a change that comes after nearly two years of impacts from a global pandemic and as food insecurity dramatically increased in that region. Survey respondents cited low wages, unemployment, and minimal income levels as factors increasing their desire to migrate — ahead of reasons such as violence or natural disasters. 

    On the wall of the exhibition is a vibrant tapestry made of paper currency woven by 13 Latin American immigrants. Approximately 15-by-8 feet, this physical data visualization explains the root causes of migration from Central America documented by CDDL research. Each bill in the tapestry represents one migrant; visitors are invited to take a piece of the tapestry and scan it at a touch-screen station, where the story of that migrant appears. This allows visitors to dive deeper into the causes of migration by learning more about why an individual migrant family in the study left home, their household circumstances, and their personal stories.

    Another feature of the exhibition is an interactive map that allows visitors to explore the journeys and barriers that migrants face along the way. Created from a unique dataset collected by researchers from internet hotspots along the migration trail, the data showed that migrants from 43 countries (some as distant as China and Afghanistan) used this Latin American trail. The map highlights the Darien Gap region of Central America, one of the most dangerous and costly migration routes. The area is remote, without roads, and consists of swamps and dense jungle.

    The “Distance Unknown” exhibition represented data taken from internet hotspots on the migration pathway from the Darien Gap in Colombia to the Mexican border. This image shows migrant routes from 43 countries.

    Image courtesy of the Civic Data Design Lab.

    Previous item
    Next item

    The intense multimedia exhibition demonstrates the approach that Williams takes with her research. “One of the exciting features of the exhibition is that it shows that artistic forms of data visualization start new conversations, which create the dialogue necessary for policy change. We couldn’t be more thrilled with the way the exhibition helped influence the hearts and minds of people who have the political will to impact policy,” says Williams.

    In his opening remarks to the exhibition, David Beasley, executive director of WFP, explained that “when people have to migrate because they have no choice, it creates political problems on all sides,” and emphasized the importance of proposing solutions. Citing the 2021 report, Beasley noted that migrants from El Salvador, Guatemala, and Honduras collectively spent $2.2 billion to migrate to the United States in 2021, which is comparable to what their respective governments spend on primary education.

    The WFP hopes to bring the exhibition to other locations, including Washington, Geneva, New York, Madrid, Buenos Aires, and Panama. More

  • in

    Hurricane-resistant construction may be undervalued by billions of dollars annually

    In Florida, June typically marks the beginning of hurricane season. Preparation for a storm may appear as otherworldly as it is routine: businesses and homes board up windows and doors, bottled water is quick to sell out, and public buildings cease operations to serve as emergency shelters.

    What happens next may be unpredictable. If things take a turn for the worse, myriad homes may be leveled. A 2019 Congressional Budget Office report estimated that hurricane-related wind damage causes $14 billion in losses to the residential sector annually. 

    However, new research led by Ipek Bensu Manav, an MIT graduate student in civil and environmental engineering and research assistant at MIT’s Concrete Sustainability Hub, suggests that the value of mitigating this wind damage through stronger construction methods may be significantly underestimated. 

    In fact, the failure of wind loss models to account for neighborhood texture — the density and configuration of surrounding buildings with respect to a building of interest — may result in an over 80 percent undervaluation of these methods in Florida.

    Methodology

    Hazus, a loss estimation tool developed and currently used by the Federal Emergency Management Agency (FEMA), estimates physical and economic damage to buildings due to wind and windborne debris. However, the tool assumes that all buildings in a neighborhood experience the same wind loading.

    Manav notes that this assumption disregards the complexity of neighborhood texture. Buildings of different shapes and sizes can be arranged in innumerable ways. This arrangement can amplify or reduce the wind load on buildings within the neighborhood. 

    Wind load amplifications and reductions result from effects referred to as tunneling and shielding. Densely built-up areas with grid-like layouts are particularly susceptible to wind tunneling effects. You might have experienced these effects yourself walking down a windy street, such as Main Street in Cambridge, Massachusetts, near the MIT campus, only to turn the corner and feel calmer air.

    To address this, Manav and her team sought to create a hurricane loss model that accounts for neighborhood texture. By combining GIS files, census tract data, and models of wind recurrence and structural performance, the researchers constructed a high-resolution estimate of expected wind-related structural losses, as well as the benefits of mitigation to reduce those losses. 

