More stories

  • in

    The curse of variety in transportation systems

    Cathy Wu has always delighted in systems that run smoothly. In high school, she designed a project to optimize the best route for getting to class on time. Her research interests and career track are evidence of a propensity for organizing and optimizing, coupled with a strong sense of responsibility to contribute to society instilled by her parents at a young age.

    As an undergraduate at MIT, Wu explored domains like agriculture, energy, and education, eventually homing in on transportation. “Transportation touches each of our lives,” she says. “Every day, we experience the inefficiencies and safety issues as well as the environmental harms associated with our transportation systems. I believe we can and should do better.”

    But doing so is complicated. Consider the long-standing issue of traffic systems control. Wu explains that it is not one problem, but more accurately a family of control problems impacted by variables like time of day, weather, and vehicle type — not to mention the types of sensing and communication technologies used to measure roadway information. Every differentiating factor introduces an exponentially larger set of control problems. There are thousands of control-problem variations and hundreds, if not thousands, of studies and papers dedicated to each problem. Wu refers to the sheer number of variations as the curse of variety — and it is hindering innovation.

    Play video

    “To prove that a new control strategy can be safely deployed on our streets can take years. As time lags, we lose opportunities to improve safety and equity while mitigating environmental impacts. Accelerating this process has huge potential,” says Wu.  

    Which is why she and her group in the MIT Laboratory for Information and Decision Systems are devising machine learning-based methods to solve not just a single control problem or a single optimization problem, but families of control and optimization problems at scale. “In our case, we’re examining emerging transportation problems that people have spent decades trying to solve with classical approaches. It seems to me that we need a different approach.”

    Optimizing intersections

    Currently, Wu’s largest research endeavor is called Project Greenwave. There are many sectors that directly contribute to climate change, but transportation is responsible for the largest share of greenhouse gas emissions — 29 percent, of which 81 percent is due to land transportation. And while much of the conversation around mitigating environmental impacts related to mobility is focused on electric vehicles (EVs), electrification has its drawbacks. EV fleet turnover is time-consuming (“on the order of decades,” says Wu), and limited global access to the technology presents a significant barrier to widespread adoption.

    Wu’s research, on the other hand, addresses traffic control problems by leveraging deep reinforcement learning. Specifically, she is looking at traffic intersections — and for good reason. In the United States alone, there are more than 300,000 signalized intersections where vehicles must stop or slow down before re-accelerating. And every re-acceleration burns fossil fuels and contributes to greenhouse gas emissions.

    Highlighting the magnitude of the issue, Wu says, “We have done preliminary analysis indicating that up to 15 percent of land transportation CO2 is wasted through energy spent idling and re-accelerating at intersections.”

    To date, she and her group have modeled 30,000 different intersections across 10 major metropolitan areas in the United States. That is 30,000 different configurations, roadway topologies (e.g., grade of road or elevation), different weather conditions, and variations in travel demand and fuel mix. Each intersection and its corresponding scenarios represents a unique multi-agent control problem.

    Wu and her team are devising techniques that can solve not just one, but a whole family of problems comprised of tens of thousands of scenarios. Put simply, the idea is to coordinate the timing of vehicles so they arrive at intersections when traffic lights are green, thereby eliminating the start, stop, re-accelerate conundrum. Along the way, they are building an ecosystem of tools, datasets, and methods to enable roadway interventions and impact assessments of strategies to significantly reduce carbon-intense urban driving.

    Play video

    Their collaborator on the project is the Utah Department of Transportation, which Wu says has played an essential role, in part by sharing data and practical knowledge that she and her group otherwise would not have been able to access publicly.

    “I appreciate industry and public sector collaborations,” says Wu. “When it comes to important societal problems, one really needs grounding with practitioners. One needs to be able to hear the perspectives in the field. My interactions with practitioners expand my horizons and help ground my research. You never know when you’ll hear the perspective that is the key to the solution, or perhaps the key to understanding the problem.”

    Finding the best routes

    In a similar vein, she and her research group are tackling large coordination problems. For example, vehicle routing. “Every day, delivery trucks route more than a hundred thousand packages for the city of Boston alone,” says Wu. Accomplishing the task requires, among other things, figuring out which trucks to use, which packages to deliver, and the order in which to deliver them as efficiently as possible. If and when the trucks are electrified, they will need to be charged, adding another wrinkle to the process and further complicating route optimization.

    The vehicle routing problem, and therefore the scope of Wu’s work, extends beyond truck routing for package delivery. Ride-hailing cars may need to pick up objects as well as drop them off; and what if delivery is done by bicycle or drone? In partnership with Amazon, for example, Wu and her team addressed routing and path planning for hundreds of robots (up to 800) in their warehouses.

    Every variation requires custom heuristics that are expensive and time-consuming to develop. Again, this is really a family of problems — each one complicated, time-consuming, and currently unsolved by classical techniques — and they are all variations of a central routing problem. The curse of variety meets operations and logistics.

