More stories

  • in

    Using data to write songs for progress

    A three-year recipient of MIT’s Emerson Classical Vocal Scholarships, senior Ananya Gurumurthy recalls getting ready to step onto the Carnegie Hall stage to sing a Mozart opera that she once sang with the New York All-State Choir. The choir conductor reminded her to articulate her words and to engage her diaphragm.

    “If you don’t project your voice, how are people going to hear you when you perform?” Gurumurthy recalls her conductor telling her. “This is your moment, your chance to connect with such a tremendous audience.”

    Gurumurthy reflects on the universal truth of those words as she adds her musical talents to her math and computer science studies to campaign for social and economic justice.

    The daughter of immigrants

    Growing up in Edgemont, New York, she was inspired to fight on behalf of others by her South Asian immigrant parents, who came to the United States in the 1980s. Her father is a management consultant and her mother has experience as an investment banker.

    “They came barely 15 years after the passage of the 1965 Immigration and Nationality Act, which removed national origin quotas from the American immigration system,” she says. “I would not be here if it had not been for the Civil Rights Movement, which preceded both me and my parents.”

    Her parents told her about their new home’s anti-immigrant sentiments; for example, her father was a graduate student in Dallas exiting a store when he was pelted with glass bottles and racial slurs.

    “I often consider the amount of bravery that it must have taken them to abandon everything they knew to immigrate to a new, but still imperfect, country in search of something better,” she says. “As a result, I have always felt so grounded in my identity both as a South Asian American and a woman of color. These identities have allowed me to think critically about how I can most effectively reform the institutions surrounding me.”

    Gurumurthy has been singing since she was 11, but in high school, she decided to also build her political voice by working for New York Senator Andrea Stewart-Cousins. At one point, Gurumurthy noted a log was kept for the subjects of constituent calls, such as “affordable housing” and  “infrastructure,” and it was then that she became aware that Stewart-Cousins would address the most pressing of these callers’ issues before the Senate.

    “This experience was my first time witnessing how powerful the mobilization of constituents in vast numbers was for influencing meaningful legislative change,” says Gurumurthy.

    After she began applying her math skills to political campaigns, Gurumurthy was soon tapped to run analytics for the Democratic National Committee’s (DNC) midterm election initiative. As a lead analyst for the New York DNC, she adapted an interactive activation-competition (IAC) model to understand voting patterns in the 2018 and 2020 elections. She collected data from public voting records to predict how constituents would cast their ballots and used an IAC algorithm to strategize alongside grassroots organizations and allocate resources to empower historically disenfranchised groups in municipal, state, and federal elections to encourage them to vote.

    Research and student organizing at MIT

    When she arrived at MIT in 2019 to study mathematics with computer science, along with minors in music and economics, she admits she was saddled with the naïve notion that she would “build digital tools that could single-handedly alleviate all of the collective pressures of systemic injustice in this country.” 

    Since then, she has learned to create what she calls “a more nuanced view.” She picked up data analytics skills to build mobilization platforms for organizations that pursued social and economic justice, including working in Fulton County, Georgia, with Fair Fight Action (through the Kelly-Douglas Fund Scholarship) to analyze patterns of voter suppression, and MIT’s ethics laboratories in the Computer Science and Artificial Intelligence Laboratory to build symbolic artificial intelligence protocols to better understand bias in artificial intelligence algorithms. For her work on the International Monetary Fund (through the MIT Washington Summer Internship Program), Gurumurthy was awarded second place for the 2022 S. Klein Prize in Technical Writing for her paper “The Rapid Rise of Cryptocurrency.”

    “The outcomes of each project gave me more hope to begin the next because I could see the impact of these digital tools,” she says. “I saw people feel empowered to use their voices whether it was voting for the first time, protesting exploitative global monetary policy, or fighting gender discrimination. I’ve been really fortunate to see the power of mathematical analysis firsthand.”

    “I have come to realize that the constructive use of technology could be a powerful voice of resistance against injustice,” she says. “Because numbers matter, and when people bear witness to them, they are pushed to take action in meaningful ways.”