    The model builds on prior research led by Jacob Roxon, a recent CSHub postdoc and co-author of this paper, who developed an empirical relationship that estimates building-specific wind gusts with information about building layout in a given neighborhood. 

    A challenge the researchers had to overcome was the fact that the building footprints that were available for this estimation have little-to-no information on occupancy and building type.

    Manav addressed this by developing a novel statistical model that assigns occupancy and building types to structures based on characteristics of the census tract in which they are located.

    Analysis and cost perspective

    The researchers then estimated the value of stronger construction in a case study of residential buildings in Florida. This involved modeling the impact of several mitigation measures applied to over 9.3 million housing units spread across 6.9 million buildings.

    A map of effective wind speed ratio in Florida. Orange coloration indicates census tracts where, on average, structures experience amplifications in wind loads beyond what current tools estimate. Blue coloration indicates census tracts where, on average, structures experience reductions in wind loads.

    Image courtesy of the MIT Concrete Sustainability Hub.

    Previous item
    Next item

    Texture-related loss implications were found to be higher in census tracts along the coast. This occurs because these areas tend to be more dense and ordered, leading to higher wind load amplifications. Also, these loss implications are particularly high for single-family homes, which are more susceptible to damage and have a higher replacement cost per housing unit.

    “Our results sound the alarm that wind loads are more severe than we think,” says Manav. “That is not even accounting for climate change, which might make hurricanes more frequent and their wind speeds more intense over time.”

    The researchers computed expected losses and benefits statewide for hurricane wind damage and its mitigation. They found that $8.1 billion could be saved per year in a scenario where all homes were mitigated with simple measures such as stronger connections between roofs and walls or tighter nail spacing.

    Conventional loss estimation models value these same measures as saving only $4.4 billion per year. This means that conventional models are underestimating the value of stronger construction by over 80 percent.

    “It is important that the benefits of resilient design be quantified so that financial incentives — whether lending, insurance, or otherwise — can be brought to bear to increase mitigation. Manav’s research will move the industry forward toward justifying these benefits,” says structural engineer Evan Reis, who is the executive director of the U.S. Resiliency Council.

    Further implications

    The paper recommends that coastal states enhance their building codes, especially in densely built-up areas, to save dollars and save lives. Manav notes that current building codes do not sufficiently account for texture-induced load amplifications. 

    “Even a building built to code may not be able to protect you and your family,” says Manav. “We need to properly quantify the benefits of mitigating in areas that are exposed to high winds so we promote the right standards of construction where losses can be catastrophic.”

    A goal of Manav’s work is to provide citizens with the information they need before disaster strikes. She has created an online dashboard where you can preview the potential benefits of applying mitigation measures in different communities — perhaps even your own.

    “During my research, I kept hitting a wall. I found that it was difficult to use publicly available information to piece together the bigger picture,” she comments. “We started developing the dashboard to equip homeowners and stakeholders with accessible and actionable information.”

    As a next step, Manav is investigating socioeconomic consequences of hurricane wind damage. 

    “High-resolution analysis, like our case study, allows us to simulate individual household impacts within a geographical context,” adds Manav. “With this, we can capture how differing availability of financial resources may influence how communities cope with the aftermath of natural hazards.” More

  • in

    Looking forward to forecast the risks of a changing climate

    On April 11, MIT announced five multiyear flagship projects in the first-ever Climate Grand Challenges, a new initiative to tackle complex climate problems and deliver breakthrough solutions to the world as quickly as possible. This article is the third in a five-part series highlighting the most promising concepts to emerge from the competition, and the interdisciplinary research teams behind them.

    Extreme weather events that were once considered rare have become noticeably less so, from intensifying hurricane activity in the North Atlantic to wildfires generating massive clouds of ozone-damaging smoke. But current climate models are unprepared when it comes to estimating the risk that these increasingly extreme events pose — and without adequate modeling, governments are left unable to take necessary precautions to protect their communities.

    MIT Department of Earth, Atmospheric and Planetary Science (EAPS) Professor Paul O’Gorman researches this trend by studying how climate affects the atmosphere and incorporating what he learns into climate models to improve their accuracy. One particular focus for O’Gorman has been changes in extreme precipitation and midlatitude storms that hit areas like New England.