    By combining classical approaches with modern deep-learning methods, Wu is looking for a way to automatically identify heuristics that can effectively solve all of these vehicle routing problems. So far, her approach has proved successful.

    “We’ve contributed hybrid learning approaches that take existing solution methods for small problems and incorporate them into our learning framework to scale and accelerate that existing solver for large problems. And we’re able to do this in a way that can automatically identify heuristics for specialized variations of the vehicle routing problem.” The next step, says Wu, is applying a similar approach to multi-agent robotics problems in automated warehouses.

    Wu and her group are making big strides, in part due to their dedication to use-inspired basic research. Rather than applying known methods or science to a problem, they develop new methods, new science, to address problems. The methods she and her team employ are necessitated by societal problems with practical implications. The inspiration for the approach? None other than Louis Pasteur, who described his research style in a now-famous article titled “Pasteur’s Quadrant.” Anthrax was decimating the sheep population, and Pasteur wanted to better understand why and what could be done about it. The tools of the time could not solve the problem, so he invented a new field, microbiology, not out of curiosity but out of necessity. More

  • in

    Study: Covid-19 has reduced diverse urban interactions

    The Covid-19 pandemic has reduced how often urban residents intersect with people from different income brackets, according to a new study led by MIT researchers.

    Examining the movement of people in four U.S. cities before and after the onset of the pandemic, the study found a 15 to 30 percent decrease in the number of visits residents were making to areas that are socioeconomically different than their own. In turn, this has reduced people’s opportunities to interact with others from varied social and economic spheres.

    “Income diversity of urban encounters decreased during the pandemic, and not just in the lockdown stages,” says Takahiro Yabe, a postdoc at the Media Lab and co-author of a newly published paper detailing the study’s results. “It decreased in the long term as well, after mobility patterns recovered.”

    Indeed, the study found a large immediate dropoff in urban movement in the spring of 2020, when new policies temporarily shuttered many types of institutions and businesses in the U.S. and much of the world due to the emergence of the deadly Covid-19 virus. But even after such restrictions were lifted and the overall amount of urban movement approached prepandemic levels, movement patterns within cities have narrowed; people now visit fewer places.

    “We see that changes like working from home, less exploration, more online shopping, all these behaviors add up,” says Esteban Moro, a research scientist at MIT’s Sociotechnical Systems Research Center (SSRC) and another of the paper’s co-authors. “Working from home is amazing and shopping online is great, but we are not seeing each other at the rates we were before.”

    The paper, “Behavioral changes during the Covid-19 pandemic decreased income diversity of urban encounters,” appears in Nature Communications. The co-authors are Yabe; Bernardo García Bulle Bueno, a doctoral candidate at MIT’s Institute for Data, Systems, and Society (IDSS); Xiaowen Dong, an associate professor at Oxford University; Alex Pentland, professor of media arts and sciences at MIT and the Toshiba Professor at the Media Lab; and Moro, who is also an associate professor at the University Carlos III of Madrid.

    A decline in exploration

    To conduct the study, the researchers examined anonymized cellphone data from 1 million users over a three-year period, starting in early 2019, with data focused on four U.S. cities: Boston, Dallas, Los Angeles, and Seattle. The researchers recorded visits to 433,000 specific “point of interest” locations in those cities, corroborated in part with records from Infogroup’s U.S. Business Database, an annual census of company information.  

    The researchers used U.S. Census Bureau data to categorize the socioeconomic status of the people in the study, placing everyone into one of four income quartiles, based on the average income of the census block (a small area) in which they live. The scholars made the same income-level assessment for every census block in the four cities, then recorded instances in which someone spent from 10 minutes to four hours in a census block other than their own, to see how often people visited areas in different income quartiles. 

    Ultimately, the researchers found that by late 2021, the amount of urban movement overall was returning to prepandemic levels, but the scope of places residents were visiting had become more restricted.

    Among other things, people made many fewer visits to museums, leisure venues, transport sites, and coffee shops. Visits to grocery stores remained fairly constant — but people tend not to leave their socioeconomic circles for grocery shopping.

    “Early in the pandemic, people reduced their mobility radius significantly,” Yabe says. “By late 2021, that decrease flattened out, and the average dwell time people spent at places other than work and home recovered to prepandemic levels. What’s different is that exploration substantially decreased, around 5 to 10 percent. We also see less visitation to fun places.” He adds: “Museums are the most diverse places you can find, parks — they took the biggest hit during the pandemic. Places that are [more] segregated, like grocery stores, did not.”

    Overall, Moro notes, “When we explore less, we go to places that are less diverse.”

    Different cities, same pattern

    Because the study encompassed four cities with different types of policies about reopening public sites and businesses during the pandemic, the researchers could also evaluate what impact public health policies had on urban movement. But even in these different settings, the same phenomenon emerged, with a narrower range of mobility occurring by late 2021.

    “Despite the substantial differences in how cities dealt with Covid-19, the decrease in diversity and the behavioral changes were surprisingly similar across the four cities,” Yabe observes.