    Hoping to make a difference in her own community, she joined several Institute committees. As co-chair of the Undergraduate Association’s education committee, she propelled MIT’s first-ever digital petition for grade transparency and worked with faculty members on Institute committees to ensure that all students were being provided adequate resources to participate in online education in the wake of the Covid-19 pandemic. The digital petition inspired her to begin a project, called Insite, to develop a more centralized digital means of data collection on student life at MIT to better inform policies made by its governing bodies. As Ring Committee chair, she ensured that the special traditions of the “Brass Rat” were made economically accessible to all class members by helping the committee nearly triple its financial aid budget. For her efforts at MIT, last May she received the William L. Stewart, Jr. Award for “[her] contributions [as] an individual student at MIT to extracurricular activities and student life.”

    Ananya plans on going to law school after graduation, to study constitutional law so that she can use her technical background to build quantitative evidence in cases pertaining to voting rights, social welfare, and ethical technology, and set legal standards ”for the humane use of data,” she says.

    “In building digital tools for a variety of social and economic justice organizations, I hope that we can challenge our existing systems of power and realize the progress we so dearly need to witness. There is strength in numbers, both algorithmically and organizationally. I believe it is our responsibility to simultaneously use these strengths to change the world.”

    Her ambitions, however, began when she began singing lessons when she was 11; without her background as a vocalist, she says she would be voiceless.

    “Operatic performance has given me the ability to truly step into my character and convey powerful emotions in my performance. In the process, I have realized that my voice is most powerful when it reflects my true convictions, whether I am performing or publicly speaking. I truly believe that this honesty has allowed me to become an effective community organizer. I’d like to believe that this voice is what compels those around me to act.”

    Private musical study is available for students through the Emerson/Harris Program, which offers merit-based financial awards to students of outstanding achievement on their instruments or voice in classical, jazz, or world music. The Emerson/Harris Program is funded by the late Cherry L. Emerson Jr. SM ’41, in response to an appeal from Associate Provost Ellen T. Harris (Class of 1949 professor emeritus of music). More

  • in

    Success at the intersection of technology and finance

    Citadel founder and CEO Ken Griffin had some free advice for an at-capacity crowd of MIT students at the Wong Auditorium during a campus visit in April. “If you find yourself in a career where you’re not learning,” he told them, “it’s time to change jobs. In this world, if you’re not learning, you can find yourself irrelevant in the blink of an eye.”

    During a conversation with Bryan Landman ’11, senior quantitative research lead for Citadel’s Global Quantitative Strategies business, Griffin reflected on his career and offered predictions for the impact of technology on the finance sector. Citadel, which he launched in 1990, is now one of the world’s leading investment firms. Griffin also serves as non-executive chair of Citadel Securities, a market maker that is known as a key player in the modernization of markets and market structures.

    “We are excited to hear Ken share his perspective on how technology continues to shape the future of finance, including the emerging trends of quantum computing and AI,” said David Schmittlein, the John C Head III Dean and professor of marketing at MIT Sloan School of Management, who kicked off the program. The presentation was jointly sponsored by MIT Sloan, the MIT Schwarzman College of Computing, the School of Engineering, MIT Career Advising and Professional Development, and Citadel Securities Campus Recruiting.

    The future, in Griffin’s view, “is all about the application of engineering, software, and mathematics to markets. Successful entrepreneurs are those who have the tools to solve the unsolved problems of that moment in time.” He launched Citadel only one year after graduating from college. “History so far has been kind to the vision I had back in the late ’80s,” he said.

    Griffin realized very early in his career “that you could use a personal computer and quantitative finance to price traded securities in a way that was much more advanced than you saw on your typical equity trading desk on Wall Street.” Both businesses, he told the audience, are ultimately driven by research. “That’s where we formulate the ideas, and trading is how we monetize that research.”

    It’s also why Citadel and Citadel Securities employ several hundred software engineers. “We have a huge investment today in using modern technology to power our decision-making and trading,” said Griffin.

    One example of Citadel’s application of technology and science is the firm’s hiring of a meteorological team to expand the weather analytics expertise within its commodities business. While power supply is relatively easy to map and analyze, predicting demand is much more difficult. Citadel’s weather team feeds forecast data obtained from supercomputers to its traders. “Wind and solar are huge commodities,” Griffin explained, noting that the days with highest demand in the power market are cloudy, cold days with no wind. When you can forecast those days better than the market as a whole, that’s where you can identify opportunities, he added.