    “These extreme events are having a lot of impact, but they’re also difficult to model or study,” he says. Seeing the pressing need for better climate models that can be used to develop preparedness plans and climate change mitigation strategies, O’Gorman and collaborators Kerry Emanuel, the Cecil and Ida Green Professor of Atmospheric Science in EAPS, and Miho Mazereeuw, associate professor in MIT’s Department of Architecture, are leading an interdisciplinary group of scientists, engineers, and designers to tackle this problem with their MIT Climate Grand Challenges flagship project, “Preparing for a new world of weather and climate extremes.”

    “We know already from observations and from climate model predictions that weather and climate extremes are changing and will change more,” O’Gorman says. “The grand challenge is preparing for those changing extremes.”

    Their proposal is one of five flagship projects recently announced by the MIT Climate Grand Challenges initiative — an Institute-wide effort catalyzing novel research and engineering innovations to address the climate crisis. Selected from a field of almost 100 submissions, the team will receive additional funding and exposure to help accelerate and scale their project goals. Other MIT collaborators on the proposal include researchers from the School of Engineering, the School of Architecture and Planning, the Office of Sustainability, the Center for Global Change Science, and the Institute for Data, Systems and Society.

    Weather risk modeling

    Fifteen years ago, Kerry Emanuel developed a simple hurricane model. It was based on physics equations, rather than statistics, and could run in real time, making it useful for modeling risk assessment. Emanuel wondered if similar models could be used for long-term risk assessment of other things, such as changes in extreme weather because of climate change.

    “I discovered, somewhat to my surprise and dismay, that almost all extant estimates of long-term weather risks in the United States are based not on physical models, but on historical statistics of the hazards,” says Emanuel. “The problem with relying on historical records is that they’re too short; while they can help estimate common events, they don’t contain enough information to make predictions for more rare events.”

    Another limitation of weather risk models which rely heavily on statistics: They have a built-in assumption that the climate is static.

    “Historical records rely on the climate at the time they were recorded; they can’t say anything about how hurricanes grow in a warmer climate,” says Emanuel. The models rely on fixed relationships between events; they assume that hurricane activity will stay the same, even while science is showing that warmer temperatures will most likely push typical hurricane activity beyond the tropics and into a much wider band of latitudes.

    As a flagship project, the goal is to eliminate this reliance on the historical record by emphasizing physical principles (e.g., the laws of thermodynamics and fluid mechanics) in next-generation models. The downside to this is that there are many variables that have to be included. Not only are there planetary-scale systems to consider, such as the global circulation of the atmosphere, but there are also small-scale, extremely localized events, like thunderstorms, that influence predictive outcomes.

    Trying to compute all of these at once is costly and time-consuming — and the results often can’t tell you the risk in a specific location. But there is a way to correct for this: “What’s done is to use a global model, and then use a method called downscaling, which tries to infer what would happen on very small scales that aren’t properly resolved by the global model,” explains O’Gorman. The team hopes to improve downscaling techniques so that they can be used to calculate the risk of very rare but impactful weather events.

    Global climate models, or general circulation models (GCMs), Emanuel explains, are constructed a bit like a jungle gym. Like the playground bars, the Earth is sectioned in an interconnected three-dimensional framework — only it’s divided 100 to 200 square kilometers at a time. Each node comprises a set of computations for characteristics like wind, rainfall, atmospheric pressure, and temperature within its bounds; the outputs of each node are connected to its neighbor. This framework is useful for creating a big picture idea of Earth’s climate system, but if you tried to zoom in on a specific location — like, say, to see what’s happening in Miami or Mumbai — the connecting nodes are too far apart to make predictions on anything specific to those areas.

    Scientists work around this problem by using downscaling. They use the same blueprint of the jungle gym, but within the nodes they weave a mesh of smaller features, incorporating equations for things like topography and vegetation or regional meteorological models to fill in the blanks. By creating a finer mesh over smaller areas they can predict local effects without needing to run the entire global model.

    Of course, even this finer-resolution solution has its trade-offs. While we might be able to gain a clearer picture of what’s happening in a specific region by nesting models within models, it can still make for a computing challenge to crunch all that data at once, with the trade-off being expense and time, or predictions that are limited to shorter windows of duration — where GCMs can be run considering decades or centuries, a particularly complex local model may be restricted to predictions on timescales of just a few years at a time.