    The researchers emphasize that these changes in urban movement can have long-term societal effects. Prior research has shown a significant association between a diversity of social connections and greater economic success for people in lower-income groups. And while some interactions between people in different income quartiles might be brief and transactional, the evidence suggests that, on aggregate, other more substantial connections have also been reduced. Additionally, the scholars note, the narrowing of experience can also weaken civic ties and valuable political connections.

    “It’s creating an urban fabric that is actually more brittle, in the sense that we are less exposed to other people,” Moro says. “We don’t get to know other people in the city, and that is very important for policies and public opinion. We need to convince people that new policies and laws would be fair. And the only way to do that is to know other people’s needs. If we don’t see them around the city, that will be impossible.”

    At the same time, Yabe adds, “I think there is a lot we can do from a policy standpoint to bring people back to places that used to be a lot more diverse.” The researchers are currently developing further studies related to cultural and public institutions, as well and transportation issues, to try to evaluate urban connectivity in additional detail.

    “The quantity of our mobility has recovered,” Yabe says. “The quality has really changed, and we’re more segregated as a result.” More

  • in

    Minimizing electric vehicles’ impact on the grid

    National and global plans to combat climate change include increasing the electrification of vehicles and the percentage of electricity generated from renewable sources. But some projections show that these trends might require costly new power plants to meet peak loads in the evening when cars are plugged in after the workday. What’s more, overproduction of power from solar farms during the daytime can waste valuable electricity-generation capacity.

    In a new study, MIT researchers have found that it’s possible to mitigate or eliminate both these problems without the need for advanced technological systems of connected devices and real-time communications, which could add to costs and energy consumption. Instead, encouraging the placing of charging stations for electric vehicles (EVs) in strategic ways, rather than letting them spring up anywhere, and setting up systems to initiate car charging at delayed times could potentially make all the difference.

    The study, published today in the journal Cell Reports Physical Science, is by Zachary Needell PhD ’22, postdoc Wei Wei, and Professor Jessika Trancik of MIT’s Institute for Data, Systems, and Society.

    In their analysis, the researchers used data collected in two sample cities: New York and Dallas. The data were gathered from, among other sources, anonymized records collected via onboard devices in vehicles, and surveys that carefully sampled populations to cover variable travel behaviors. They showed the times of day cars are used and for how long, and how much time the vehicles spend at different kinds of locations — residential, workplace, shopping, entertainment, and so on.

    The findings, Trancik says, “round out the picture on the question of where to strategically locate chargers to support EV adoption and also support the power grid.”

    Better availability of charging stations at workplaces, for example, could help to soak up peak power being produced at midday from solar power installations, which might otherwise go to waste because it is not economical to build enough battery or other storage capacity to save all of it for later in the day. Thus, workplace chargers can provide a double benefit, helping to reduce the evening peak load from EV charging and also making use of the solar electricity output.

    These effects on the electric power system are considerable, especially if the system must meet charging demands for a fully electrified personal vehicle fleet alongside the peaks in other demand for electricity, for example on the hottest days of the year. If unmitigated, the evening peaks in EV charging demand could require installing upwards of 20 percent more power-generation capacity, the researchers say.

    “Slow workplace charging can be more preferable than faster charging technologies for enabling a higher utilization of midday solar resources,” Wei says.

    Meanwhile, with delayed home charging, each EV charger could be accompanied by a simple app to estimate the time to begin its charging cycle so that it charges just before it is needed the next day. Unlike other proposals that require a centralized control of the charging cycle, such a system needs no interdevice communication of information and can be preprogrammed — and can accomplish a major shift in the demand on the grid caused by increasing EV penetration. The reason it works so well, Trancik says, is because of the natural variability in driving behaviors across individuals in a population.

    By “home charging,” the researchers aren’t only referring to charging equipment in individual garages or parking areas. They say it’s essential to make charging stations available in on-street parking locations and in apartment building parking areas as well.

    Trancik says the findings highlight the value of combining the two measures — workplace charging and delayed home charging — to reduce peak electricity demand, store solar energy, and conveniently meet drivers’ charging needs on all days. As the team showed in earlier research, home charging can be a particularly effective component of a strategic package of charging locations; workplace charging, they have found, is not a good substitute for home charging for meeting drivers’ needs on all days.

    “Given that there’s a lot of public money going into expanding charging infrastructure,” Trancik says, “how do you incentivize the location such that this is going to be efficiently and effectively integrated into the power grid without requiring a lot of additional capacity expansion?” This research offers some guidance to policymakers on where to focus rules and incentives.

    “I think one of the fascinating things about these findings is that by being strategic you can avoid a lot of physical infrastructure that you would otherwise need,” she adds. “Your electric vehicles can displace some of the need for stationary energy storage, and you can also avoid the need to expand the capacity of power plants, by thinking about the location of chargers as a tool for managing demands — where they occur and when they occur.”

    Delayed home charging could make a surprising amount of difference, the team found. “It’s basically incentivizing people to begin charging later. This can be something that is preprogrammed into your chargers. You incentivize people to delay the onset of charging by a bit, so that not everyone is charging at the same time, and that smooths out the peak.”

