More stories

  • in

    Taking a magnifying glass to data center operations

    When the MIT Lincoln Laboratory Supercomputing Center (LLSC) unveiled its TX-GAIA supercomputer in 2019, it provided the MIT community a powerful new resource for applying artificial intelligence to their research. Anyone at MIT can submit a job to the system, which churns through trillions of operations per second to train models for diverse applications, such as spotting tumors in medical images, discovering new drugs, or modeling climate effects. But with this great power comes the great responsibility of managing and operating it in a sustainable manner — and the team is looking for ways to improve.

    “We have these powerful computational tools that let researchers build intricate models to solve problems, but they can essentially be used as black boxes. What gets lost in there is whether we are actually using the hardware as effectively as we can,” says Siddharth Samsi, a research scientist in the LLSC. 

    To gain insight into this challenge, the LLSC has been collecting detailed data on TX-GAIA usage over the past year. More than a million user jobs later, the team has released the dataset open source to the computing community.

    Their goal is to empower computer scientists and data center operators to better understand avenues for data center optimization — an important task as processing needs continue to grow. They also see potential for leveraging AI in the data center itself, by using the data to develop models for predicting failure points, optimizing job scheduling, and improving energy efficiency. While cloud providers are actively working on optimizing their data centers, they do not often make their data or models available for the broader high-performance computing (HPC) community to leverage. The release of this dataset and associated code seeks to fill this space.

    “Data centers are changing. We have an explosion of hardware platforms, the types of workloads are evolving, and the types of people who are using data centers is changing,” says Vijay Gadepally, a senior researcher at the LLSC. “Until now, there hasn’t been a great way to analyze the impact to data centers. We see this research and dataset as a big step toward coming up with a principled approach to understanding how these variables interact with each other and then applying AI for insights and improvements.”

    Papers describing the dataset and potential applications have been accepted to a number of venues, including the IEEE International Symposium on High-Performance Computer Architecture, the IEEE International Parallel and Distributed Processing Symposium, the Annual Conference of the North American Chapter of the Association for Computational Linguistics, the IEEE High-Performance and Embedded Computing Conference, and International Conference for High Performance Computing, Networking, Storage and Analysis. 

    Workload classification

    Among the world’s TOP500 supercomputers, TX-GAIA combines traditional computing hardware (central processing units, or CPUs) with nearly 900 graphics processing unit (GPU) accelerators. These NVIDIA GPUs are specialized for deep learning, the class of AI that has given rise to speech recognition and computer vision.

    The dataset covers CPU, GPU, and memory usage by job; scheduling logs; and physical monitoring data. Compared to similar datasets, such as those from Google and Microsoft, the LLSC dataset offers “labeled data, a variety of known AI workloads, and more detailed time series data compared with prior datasets. To our knowledge, it’s one of the most comprehensive and fine-grained datasets available,” Gadepally says. 

    Notably, the team collected time-series data at an unprecedented level of detail: 100-millisecond intervals on every GPU and 10-second intervals on every CPU, as the machines processed more than 3,000 known deep-learning jobs. One of the first goals is to use this labeled dataset to characterize the workloads that different types of deep-learning jobs place on the system. This process would extract features that reveal differences in how the hardware processes natural language models versus image classification or materials design models, for example.   

    The team has now launched the MIT Datacenter Challenge to mobilize this research. The challenge invites researchers to use AI techniques to identify with 95 percent accuracy the type of job that was run, using their labeled time-series data as ground truth.

    Such insights could enable data centers to better match a user’s job request with the hardware best suited for it, potentially conserving energy and improving system performance. Classifying workloads could also allow operators to quickly notice discrepancies resulting from hardware failures, inefficient data access patterns, or unauthorized usage.

    Too many choices

    Today, the LLSC offers tools that let users submit their job and select the processors they want to use, “but it’s a lot of guesswork on the part of users,” Samsi says. “Somebody might want to use the latest GPU, but maybe their computation doesn’t actually need it and they could get just as impressive results on CPUs, or lower-powered machines.”

    Professor Devesh Tiwari at Northeastern University is working with the LLSC team to develop techniques that can help users match their workloads to appropriate hardware. Tiwari explains that the emergence of different types of AI accelerators, GPUs, and CPUs has left users suffering from too many choices. Without the right tools to take advantage of this heterogeneity, they are missing out on the benefits: better performance, lower costs, and greater productivity.