    Pros and cons of machine learning

    Asking about the impact of new technology on their sector, Landman noted that both Citadel and Citadel Securities are already leveraging machine learning. “In the market-making business,” Griffin said, “you see a real application for machine learning because you have so much data to parametrize the models with. But when you get into longer time horizon problems, machine learning starts to break down.”

    Griffin noted that the data obtained through machine learning is most helpful for investments with short time horizons, such as in its quantitative strategies business. “In our fundamental equities business,” he said, “machine learning is not as helpful as you would want because the underlying systems are not stationary.”

    Griffin was emphatic that “there has been a moment in time where being a really good statistician or really understanding machine-learning models was sufficient to make money. That won’t be the case for much longer.” One of the guiding principles at Citadel, he and Landman agreed, was that machine learning and other methodologies should not be used blindly. Each analyst has to cite the underlying economic theory driving their argument on investment decisions. “If you understand the problem in a different way than people who are just using the statistical models,” he said, “you have a real chance for a competitive advantage.”

    ChatGPT and a seismic shift

    Asked if ChatGPT will change history, Griffin predicted that the rise of capabilities in large language models will transform a substantial number of white collar jobs. “With open AI for most routine commercial legal documents, ChatGPT will do a better job writing a lease than a young lawyer. This is the first time we are seeing traditionally white-collar jobs at risk due to technology, and that’s a sea change.”

    Griffin urged MIT students to work with the smartest people they can find, as he did: “The magic of Citadel has been a testament to the idea that by surrounding yourself with bright, ambitious people, you can accomplish something special. I went to great lengths to hire the brightest people I could find and gave them responsibility and trust early in their careers.”

    Even more critical to success is the willingness to advocate for oneself, Griffin said, using Gerald Beeson, Citadel’s chief operating officer, as an example. Beeson, who started as an intern at the firm, “consistently sought more responsibility and had the foresight to train his own successors.” Urging students to take ownership of their careers, Griffin advised: “Make it clear that you’re willing to take on more responsibility, and think about what the roadblocks will be.”

    When microphones were handed to the audience, students inquired what changes Griffin would like to see in the hedge fund industry, how Citadel assesses the risk and reward of potential projects, and whether hedge funds should give back to the open source community. Asked about the role that Citadel — and its CEO — should play in “the wider society,” Griffin spoke enthusiastically of his belief in participatory democracy. “We need better people on both sides of the aisle,” he said. “I encourage all my colleagues to be politically active. It’s unfortunate when firms shut down political dialogue; we actually embrace it.”

    Closing on an optimistic note, Griffin urged the students in the audience to go after success, declaring, “The world is always awash in challenge and its shortcomings, but no matter what anybody says, you live at the greatest moment in the history of the planet. Make the most of it.” More

  • in

    Driving toward data justice

    As a person with a mixed-race background who has lived in four different cities, Amelia Dogan describes her early life as “growing up in a lot of in-betweens.” Now an MIT senior, she continues to link different perspectives together, working at the intersection of urban planning, computer science, and social justice.

    Dogan was born in Canada but spent her high school years in Philadelphia, where she developed a strong affinity for the city.  

    “I love Philadelphia to death,” says Dogan. “It’s my favorite place in the world. The energy in the city is amazing — I’m so sad I wasn’t there for the Super Bowl this year — but it is a city with really big disparities. That drives me to do the research that I do and shapes the things that I care about.”

    Dogan is double-majoring in urban science and planning with computer science and in American studies. She decided on the former after participating in the pre-orientation program offered by the Department of Urban Studies and Planning, which provides an introduction to both the department and the city of Boston. She followed that up with a UROP research project with the West Philadelphia Landscape Project, putting together historical census data on housing and race to find patterns for use in community advocacy.

    After taking WGS.231 (Writing About Race), a course offered by the Program in Women’s and Gender Studies, her first year at MIT, Dogan realized there was a lot of crosstalk between urban planning, computer science, and the social sciences.

    “There’s a lot of critical social theory that I want to have background in to make me a better planner or a better computer scientist,” says Dogan. “There’s also a lot of issues around fairness and participation in computer science, and a lot of computer scientists are trying to reinvent the wheel when there’s already really good, critical social science research and theory behind this.”