    Such a program would require some advance commitment on the part of participants. “You would need to have enough people committing to this program in advance to avoid the investment in physical infrastructure,” Trancik says. “So, if you have enough people signing up, then you essentially don’t have to build those extra power plants.”

    It’s not a given that all of this would line up just right, and putting in place the right mix of incentives would be crucial. “If you want electric vehicles to act as an effective storage technology for solar energy, then the [EV] market needs to grow fast enough in order to be able to do that,” Trancik says.

    To best use public funds to help make that happen, she says, “you can incentivize charging installations, which would go through ideally a competitive process — in the private sector, you would have companies bidding for different projects, but you can incentivize installing charging at workplaces, for example, to tap into both of these benefits.” Chargers people can access when they are parked near their residences are also important, Trancik adds, but for other reasons. Home charging is one of the ways to meet charging needs while avoiding inconvenient disruptions to people’s travel activities.

    The study was supported by the European Regional Development Fund Operational Program for Competitiveness and Internationalization, the Lisbon Portugal Regional Operation Program, and the Portuguese Foundation for Science and Technology. More

  • in

    Study: Carbon-neutral pavements are possible by 2050, but rapid policy and industry action are needed

    Almost 2.8 million lane-miles, or about 4.6 million lane-kilometers, of the United States are paved.

    Roads and streets form the backbone of our built environment. They take us to work or school, take goods to their destinations, and much more.

    However, a new study by MIT Concrete Sustainability Hub (CSHub) researchers shows that the annual greenhouse gas (GHG) emissions of all construction materials used in the U.S. pavement network are 11.9 to 13.3 megatons. This is equivalent to the emissions of a gasoline-powered passenger vehicle driving about 30 billion miles in a year.

    As roads are built, repaved, and expanded, new approaches and thoughtful material choices are necessary to dampen their carbon footprint. 

    The CSHub researchers found that, by 2050, mixtures for pavements can be made carbon-neutral if industry and governmental actors help to apply a range of solutions — like carbon capture — to reduce, avoid, and neutralize embodied impacts. (A neutralization solution is any compensation mechanism in the value chain of a product that permanently removes the global warming impact of the processes after avoiding and reducing the emissions.) Furthermore, nearly half of pavement-related greenhouse gas (GHG) savings can be achieved in the short term with a negative or nearly net-zero cost.

    The research team, led by Hessam AzariJafari, MIT CSHub’s deputy director, closed gaps in our understanding of the impacts of pavements decisions by developing a dynamic model quantifying the embodied impact of future pavements materials demand for the U.S. road network. 

    The team first split the U.S. road network into 10-mile (about 16 kilometer) segments, forecasting the condition and performance of each. They then developed a pavement management system model to create benchmarks helping to understand the current level of emissions and the efficacy of different decarbonization strategies. 

    This model considered factors such as annual traffic volume and surface conditions, budget constraints, regional variation in pavement treatment choices, and pavement deterioration. The researchers also used a life-cycle assessment to calculate annual state-level emissions from acquiring pavement construction materials, considering future energy supply and materials procurement.

    The team considered three scenarios for the U.S. pavement network: A business-as-usual scenario in which technology remains static, a projected improvement scenario aligned with stated industry and national goals, and an ambitious improvement scenario that intensifies or accelerates projected strategies to achieve carbon neutrality. 

    If no steps are taken to decarbonize pavement mixtures, the team projected that GHG emissions of construction materials used in the U.S. pavement network would increase by 19.5 percent by 2050. Under the projected scenario, there was an estimated 38 percent embodied impact reduction for concrete and 14 percent embodied impact reduction for asphalt by 2050.

    The keys to making the pavement network carbon neutral by 2050 lie in multiple places. Fully renewable energy sources should be used for pavement materials production, transportation, and other processes. The federal government must contribute to the development of these low-carbon energy sources and carbon capture technologies, as it would be nearly impossible to achieve carbon neutrality for pavements without them. 

    Additionally, increasing pavements’ recycled content and improving their design and production efficiency can lower GHG emissions to an extent. Still, neutralization is needed to achieve carbon neutrality.

    Making the right pavement construction and repair choices would also contribute to the carbon neutrality of the network. For instance, concrete pavements can offer GHG savings across the whole life cycle as they are stiffer and stay smoother for longer, meaning they require less maintenance and have a lesser impact on the fuel efficiency of vehicles. 

    Concrete pavements have other use-phase benefits including a cooling effect through an intrinsically high albedo, meaning they reflect more sunlight than regular pavements. Therefore, they can help combat extreme heat and positively affect the earth’s energy balance through positive radiative forcing, making albedo a potential neutralization mechanism.

    At the same time, a mix of fixes, including using concrete and asphalt in different contexts and proportions, could produce significant GHG savings for the pavement network; decision-makers must consider scenarios on a case-by-case basis to identify optimal solutions. 