    “We are fixing this very capability gap — making users more productive and helping users do science better and faster without worrying about managing heterogeneous hardware,” says Tiwari. “My PhD student, Baolin Li, is building new capabilities and tools to help HPC users leverage heterogeneity near-optimally without user intervention, using techniques grounded in Bayesian optimization and other learning-based optimization methods. But, this is just the beginning. We are looking into ways to introduce heterogeneity in our data centers in a principled approach to help our users achieve the maximum advantage of heterogeneity autonomously and cost-effectively.”

    Workload classification is the first of many problems to be posed through the Datacenter Challenge. Others include developing AI techniques to predict job failures, conserve energy, or create job scheduling approaches that improve data center cooling efficiencies.

    Energy conservation 

    To mobilize research into greener computing, the team is also planning to release an environmental dataset of TX-GAIA operations, containing rack temperature, power consumption, and other relevant data.

    According to the researchers, huge opportunities exist to improve the power efficiency of HPC systems being used for AI processing. As one example, recent work in the LLSC determined that simple hardware tuning, such as limiting the amount of power an individual GPU can draw, could reduce the energy cost of training an AI model by 20 percent, with only modest increases in computing time. “This reduction translates to approximately an entire week’s worth of household energy for a mere three-hour time increase,” Gadepally says.

    They have also been developing techniques to predict model accuracy, so that users can quickly terminate experiments that are unlikely to yield meaningful results, saving energy. The Datacenter Challenge will share relevant data to enable researchers to explore other opportunities to conserve energy.

    The team expects that lessons learned from this research can be applied to the thousands of data centers operated by the U.S. Department of Defense. The U.S. Air Force is a sponsor of this work, which is being conducted under the USAF-MIT AI Accelerator.

    Other collaborators include researchers at MIT Computer Science and Artificial Intelligence Laboratory (CSAIL). Professor Charles Leiserson’s Supertech Research Group is investigating performance-enhancing techniques for parallel computing, and research scientist Neil Thompson is designing studies on ways to nudge data center users toward climate-friendly behavior.

    Samsi presented this work at the inaugural AI for Datacenter Optimization (ADOPT’22) workshop last spring as part of the IEEE International Parallel and Distributed Processing Symposium. The workshop officially introduced their Datacenter Challenge to the HPC community.

    “We hope this research will allow us and others who run supercomputing centers to be more responsive to user needs while also reducing the energy consumption at the center level,” Samsi says. More

  • in

    Taming the data deluge

    An oncoming tsunami of data threatens to overwhelm huge data-rich research projects on such areas that range from the tiny neutrino to an exploding supernova, as well as the mysteries deep within the brain. 

    When LIGO picks up a gravitational-wave signal from a distant collision of black holes and neutron stars, a clock starts ticking for capturing the earliest possible light that may accompany them: time is of the essence in this race. Data collected from electrical sensors monitoring brain activity are outpacing computing capacity. Information from the Large Hadron Collider (LHC)’s smashed particle beams will soon exceed 1 petabit per second. 

    To tackle this approaching data bottleneck in real-time, a team of researchers from nine institutions led by the University of Washington, including MIT, has received $15 million in funding to establish the Accelerated AI Algorithms for Data-Driven Discovery (A3D3) Institute. From MIT, the research team includes Philip Harris, assistant professor of physics, who will serve as the deputy director of the A3D3 Institute; Song Han, assistant professor of electrical engineering and computer science, who will serve as the A3D3’s co-PI; and Erik Katsavounidis, senior research scientist with the MIT Kavli Institute for Astrophysics and Space Research.

    Infused with this five-year Harnessing the Data Revolution Big Idea grant, and jointly funded by the Office of Advanced Cyberinfrastructure, A3D3 will focus on three data-rich fields: multi-messenger astrophysics, high-energy particle physics, and brain imaging neuroscience. By enriching AI algorithms with new processors, A3D3 seeks to speed up AI algorithms for solving fundamental problems in collider physics, neutrino physics, astronomy, gravitational-wave physics, computer science, and neuroscience. 

    “I am very excited about the new Institute’s opportunities for research in nuclear and particle physics,” says Laboratory for Nuclear Science Director Boleslaw Wyslouch. “Modern particle detectors produce an enormous amount of data, and we are looking for extraordinarily rare signatures. The application of extremely fast processors to sift through these mountains of data will make a huge difference in what we will measure and discover.”

    The seeds of A3D3 were planted in 2017, when Harris and his colleagues at Fermilab and CERN decided to integrate real-time AI algorithms to process the incredible rates of data at the LHC. Through email correspondence with Han, Harris’ team built a compiler, HLS4ML, that could run an AI algorithm in nanoseconds.