    “I’m afraid that most of the downscaling at present is brute force, but I think there’s room to do it in better ways,” says Emanuel, who sees the problem of finding new and novel methods of achieving this goal as an intellectual challenge. “I hope that through the Grand Challenges project we might be able to get students, postdocs, and others interested in doing this in a very creative way.”

    Adapting to weather extremes for cities and renewable energy

    Improving climate modeling is more than a scientific exercise in creativity, however. There’s a very real application for models that can accurately forecast risk in localized regions.

    Another problem is that progress in climate modeling has not kept up with the need for climate mitigation plans, especially in some of the most vulnerable communities around the globe.

    “It is critical for stakeholders to have access to this data for their own decision-making process. Every community is composed of a diverse population with diverse needs, and each locality is affected by extreme weather events in unique ways,” says Mazereeuw, the director of the MIT Urban Risk Lab. 

    A key piece of the team’s project is building on partnerships the Urban Risk Lab has developed with several cities to test their models once they have a usable product up and running. The cities were selected based on their vulnerability to increasing extreme weather events, such as tropical cyclones in Broward County, Florida, and Toa Baja, Puerto Rico, and extratropical storms in Boston, Massachusetts, and Cape Town, South Africa.

    In their proposal, the team outlines a variety of deliverables that the cities can ultimately use in their climate change preparations, with ideas such as online interactive platforms and workshops with stakeholders — such as local governments, developers, nonprofits, and residents — to learn directly what specific tools they need for their local communities. By doing so, they can craft plans addressing different scenarios in their region, involving events such as sea-level rise or heat waves, while also providing information and means of developing adaptation strategies for infrastructure under these conditions that will be the most effective and efficient for them.

    “We are acutely aware of the inequity of resources both in mitigating impacts and recovering from disasters. Working with diverse communities through workshops allows us to engage a lot of people, listen, discuss, and collaboratively design solutions,” says Mazereeuw.

    By the end of five years, the team is hoping that they’ll have better risk assessment and preparedness tool kits, not just for the cities that they’re partnering with, but for others as well.

    “MIT is well-positioned to make progress in this area,” says O’Gorman, “and I think it’s an important problem where we can make a difference.” More

  • in

    MIT announces five flagship projects in first-ever Climate Grand Challenges competition

    MIT today announced the five flagship projects selected in its first-ever Climate Grand Challenges competition. These multiyear projects will define a dynamic research agenda focused on unraveling some of the toughest unsolved climate problems and bringing high-impact, science-based solutions to the world on an accelerated basis.

    Representing the most promising concepts to emerge from the two-year competition, the five flagship projects will receive additional funding and resources from MIT and others to develop their ideas and swiftly transform them into practical solutions at scale.

    “Climate Grand Challenges represents a whole-of-MIT drive to develop game-changing advances to confront the escalating climate crisis, in time to make a difference,” says MIT President L. Rafael Reif. “We are inspired by the creativity and boldness of the flagship ideas and by their potential to make a significant contribution to the global climate response. But given the planet-wide scale of the challenge, success depends on partnership. We are eager to work with visionary leaders in every sector to accelerate this impact-oriented research, implement serious solutions at scale, and inspire others to join us in confronting this urgent challenge for humankind.”

    Brief descriptions of the five Climate Grand Challenges flagship projects are provided below.

    Bringing Computation to the Climate Challenge

    This project leverages advances in artificial intelligence, machine learning, and data sciences to improve the accuracy of climate models and make them more useful to a variety of stakeholders — from communities to industry. The team is developing a digital twin of the Earth that harnesses more data than ever before to reduce and quantify uncertainties in climate projections.

    Research leads: Raffaele Ferrari, the Cecil and Ida Green Professor of Oceanography in the Department of Earth, Atmospheric and Planetary Sciences, and director of the Program in Atmospheres, Oceans, and Climate; and Noelle Eckley Selin, director of the Technology and Policy Program and professor with a joint appointment in the Institute for Data, Systems, and Society and the Department of Earth, Atmospheric and Planetary Sciences

    Center for Electrification and Decarbonization of Industry

    This project seeks to reinvent and electrify the processes and materials behind hard-to-decarbonize industries like steel, cement, ammonia, and ethylene production. A new innovation hub will perform targeted fundamental research and engineering with urgency, pushing the technological envelope on electricity-driven chemical transformations.