    In addition, it may appear as though the GHG emissions of materials used in local roads are dwarfed by the emissions of interstate highway materials. However, the study found that the two road types have a similar impact. In fact, all road types contribute heavily to the total GHG emissions of pavement materials in general. Therefore, stakeholders at the federal, state, and local levels must be involved if our roads are to become carbon neutral. 

    The path to pavement network carbon-neutrality is, therefore, somewhat of a winding road. It demands regionally specific policies and widespread investment to help implement decarbonization solutions, just as renewable energy initiatives have been supported. Providing subsidies and covering the costs of premiums, too, are vital to avoid shifts in the market that would derail environmental savings.

    When planning for these shifts, we must recall that pavements have impacts not just in their production, but across their entire life cycle. As pavements are used, maintained, and eventually decommissioned, they have significant impacts on the surrounding environment.

    If we are to meet climate goals such as the Paris Agreement, which demands that we reach carbon-neutrality by 2050 to avoid the worst impacts of climate change, we — as well as industry and governmental stakeholders — must come together to take a hard look at the roads we use every day and work to reduce their life cycle emissions. 

    The study was published in the International Journal of Life Cycle Assessment. In addition to AzariJafari, the authors include Fengdi Guo of the MIT Department of Civil and Environmental Engineering; Jeremy Gregory, executive director of the MIT Climate and Sustainability Consortium; and Randolph Kirchain, director of the MIT CSHub. More

  • in

    Can your phone tell if a bridge is in good shape?

    Want to know if the Golden Gate Bridge is holding up well? There could be an app for that.

    A new study involving MIT researchers shows that mobile phones placed in vehicles, equipped with special software, can collect useful structural integrity data while crossing bridges. In so doing, they could become a less expensive alternative to sets of sensors attached to bridges themselves.

    “The core finding is that information about structural health of bridges can be extracted from smartphone-collected accelerometer data,” says Carlo Ratti, director of the MIT Sensable City Laboratory and co-author of a new paper summarizing the study’s findings.

    The research was conducted, in part, on the Golden Gate Bridge itself. The study showed that mobile devices can capture the same kind of information about bridge vibrations that stationary sensors compile. The researchers also estimate that, depending on the age of a road bridge, mobile-device monitoring could add from 15 percent to 30 percent more years to the structure’s lifespan.

    “These results suggest that massive and inexpensive datasets collected by smartphones could play an important role in monitoring the health of existing transportation infrastructure,” the authors write in their new paper.

    The study, “Crowdsourcing Bridge Vital Signs with Smartphone Vehicle Trips,” is being published in Communications Engineering.

    The authors are Thomas J. Matarazzo, an assistant professor of civil and mechanical engineering at the United States Military Academy at West Point; Daniel Kondor, a postdoc at the Complexity Science Hub in Vienna; Sebastiano Milardo, a researcher at the Senseable City Lab; Soheil S. Eshkevari, a senior research scientist at DiDi Labs and a former member of Senseable City Lab; Paolo Santi, principal research scientist at the Senseable City Lab and research director at the Italian National Research Council; Shamim N. Pakzad, a professor and chair of the Department of Civil and Environmental Engineering at Lehigh University; Markus J. Buehler, the Jerry McAfee Professor in Engineering and professor of civil and environmental engineering and of mechanical engineering at MIT; and Ratti, who is also professor of the practice in MIT’s Department of Urban Studies and Planning.

    Bridges naturally vibrate, and to study the essential “modal frequencies” of those vibrations in many directions, engineers typically place sensors, such as accelerometers, on bridges themselves. Changes in the modal frequencies over time may indicate changes in a bridge’s structural integrity.

    To conduct the study, the researchers developed an Android-based mobile phone application to collect accelerometer data when the devices were placed in vehicles passing over the bridge. They could then see how well those data matched up with data record by sensors on bridges themselves, to see if the mobile-phone method worked.

    “In our work, we designed a methodology for extracting modal vibration frequencies from noisy data collected from smartphones,” Santi says. “As data from multiple trips over a bridge are recorded, noise generated by engine, suspension and traffic vibrations, [and] asphalt, tend to cancel out, while the underlying dominant frequencies emerge.”

    In the case of the Golden Gate Bridge, the researchers drove over the bridge 102 times with their devices running, and the team used 72 trips by Uber drivers with activated phones as well. The team then compared the resulting data to that from a group of 240 sensors that had been placed on the Golden Gate Bridge for three months.

    The outcome was that the data from the phones converged with that from the bridge’s sensors; for 10 particular types of low-frequency vibrations engineers measure on the bridge, there was a close match, and in five cases, there was no discrepancy between the methods at all.

    “We were able to show that many of these frequencies correspond very accurately to the prominent modal frequencies of the bridge,” Santi says.  

    However, only 1 percent of all bridges in the U.S. are suspension bridges. About 41 percent are much smaller concrete span bridges. So, the researchers also examined how well their method would fare in that setting.

    To do so, they studied a bridge in Ciampino, Italy, comparing 280 vehicle trips over the bridge to six sensors that had been placed on the bridge for seven months. Here, the researchers were also encouraged by the findings, though they found up to a 2.3 percent divergence between methods for certain modal frequencies over all 280 trips, and a 5.5 percent divergence over a smaller sample. That suggests a larger volume of trips could yield more useful data.

