More stories

  • in

    Computing our climate future

    On Monday, MIT announced five multiyear flagship projects in the first-ever Climate Grand Challenges, a new initiative to tackle complex climate problems and deliver breakthrough solutions to the world as quickly as possible. This article is the first in a five-part series highlighting the most promising concepts to emerge from the competition, and the interdisciplinary research teams behind them.

    With improvements to computer processing power and an increased understanding of the physical equations governing the Earth’s climate, scientists are continually working to refine climate models and improve their predictive power. But the tools they’re refining were originally conceived decades ago with only scientists in mind. When it comes to developing tangible climate action plans, these models remain inscrutable to the policymakers, public safety officials, civil engineers, and community organizers who need their predictive insight most.

    “What you end up having is a gap between what’s typically used in practice, and the real cutting-edge science,” says Noelle Selin, a professor in the Institute for Data, Systems and Society and the Department of Earth, Atmospheric and Planetary Sciences (EAPS), and co-lead with Professor Raffaele Ferrari on the MIT Climate Grand Challenges flagship project “Bringing Computation to the Climate Crisis.” “How can we use new computational techniques, new understandings, new ways of thinking about modeling, to really bridge that gap between state-of-the-art scientific advances and modeling, and people who are actually needing to use these models?”

    Using this as a driving question, the team won’t just be trying to refine current climate models, they’re building a new one from the ground up.

    This kind of game-changing advancement is exactly what the MIT Climate Grand Challenges is looking for, which is why the proposal has been named one of the five flagship projects in the ambitious Institute-wide program aimed at tackling the climate crisis. The proposal, which was selected from 100 submissions and was among 27 finalists, will receive additional funding and support to further their goal of reimagining the climate modeling system. It also brings together contributors from across the Institute, including the MIT Schwarzman College of Computing, the School of Engineering, and the Sloan School of Management.

    When it comes to pursuing high-impact climate solutions that communities around the world can use, “it’s great to do it at MIT,” says Ferrari, EAPS Cecil and Ida Green Professor of Oceanography. “You’re not going to find many places in the world where you have the cutting-edge climate science, the cutting-edge computer science, and the cutting-edge policy science experts that we need to work together.”

    The climate model of the future

    The proposal builds on work that Ferrari began three years ago as part of a joint project with Caltech, the Naval Postgraduate School, and NASA’s Jet Propulsion Lab. Called the Climate Modeling Alliance (CliMA), the consortium of scientists, engineers, and applied mathematicians is constructing a climate model capable of more accurately projecting future changes in critical variables, such as clouds in the atmosphere and turbulence in the ocean, with uncertainties at least half the size of those in existing models.

    To do this, however, requires a new approach. For one thing, current models are too coarse in resolution — at the 100-to-200-kilometer scale — to resolve small-scale processes like cloud cover, rainfall, and sea ice extent. But also, explains Ferrari, part of this limitation in resolution is due to the fundamental architecture of the models themselves. The languages most global climate models are coded in were first created back in the 1960s and ’70s, largely by scientists for scientists. Since then, advances in computing driven by the corporate world and computer gaming have given rise to dynamic new computer languages, powerful graphics processing units, and machine learning.

    For climate models to take full advantage of these advancements, there’s only one option: starting over with a modern, more flexible language. Written in Julia, a part of Julialab’s Scientific Machine Learning technology, and spearheaded by Alan Edelman, a professor of applied mathematics in MIT’s Department of Mathematics, CliMA will be able to harness far more data than the current models can handle.

    “It’s been real fun finally working with people in computer science here at MIT,” Ferrari says. “Before it was impossible, because traditional climate models are in a language their students can’t even read.”

    The result is what’s being called the “Earth digital twin,” a climate model that can simulate global conditions on a large scale. This on its own is an impressive feat, but the team wants to take this a step further with their proposal.

    “We want to take this large-scale model and create what we call an ‘emulator’ that is only predicting a set of variables of interest, but it’s been trained on the large-scale model,” Ferrari explains. Emulators are not new technology, but what is new is that these emulators, being referred to as the “Earth digital cousins,” will take advantage of machine learning.

    “Now we know how to train a model if we have enough data to train them on,” says Ferrari. Machine learning for projects like this has only become possible in recent years as more observational data become available, along with improved computer processing power. The goal is to create smaller, more localized models by training them using the Earth digital twin. Doing so will save time and money, which is key if the digital cousins are going to be usable for stakeholders, like local governments and private-sector developers.

    Adaptable predictions for average stakeholders

    When it comes to setting climate-informed policy, stakeholders need to understand the probability of an outcome within their own regions — in the same way that you would prepare for a hike differently if there’s a 10 percent chance of rain versus a 90 percent chance. The smaller Earth digital cousin models will be able to do things the larger model can’t do, like simulate local regions in real time and provide a wider range of probabilistic scenarios.

    “Right now, if you wanted to use output from a global climate model, you usually would have to use output that’s designed for general use,” says Selin, who is also the director of the MIT Technology and Policy Program. With the project, the team can take end-user needs into account from the very beginning while also incorporating their feedback and suggestions into the models, helping to “democratize the idea of running these climate models,” as she puts it. Doing so means building an interactive interface that eventually will give users the ability to change input values and run the new simulations in real time. The team hopes that, eventually, the Earth digital cousins could run on something as ubiquitous as a smartphone, although developments like that are currently beyond the scope of the project.