    Data science and feminism

    Dogan’s first year at MIT was interrupted by the onset of the Covid-19 pandemic, but there was a silver lining. An influx of funding to keep students engaged while attending school virtually enabled her to join the Data + Feminism Lab to work on a case study examining three places in Philadelphia with historical names that were renamed after activist efforts.

    In her first year at MIT, Dogan worked several UROPs to hone her own skills and find the best research fit. Besides the West Philadelphia Land Project, she worked on two projects within the MIT Sloan School of Management. The first involved searching for connections between entrepreneurship and immigration among Fortune 500 founders. The second involved interviewing warehouse workers and writing a report on their quality of life.

    Dogan has now spent three years in the Data + Feminism Lab under Associate Professor Catherine D’Ignazio, where she is particularly interested in how technology can be used by marginalized communities to invert historical power imbalances. A key concept in the lab’s work is that of counterdata, which are produced by civil society groups or individuals in order to counter missing data or to challenge existing official data.

    Most recently, she completed a SuperUROP project investigating how femicide data activist organizations use social media. She analyzed 600 social media posts by organizations across the U.S. and Canada. The work built off the lab’s greater body of work with these groups, which Dogan has contributed to by annotating news articles for machine-learning models.

    “Catherine works a lot at the intersection of data issues and feminism. It just seemed like the right fit for me,” says Dogan. “She’s my academic advisor, she’s my research advisor, and is also a really good mentor.”

    Advocating for the student experience

    Outside of the classroom, Dogan is a strong advocate for improving the student experience, particularly when it intersects with identity. An executive board member of the Asian American Initiative (AAI), she also sits on the student advisory council for the Office of Minority Education.

    “Doing that institutional advocacy has been important to me, because it’s for things that I expected coming into college and had not come in prepared to fight for,” says Dogan. As a high schooler, she participated in programs run by the University of Pennsylvania’s Pan-Asian American Community House and was surprised to find that MIT did not have an equivalent organization.

    “Building community based upon identity is something that I’ve been really passionate about,” says Dogan. “For the past two years, I’ve been working with AAI on a list of recommendations for MIT. I’ve talked to alums from the ’90s who were a part of an Asian American caucus who were asking for the same things.”

    She also holds a leadership role with MIXED @ MIT, a student group focused on creating space for mixed-heritage students to explore and discuss their identities.

    Following graduation, Dogan plans to pursue a PhD in information science at the University of Washington. Her breadth of skills has given her a range of programs to choose from. No matter where she goes next, Dogan wants to pursue a career where she can continue to make a tangible impact.

    “I would love to be doing community-engaged research around data justice, using citizen science and counterdata for policy and social change,” she says. More

  • in

    MIT PhD students honored for their work to solve critical issues in water and food

    In 2017, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) initiated the J-WAFS Fellowship Program for outstanding MIT PhD students working to solve humankind’s water-related challenges. Since then, J-WAFS has awarded 18 fellowships to students who have gone on to create innovations like a pump that can maximize energy efficiency even with changing flow rates, and a low-cost water filter made out of sapwood xylem that has seen real-world use in rural India. Last year, J-WAFS expanded eligibility to students with food-related research. The 2022 fellows included students working on micronutrient deficiency and plastic waste from traditional food packaging materials. 

    Today, J-WAFS has announced the award of the 2023-24 fellowships to Gokul Sampath and Jie Yun. A doctoral student in the Department of Urban Studies and planning, Sampath has been awarded the Rasikbhai L. Meswani Fellowship for Water Solutions, which is supported through a generous gift from Elina and Nikhil Meswani and family. Yun, who is in the Department of Civil and Environmental Engineering, received a J-WAFS Fellowship for Water and Food Solutions, which is funded by the J-WAFS Research Affiliate Program. Currently, Xylem, Inc. and GoAigua are J-WAFS’ Research Affiliate companies. A review committee comprised of MIT faculty and staff selected Sampath and Yun from a competitive field of outstanding graduate students working in water and food who were nominated by their faculty advisors. Sampath and Yun will receive one academic semester of funding, along with opportunities for networking and mentoring to advance their research.