    “Our initial results suggest that only a [modest amount] of trips over the span of a few weeks are sufficient to obtain useful information about bridge modal frequencies,” Santi says.

    Looking at the method as a whole, Buehler observes, “Vibrational signatures are emerging as a powerful tool to assess properties of large and complex systems, ranging from viral properties of pathogens to structural integrity of bridges as shown in this study. It’s a universal signal found widely in the natural and built environment that we’re just now beginning to explore as a diagnostic and generative tool in engineering.”

    As Ratti acknowledges, there are ways to refine and expand the research, including accounting for the effects of the smartphone mount in the vehicle, the influence of the vehicle type on the data, and more.

    “We still have work to do, but we believe that our approach could be scaled up easily — all the way to the level of an entire country,” Ratti says. “It might not reach the accuracy that one can get using fixed sensors installed on a bridge, but it could become a very interesting early-warning system. Small anomalies could then suggest when to carry out further analyses.”

    The researchers received support from Anas S.p.A., Allianz, Brose, Cisco, Dover Corporation, Ford, the Amsterdam Institute for Advanced Metropolitan Solutions, the Fraunhofer Institute, the former Kuwait-MIT Center for Natural Resources and the Environment, Lab Campus, RATP, Singapore–MIT Alliance for Research and Technology (SMART), SNCF Gares & Connexions, UBER, and the U.S. Department of Defense High-Performance Computing Modernization Program. More

  • in

    3 Questions: What a single car can say about traffic

    Vehicle traffic has long defied description. Once measured roughly through visual inspection and traffic cameras, new smartphone crowdsourcing tools are now quantifying traffic far more precisely. This popular method, however, also presents a problem: Accurate measurements require a lot of data and users.

    Meshkat Botshekan, an MIT PhD student in civil and environmental engineering and research assistant at the MIT Concrete Sustainability Hub, has sought to expand on crowdsourcing methods by looking into the physics of traffic. During his time as a doctoral candidate, he has helped develop Carbin, a smartphone-based roadway crowdsourcing tool created by MIT CSHub and the University of Massachusetts Dartmouth, and used its data to offer more insight into the physics of traffic — from the formation of traffic jams to the inference of traffic phase and driving behavior. Here, he explains how recent findings can allow smartphones to infer traffic properties from the measurements of a single vehicle.  

    Q: Numerous navigation apps already measure traffic. Why do we need alternatives?

    A: Traffic characteristics have always been tough to measure. In the past, visual inspection and cameras were used to produce traffic metrics. So, there’s no denying that today’s navigation tools apps offer a superior alternative. Yet even these modern tools have gaps.

    Chief among them is their dependence on spatially distributed user counts: Essentially, these apps tally up their users on road segments to estimate the density of traffic. While this approach may seem adequate, it is both vulnerable to manipulation, as demonstrated in some viral videos, and requires immense quantities of data for reliable estimates. Processing these data is so time- and resource-intensive that, despite their availability, they can’t be used to quantify traffic effectively across a whole road network. As a result, this immense quantity of traffic data isn’t actually optimal for traffic management.

    Q: How could new technologies improve how we measure traffic?

    A: New alternatives have the potential to offer two improvements over existing methods: First, they can extrapolate far more about traffic with far fewer data. Second, they can cost a fraction of the price while offering a far simpler method of data collection. Just like Waze and Google Maps, they rely on crowdsourcing data from users. Yet, they are grounded in the incorporation of high-level statistical physics into data analysis.

    For instance, the Carbin app, which we are developing in collaboration with UMass Dartmouth, applies principles of statistical physics to existing traffic models to entirely forgo the need for user counts. Instead, it can infer traffic density and driver behavior using the input of a smartphone mounted in single vehicle.

    The method at the heart of the app, which was published last fall in Physical Review E, treats vehicles like particles in a many-body system. Just as the behavior of a closed many-body system can be understood through observing the behavior of an individual particle relying on the ergodic theorem of statistical physics, we can characterize traffic through the fluctuations in speed and position of a single vehicle across a road. As a result, we can infer the behavior and density of traffic on a segment of a road.

    As far less data is required, this method is more rapid and makes data management more manageable. But most importantly, it also has the potential to make traffic data less expensive and accessible to those that need it.

    Q: Who are some of the parties that would benefit from new technologies?

    A: More accessible and sophisticated traffic data would benefit more than just drivers seeking smoother, faster routes. It would also enable state and city departments of transportation (DOTs) to make local and collective interventions that advance the critical transportation objectives of equity, safety, and sustainability.

    As a safety solution, new data collection technologies could pinpoint dangerous driving conditions on a much finer scale to inform improved traffic calming measures. And since socially vulnerable communities experience traffic violence disproportionately, these interventions would have the added benefit of addressing pressing equity concerns. 