    Research leads: Yet-Ming Chiang, the Kyocera Professor of Materials Science and Engineering, and Bilge Yıldız, the Breene M. Kerr Professor in the Department of Nuclear Science and Engineering and professor in the Department of Materials Science and Engineering

    Preparing for a new world of weather and climate extremes

    This project addresses key gaps in knowledge about intensifying extreme events such as floods, hurricanes, and heat waves, and quantifies their long-term risk in a changing climate. The team is developing a scalable climate-change adaptation toolkit to help vulnerable communities and low-carbon energy providers prepare for these extreme weather events.

    Research leads: Kerry Emanuel, the Cecil and Ida Green Professor of Atmospheric Science in the Department of Earth, Atmospheric and Planetary Sciences and co-director of the MIT Lorenz Center; Miho Mazereeuw, associate professor of architecture and urbanism in the Department of Architecture and director of the Urban Risk Lab; and Paul O’Gorman, professor in the Program in Atmospheres, Oceans, and Climate in the Department of Earth, Atmospheric and Planetary Sciences

    The Climate Resilience Early Warning System

    The CREWSnet project seeks to reinvent climate change adaptation with a novel forecasting system that empowers underserved communities to interpret local climate risk, proactively plan for their futures incorporating resilience strategies, and minimize losses. CREWSnet will initially be demonstrated in southwestern Bangladesh, serving as a model for similarly threatened regions around the world.

    Research leads: John Aldridge, assistant leader of the Humanitarian Assistance and Disaster Relief Systems Group at MIT Lincoln Laboratory, and Elfatih Eltahir, the H.M. King Bhumibol Professor of Hydrology and Climate in the Department of Civil and Environmental Engineering

    Revolutionizing agriculture with low-emissions, resilient crops

    This project works to revolutionize the agricultural sector with climate-resilient crops and fertilizers that have the ability to dramatically reduce greenhouse gas emissions from food production.

    Research lead: Christopher Voigt, the Daniel I.C. Wang Professor in the Department of Biological Engineering

    “As one of the world’s leading institutions of research and innovation, it is incumbent upon MIT to draw on our depth of knowledge, ingenuity, and ambition to tackle the hard climate problems now confronting the world,” says Richard Lester, MIT associate provost for international activities. “Together with collaborators across industry, finance, community, and government, the Climate Grand Challenges teams are looking to develop and implement high-impact, path-breaking climate solutions rapidly and at a grand scale.”

    The initial call for ideas in 2020 yielded nearly 100 letters of interest from almost 400 faculty members and senior researchers, representing 90 percent of MIT departments. After an extensive evaluation, 27 finalist teams received a total of $2.7 million to develop comprehensive research and innovation plans. The projects address four broad research themes:

    To select the winning projects, research plans were reviewed by panels of international experts representing relevant scientific and technical domains as well as experts in processes and policies for innovation and scalability.

    “In response to climate change, the world really needs to do two things quickly: deploy the solutions we already have much more widely, and develop new solutions that are urgently needed to tackle this intensifying threat,” says Maria Zuber, MIT vice president for research. “These five flagship projects exemplify MIT’s strong determination to bring its knowledge and expertise to bear in generating new ideas and solutions that will help solve the climate problem.”

    “The Climate Grand Challenges flagship projects set a new standard for inclusive climate solutions that can be adapted and implemented across the globe,” says MIT Chancellor Melissa Nobles. “This competition propels the entire MIT research community — faculty, students, postdocs, and staff — to act with urgency around a worsening climate crisis, and I look forward to seeing the difference these projects can make.”

    “MIT’s efforts on climate research amid the climate crisis was a primary reason that I chose to attend MIT, and remains a reason that I view the Institute favorably. MIT has a clear opportunity to be a thought leader in the climate space in our own MIT way, which is why CGC fits in so well,” says senior Megan Xu, who served on the Climate Grand Challenges student committee and is studying ways to make the food system more sustainable.

    The Climate Grand Challenges competition is a key initiative of “Fast Forward: MIT’s Climate Action Plan for the Decade,” which the Institute published in May 2021. Fast Forward outlines MIT’s comprehensive plan for helping the world address the climate crisis. It consists of five broad areas of action: sparking innovation, educating future generations, informing and leveraging government action, reducing MIT’s own climate impact, and uniting and coordinating all of MIT’s climate efforts. More