    “Both Yun and Sampath have demonstrated excellence in their research,” says J-WAFS executive director Renee J. Robins. “They also stood out in their communication skills and their passion to work on issues of agricultural sustainability and resilience and access to safe water. We are so pleased to have them join our inspiring group of J-WAFS fellows,” she adds.

    Using behavioral health strategies to address the arsenic crisis in India and Bangladesh

    Gokul Sampath’s research centers on ways to improve access to safe drinking water in developing countries. A PhD candidate in the International Development Group in the Department of Urban Studies and Planning, his current work examines the issue of arsenic in drinking water sources in India and Bangladesh. In Eastern India, millions of shallow tube wells provide rural households a personal water source that is convenient, free, and mostly safe from cholera. Unfortunately, it is now known that one-in-four of these wells is contaminated with naturally occurring arsenic at levels dangerous to human health. As a result, approximately 40 million people across the region are at elevated risk of cancer, stroke, and heart disease from arsenic consumed through drinking water and cooked food. 

    Since the discovery of arsenic in wells in the late 1980s, governments and nongovernmental organizations have sought to address the problem in rural villages by providing safe community water sources. Yet despite access to safe alternatives, many households still consume water from their contaminated home wells. Sampath’s research seeks to understand the constraints and trade-offs that account for why many villagers don’t collect water from arsenic-safe government wells in the village, even when they know their own wells at home could be contaminated.

    Before coming to MIT, Sampath received a master’s degree in Middle East, South Asian, and African studies from Columbia University, as well as a bachelor’s degree in microbiology and history from the University of California at Davis. He has long worked on water management in India, beginning in 2015 as a Fulbright scholar studying households’ water source choices in arsenic-affected areas of the state of West Bengal. He also served as a senior research associate with the Abdul Latif Jameel Poverty Action Lab, where he conducted randomized evaluations of market incentives for groundwater conservation in Gujarat, India. Sampath’s advisor, Bishwapriya Sanyal, the Ford International Professor of Urban Development and Planning at MIT, says Sampath has shown “remarkable hard work and dedication.” In addition to his classes and research, Sampath taught the department’s undergraduate Introduction to International Development course, for which he received standout evaluations from students.

    This summer, Sampath will travel to India to conduct field work in four arsenic-affected villages in West Bengal to understand how social influence shapes villagers’ choices between arsenic-safe and unsafe water sources. Through longitudinal surveys, he hopes to connect data on the social ties between families in villages and the daily water source choices they make. Exclusionary practices in Indian village communities, especially the segregation of water sources on the basis of caste and religion, has long been suspected to be a barrier to equitable drinking water access in Indian villages. Yet despite this, planners seeking to expand safe water access in diverse Indian villages have rarely considered the way social divisions within communities might be working against their efforts. Sampath hopes to test whether the injunctive norms enabled by caste ties constrain villagers’ ability to choose the safest water source among those shared within the village. When he returns to MIT in the fall, he plans to dive into analyzing his survey data and start work on a publication.

    Understanding plant responses to stress to improve crop drought resistance and yield