    There would also be an environmental benefit. DOTs could mitigate vehicle emissions by identifying minute deviations in traffic flow. This would present them with more opportunities to mitigate the idling and congestion that generate excess fuel consumption.  

    As we’ve seen, these three challenges have become increasingly acute, especially in urban areas. Yet, the data needed to address them exists already — and is being gathered by smartphones and telematics devices all over the world. So, to ensure a safer, more sustainable road network, it will be crucial to incorporate these data collection methods into our decision-making. More

  • in

    Machine learning speeds up vehicle routing

    Waiting for a holiday package to be delivered? There’s a tricky math problem that needs to be solved before the delivery truck pulls up to your door, and MIT researchers have a strategy that could speed up the solution.

    The approach applies to vehicle routing problems such as last-mile delivery, where the goal is to deliver goods from a central depot to multiple cities while keeping travel costs down. While there are algorithms designed to solve this problem for a few hundred cities, these solutions become too slow when applied to a larger set of cities.

    To remedy this, Cathy Wu, the Gilbert W. Winslow Career Development Assistant Professor in Civil and Environmental Engineering and the Institute for Data, Systems, and Society, and her students have come up with a machine-learning strategy that accelerates some of the strongest algorithmic solvers by 10 to 100 times.

    The solver algorithms work by breaking up the problem of delivery into smaller subproblems to solve — say, 200 subproblems for routing vehicles between 2,000 cities. Wu and her colleagues augment this process with a new machine-learning algorithm that identifies the most useful subproblems to solve, instead of solving all the subproblems, to increase the quality of the solution while using orders of magnitude less compute.

    Their approach, which they call “learning-to-delegate,” can be used across a variety of solvers and a variety of similar problems, including scheduling and pathfinding for warehouse robots, the researchers say.

    The work pushes the boundaries on rapidly solving large-scale vehicle routing problems, says Marc Kuo, founder and CEO of Routific, a smart logistics platform for optimizing delivery routes. Some of Routific’s recent algorithmic advances were inspired by Wu’s work, he notes.

    “Most of the academic body of research tends to focus on specialized algorithms for small problems, trying to find better solutions at the cost of processing times. But in the real-world, businesses don’t care about finding better solutions, especially if they take too long for compute,” Kuo explains. “In the world of last-mile logistics, time is money, and you cannot have your entire warehouse operations wait for a slow algorithm to return the routes. An algorithm needs to be hyper-fast for it to be practical.”

    Wu, social and engineering systems doctoral student Sirui Li, and electrical engineering and computer science doctoral student Zhongxia Yan presented their research this week at the 2021 NeurIPS conference.

    Selecting good problems

    Vehicle routing problems are a class of combinatorial problems, which involve using heuristic algorithms to find “good-enough solutions” to the problem. It’s typically not possible to come up with the one “best” answer to these problems, because the number of possible solutions is far too huge.

    “The name of the game for these types of problems is to design efficient algorithms … that are optimal within some factor,” Wu explains. “But the goal is not to find optimal solutions. That’s too hard. Rather, we want to find as good of solutions as possible. Even a 0.5% improvement in solutions can translate to a huge revenue increase for a company.”

    Over the past several decades, researchers have developed a variety of heuristics to yield quick solutions to combinatorial problems. They usually do this by starting with a poor but valid initial solution and then gradually improving the solution — by trying small tweaks to improve the routing between nearby cities, for example. For a large problem like a 2,000-plus city routing challenge, however, this approach just takes too much time.

    More recently, machine-learning methods have been developed to solve the problem, but while faster, they tend to be more inaccurate, even at the scale of a few dozen cities. Wu and her colleagues decided to see if there was a beneficial way to combine the two methods to find speedy but high-quality solutions.

    “For us, this is where machine learning comes in,” Wu says. “Can we predict which of these subproblems, that if we were to solve them, would lead to more improvement in the solution, saving computing time and expense?”

    Traditionally, a large-scale vehicle routing problem heuristic might choose the subproblems to solve in which order either randomly or by applying yet another carefully devised heuristic. In this case, the MIT researchers ran sets of subproblems through a neural network they created to automatically find the subproblems that, when solved, would lead to the greatest gain in quality of the solutions. This process sped up subproblem selection process by 1.5 to 2 times, Wu and colleagues found.

    “We don’t know why these subproblems are better than other subproblems,” Wu notes. “It’s actually an interesting line of future work. If we did have some insights here, these could lead to designing even better algorithms.”

    Surprising speed-up

    Wu and colleagues were surprised by how well the approach worked. In machine learning, the idea of garbage-in, garbage-out applies — that is, the quality of a machine-learning approach relies heavily on the quality of the data. A combinatorial problem is so difficult that even its subproblems can’t be optimally solved. A neural network trained on the “medium-quality” subproblem solutions available as the input data “would typically give medium-quality results,” says Wu. In this case, however, the researchers were able to leverage the medium-quality solutions to achieve high-quality results, significantly faster than state-of-the-art methods.

    For vehicle routing and similar problems, users often must design very specialized algorithms to solve their specific problem. Some of these heuristics have been in development for decades.