    The next thing the team will work on is building connections with stakeholders. Through participation of other MIT groups, such as the Joint Program on the Science and Policy of Global Change and the Climate and Sustainability Consortium, they hope to work closely with policymakers, public safety officials, and urban planners to give them predictive tools tailored to their needs that can provide actionable outputs important for planning. Faced with rising sea levels, for example, coastal cities could better visualize the threat and make informed decisions about infrastructure development and disaster preparedness; communities in drought-prone regions could develop long-term civil planning with an emphasis on water conservation and wildfire resistance.

    “We want to make the modeling and analysis process faster so people can get more direct and useful feedback for near-term decisions,” she says.

    The final piece of the challenge is to incentivize students now so that they can join the project and make a difference. Ferrari has already had luck garnering student interest after co-teaching a class with Edelman and seeing the enthusiasm students have about computer science and climate solutions.

    “We’re intending in this project to build a climate model of the future,” says Selin. “So it seems really appropriate that we would also train the builders of that climate model.” More

  • in

    MIT collaborates with Biogen on three-year, $7 million initiative to address climate, health, and equity

    MIT and Biogen have announced that they will collaborate with the goal to accelerate the science and action on climate change to improve human health. This collaboration is supported by a three-year, $7 million commitment from the company and the Biogen Foundation. The biotechnology company, headquartered in Cambridge, Massachusetts’ Kendall Square, discovers and develops therapies for people living with serious neurological diseases.

    “We have long believed it is imperative for Biogen to make the fight against climate change central to our long-term corporate responsibility commitments. Through this collaboration with MIT, we aim to identify and share innovative climate solutions that will deliver co-benefits for both health and equity,” says Michel Vounatsos, CEO of Biogen. “We are also proud to support the MIT Museum, which promises to make world-class science and education accessible to all, and honor Biogen co-founder Phillip A. Sharp with a dedication inside the museum that recognizes his contributions to its development.”

    Biogen and the Biogen Foundation are supporting research and programs across a range of areas at MIT.

    Advancing climate, health, and equity

    The first such effort involves new work within the MIT Joint Program on the Science and Policy of Global Change to establish a state-of-the-art integrated model of climate and health aimed at identifying targets that deliver climate and health co-benefits.

    “Evidence suggests that not all climate-related actions deliver equal health benefits, yet policymakers, planners, and stakeholders traditionally lack the tools to consider how decisions in one arena impact the other,” says C. Adam Schlosser, deputy director of the MIT Joint Program. “Biogen’s collaboration with the MIT Joint Program — and its support of a new distinguished Biogen Fellow who will develop the new climate/health model — will accelerate our efforts to provide decision-makers with these tools.”

    Biogen is also supporting the MIT Technology and Policy Program’s Research to Policy Engagement Initiative to infuse human health as a key new consideration in decision-making on the best pathways forward to address the global climate crisis, and bridge the knowledge-to-action gap by connecting policymakers, researchers, and diverse stakeholders. As part of this work, Biogen is underwriting a distinguished Biogen Fellow to advance new research on climate, health, and equity.

    “Our work with Biogen has allowed us to make progress on key questions that matter to human health and well-being under climate change,” says Noelle Eckley Selin, who directs the MIT Technology and Policy Program and is a professor in the MIT Institute for Data, Systems, and Society and the Department of Earth, Atmospheric and Planetary Sciences. “Further, their support of the Research to Policy Engagement Initiative helps all of our research become more effective in making change.”

    In addition, Biogen has joined 13 other companies in the MIT Climate and Sustainability Consortium (MCSC), which is supporting faculty and student research and developing impact pathways that present a range of actionable steps that companies can take — within and across industries — to advance progress toward climate targets.

    “Biogen joining the MIT Climate and Sustainability Consortium represents our commitment to working with member companies across a diverse range of industries, an approach that aims to drive changes swift and broad enough to match the scale of the climate challenge,” says Jeremy Gregory, executive director of the MCSC. “We are excited to welcome a member from the biotechnology space and look forward to harnessing Biogen’s perspectives as we continue to collaborate and work together with the MIT community in exciting and meaningful ways.”

    Making world-class science and education available to MIT Museum visitors

    Support from Biogen will honor Nobel laureate, MIT Institute professor, and Biogen co-founder Phillip A. Sharp with a named space inside the new Kendall Square location of the MIT Museum, set to open in spring 2022. Biogen also is supporting one of the museum’s opening exhibitions, “Essential MIT,” with a section focused on solving real-world problems such as climate change. It is also providing programmatic support for the museum’s Life Sciences Maker Engagement Program.

    “Phil has provided fantastic support to the MIT Museum for more than a decade as an advisory board member and now as board chair, and he has been deeply involved in plans for the new museum at Kendall Square,” says John Durant, the Mark R. Epstein (Class of 1963) Director of the museum. “Seeing his name on the wall will be a constant reminder of his key role in this development, as well as a mark of our gratitude.”

    Inspiring and empowering the next generation of scientists

    Biogen funding is also being directed to engage the next generation of scientists through support for the Biogen-MIT Biotech in Action: Virtual Lab, a program designed to foster a love of science among diverse and under-served student populations.

    Biogen’s support is part of its Healthy Climate, Healthy Lives initiative, a $250 million, 20-year commitment to eliminate fossil fuels across its operations and collaborate with renowned institutions to advance the science of climate and health and support under-served communities. Additional support is provided by the Biogen Foundation to further its long-standing focus on providing students with equitable access to outstanding science education. More