    “Before the development of HLS4ML, the fastest processing that we knew of was roughly a millisecond per AI inference, maybe a little faster,” says Harris. “We realized all the AI algorithms were designed to solve much slower problems, such as image and voice recognition. To get to nanosecond inference timescales, we recognized we could make smaller algorithms and rely on custom implementations with Field Programmable Gate Array (FPGA) processors in an approach that was largely different from what others were doing.”

    A few months later, Harris presented their research at a physics faculty meeting, where Katsavounidis became intrigued. Over coffee in Building 7, they discussed combining Harris’ FPGA with Katsavounidis’s use of machine learning for finding gravitational waves. FPGAs and other new processor types, such as graphics processing units (GPUs), accelerate AI algorithms to more quickly analyze huge amounts of data.

    “I had worked with the first FPGAs that were out in the market in the early ’90s and have witnessed first-hand how they revolutionized front-end electronics and data acquisition in big high-energy physics experiments I was working on back then,” recalls Katsavounidis. “The ability to have them crunch gravitational-wave data has been in the back of my mind since joining LIGO over 20 years ago.”

    Two years ago they received their first grant, and the University of Washington’s Shih-Chieh Hsu joined in. The team initiated the Fast Machine Lab, published about 40 papers on the subject, built the group to about 50 researchers, and “launched a whole industry of how to explore a region of AI that has not been explored in the past,” says Harris. “We basically started this without any funding. We’ve been getting small grants for various projects over the years. A3D3 represents our first large grant to support this effort.”  

    “What makes A3D3 so special and suited to MIT is its exploration of a technical frontier, where AI is implemented not in high-level software, but rather in lower-level firmware, reconfiguring individual gates to address the scientific question at hand,” says Rob Simcoe, director of MIT Kavli Institute for Astrophysics and Space Research and the Francis Friedman Professor of Physics. “We are in an era where experiments generate torrents of data. The acceleration gained from tailoring reprogrammable, bespoke computers at the processor level can advance real-time analysis of these data to new levels of speed and sophistication.”

    The Huge Data from the Large Hadron Collider 

    With data rates already exceeding 500 terabits per second, the LHC processes more data than any other scientific instrument on earth. Its future aggregate data rates will soon exceed 1 petabit per second, the biggest data rate in the world. 

    “Through the use of AI, A3D3 aims to perform advanced analyses, such as anomaly detection, and particle reconstruction on all collisions happening 40 million times per second,” says Harris.

    The goal is to find within all of this data a way to identify the few collisions out of the 3.2 billion collisions per second that could reveal new forces, explain how dark matter is formed, and complete the picture of how fundamental forces interact with matter. Processing all of this information requires a customized computing system capable of interpreting the collider information within ultra-low latencies.  

    “The challenge of running this on all of the 100s of terabits per second in real-time is daunting and requires a complete overhaul of how we design and implement AI algorithms,” says Harris. “With large increases in the detector resolution leading to data rates that are even larger the challenge of finding the one collision, among many, will become even more daunting.” 

    The Brain and the Universe

    Thanks to advances in techniques such as medical imaging and electrical recordings from implanted electrodes, neuroscience is also gathering larger amounts of data on how the brain’s neural networks process responses to stimuli and perform motor information. A3D3 plans to develop and implement high-throughput and low-latency AI algorithms to process, organize, and analyze massive neural datasets in real time, to probe brain function in order to enable new experiments and therapies.   

    With Multi-Messenger Astrophysics (MMA), A3D3 aims to quickly identify astronomical events by efficiently processing data from gravitational waves, gamma-ray bursts, and neutrinos picked up by telescopes and detectors. 

    The A3D3 researchers also include a multi-disciplinary group of 15 other researchers, including project lead the University of Washington, along with Caltech, Duke University, Purdue University, UC San Diego, University of Illinois Urbana-Champaign, University of Minnesota, and the University of Wisconsin-Madison. It will include neutrinos research at Icecube and DUNE, and visible astronomy at Zwicky Transient Facility, and will organize deep-learning workshops and boot camps to train students and researchers on how to contribute to the framework and widen the use of fast AI strategies.

    “We have reached a point where detector network growth will be transformative, both in terms of event rates and in terms of astrophysical reach and ultimately, discoveries,” says Katsavounidis. “‘Fast’ and ‘efficient’ is the only way to fight the ‘faint’ and ‘fuzzy’ that is out there in the universe, and the path for getting the most out of our detectors. A3D3 on one hand is going to bring production-scale AI to gravitational-wave physics and multi-messenger astronomy; but on the other hand, we aspire to go beyond our immediate domains and become the go-to place across the country for applications of accelerated AI to data-driven disciplines.” More