    The learning-to-delegate method offers an automatic way to accelerate these heuristics for large problems, no matter what the heuristic or — potentially — what the problem.

    Since the method can work with a variety of solvers, it may be useful for a variety of resource allocation problems, says Wu. “We may unlock new applications that now will be possible because the cost of solving the problem is 10 to 100 times less.”

    The research was supported by MIT Indonesia Seed Fund, U.S. Department of Transportation Dwight David Eisenhower Transportation Fellowship Program, and the MIT-IBM Watson AI Lab. More

  • in

    One autonomous taxi, please

    If you don’t get seasick, an autonomous boat might be the right mode of transportation for you. 

    Scientists from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and the Senseable City Laboratory, together with Amsterdam Institute for Advanced Metropolitan Solutions (AMS Institute) in the Netherlands, have now created the final project in their self-navigating trilogy: a full-scale, fully autonomous robotic boat that’s ready to be deployed along the canals of Amsterdam. 

    “Roboat” has come a long way since the team first started prototyping small vessels in the MIT pool in late 2015. Last year, the team released their half-scale, medium model that was 2 meters long and demonstrated promising navigational prowess. 

    This year, two full-scale Roboats were launched, proving more than just proof-of-concept: these craft can comfortably carry up to five people, collect waste, deliver goods, and provide on-demand infrastructure. 

    The boat looks futuristic — it’s a sleek combination of black and gray with two seats that face each other, with orange block letters on the sides that illustrate the makers’ namesakes. It’s a fully electrical boat with a battery that’s the size of a small chest, enabling up to 10 hours of operation and wireless charging capabilities. 

    Play video

    Autonomous Roboats set sea in the Amsterdam canals and can comfortably carry up to five people, collect waste, deliver goods, and provide on-demand infrastructure.

    “We now have higher precision and robustness in the perception, navigation, and control systems, including new functions, such as close-proximity approach mode for latching capabilities, and improved dynamic positioning, so the boat can navigate real-world waters,” says Daniela Rus, MIT professor of electrical engineering and computer science and director of CSAIL. “Roboat’s control system is adaptive to the number of people in the boat.” 

    To swiftly navigate the bustling waters of Amsterdam, Roboat needs a meticulous fusion of proper navigation, perception, and control software. 

    Using GPS, the boat autonomously decides on a safe route from A to B, while continuously scanning the environment to  avoid collisions with objects, such as bridges, pillars, and other boats.

    To autonomously determine a free path and avoid crashing into objects, Roboat uses lidar and a number of cameras to enable a 360-degree view. This bundle of sensors is referred to as the “perception kit” and lets Roboat understand its surroundings. When the perception picks up an unseen object, like a canoe, for example, the algorithm flags the item as “unknown.” When the team later looks at the collected data from the day, the object is manually selected and can be tagged as “canoe.” 

    The control algorithms — similar to ones used for self-driving cars — function a little like a coxswain giving orders to rowers, by translating a given path into instructions toward the “thrusters,” which are the propellers that help the boat move.  

    If you think the boat feels slightly futuristic, its latching mechanism is one of its most impressive feats: small cameras on the boat guide it to the docking station, or other boats, when they detect specific QR codes. “The system allows Roboat to connect to other boats, and to the docking station, to form temporary bridges to alleviate traffic, as well as floating stages and squares, which wasn’t possible with the last iteration,” says Carlo Ratti, professor of the practice in the MIT Department of Urban Studies and Planning (DUSP) and director of the Senseable City Lab. 

    Roboat, by design, is also versatile. The team created a universal “hull” design — that’s the part of the boat that rides both in and on top of the water. While regular boats have unique hulls, designed for specific purposes, Roboat has a universal hull design where the base is the same, but the top decks can be switched out depending on the use case.

    “As Roboat can perform its tasks 24/7, and without a skipper on board, it adds great value for a city. However, for safety reasons it is questionable if reaching level A autonomy is desirable,” says Fabio Duarte, a principal research scientist in DUSP and lead scientist on the project. “Just like a bridge keeper, an onshore operator will monitor Roboat remotely from a control center. One operator can monitor over 50 Roboat units, ensuring smooth operations.”

    The next step for Roboat is to pilot the technology in the public domain. “The historic center of Amsterdam is the perfect place to start, with its capillary network of canals suffering from contemporary challenges, such as mobility and logistics,” says Stephan van Dijk, director of innovation at AMS Institute. 

    Previous iterations of Roboat have been presented at the IEEE International Conference on Robotics and Automation. The boats will be unveiled on Oct. 28 in the waters of Amsterdam. 

    Ratti, Rus, Duarte, and Dijk worked on the project alongside Andrew Whittle, MIT’s Edmund K Turner Professor in civil and environmental engineering; Dennis Frenchman, professor at MIT’s Department of Urban Studies and Planning; and Ynse Deinema of AMS Institute. The full team can be found at Roboat’s website. The project is a joint collaboration with AMS Institute. The City of Amsterdam is a project partner. More