    Plants, including crops, play a fundamental role in Earth’s ecosystems through their effects on climate, air quality, and water availability. At the same time, plants grown for agriculture put a burden on the environment as they require energy, irrigation, and chemical inputs. Understanding plant/environment interactions is becoming more and more important as intensifying drought is straining agricultural systems. Jie Yun, a PhD student in the Department of Civil and Environmental Engineering, is studying plant response to drought stress in the hopes of improving agricultural sustainability and yield under climate change.  Yun’s research focuses on genotype-by-environment interaction (GxE.) This relates to the observation that plant varieties respond to environmental changes differently. The effects of GxE in crop breeding can be exploited because differing environmental responses among varieties enables breeders to select for plants that demonstrate high stress-tolerant genotypes under particular growing conditions. Yun bases her studies on Brachypodium, a model grass species related to wheat, oat, barley, rye, and perennial forage grasses. By experimenting with this species, findings can be directly applied to cereal and forage crop improvement. For the first part of her thesis, Yun collaborated with Professor Caroline Uhler’s group in the Department of Electrical Engineering and Computer Science and the Institute for Data, Systems, and Society. Uhler’s computational tools helped Yun to evaluate gene regulatory networks and how they relate to plant resilience and environmental adaptation. This work will help identify the types of genes and pathways that drive differences in drought stress response among plant varieties.  David Des Marais, the Cecil and Ida Green Career Development Professor in the Department of Civil and Environmental Engineering, is Yun’s advisor. He notes, “throughout Jie’s time [at MIT] I have been struck by her intellectual curiosity, verging on fearlessness.” When she’s not mentoring undergraduate students in Des Marais’ lab, Yun is working on the second part of her project: how carbon allocation in plants and growth is affected by soil drying. One result of this work will be to understand which populations of plants harbor the necessary genetic diversity to adapt or acclimate to climate change. Another likely impact is identifying targets for the genetic improvement of crop species to increase crop yields with less water supply. Growing up in China, Yun witnessed environmental issues springing from the development of the steel industry, which caused contamination of rivers in her hometown. On one visit to her aunt’s house in rural China, she learned that water pollution was widespread after noticing wastewater was piped outside of the house into nearby farmland without being treated. These experiences led Yun to study water supply and sewage engineering for her undergraduate degree at Shenyang Jianzhu University. She then went on to complete a master’s program in civil and environmental engineering at Carnegie Mellon University. It was there that Yun discovered a passion for plant-environment interactions; during an independent study on perfluorooctanoic sulfonate, she realized the amazing ability of plants to adapt to environmental changes, toxins, and stresses. Her goal is to continue researching plant and environment interactions and to translate the latest scientific findings into applications that can improve food security. More

  • in

    Boosting passenger experience and increasing connectivity at the Hong Kong International Airport

    Recently, a cohort of 36 students from MIT and universities across Hong Kong came together for the MIT Entrepreneurship and Maker Skills Integrator (MEMSI), an intense two-week startup boot camp hosted at the MIT Hong Kong Innovation Node.

    “We’re very excited to be in Hong Kong,” said Professor Charles Sodini, LeBel Professor of Electrical Engineering and faculty director of the Node. “The dream always was to bring MIT and Hong Kong students together.”

    Students collaborated on six teams to meet real-world industry challenges through action learning, defining a problem, designing a solution, and crafting a business plan. The experience culminated in the MEMSI Showcase, where each team presented its process and unique solution to a panel of judges. “The MEMSI program is a great demonstration of important international educational goals for MIT,” says Professor Richard Lester, associate provost for international activities and chair of the Node Steering Committee at MIT. “It creates opportunities for our students to solve problems in a particular and distinctive cultural context, and to learn how innovations can cross international boundaries.” 

    Meeting an urgent challenge in the travel and tourism industry

    The Hong Kong Airport Authority (AAHK) served as the program’s industry partner for the third consecutive year, challenging students to conceive innovative ideas to make passenger travel more personalized from end-to-end while increasing connectivity. As the travel industry resuscitates profitability and welcomes crowds back amidst ongoing delays and labor shortages, the need for a more passenger-centric travel ecosystem is urgent.

    The airport is the third-busiest international passenger airport and the world’s busiest cargo transit. Students experienced an insider’s tour of the Hong Kong International Airport to gain on-the-ground orientation. They observed firsthand the complex logistics, possibilities, and constraints of operating with a team of 78,000 employees who serve 71.5 million passengers with unique needs and itineraries.

    Throughout the program, the cohort was coached and supported by MEMSI alumni, travel industry mentors, and MIT faculty such as Richard de Neufville, professor of engineering systems.

    The mood inside the open-plan MIT Hong Kong Innovation Node was nonstop energetic excitement for the entire program. Each of the six teams was composed of students from MIT and from Hong Kong universities. They learned to work together under time pressure, develop solutions, receive feedback from industry mentors, and iterate around the clock.

    “MEMSI was an enriching and amazing opportunity to learn about entrepreneurship while collaborating with a diverse team to solve a complex problem,” says Maria Li, a junior majoring in computer science, economics, and data science at MIT. “It was incredible to see the ideas we initially came up with as a team turn into a single, thought-out solution by the end.”

    Unsurprisingly given MIT’s focus on piloting the latest technology and the tech-savvy culture of Hong Kong as a global center, many team projects focused on virtual reality, apps, and wearable technology designed to make passengers’ journeys more individualized, efficient, or enjoyable.

    After observing geospatial patterns charting passengers’ movement through an airport, one team realized that many people on long trips aim to meet fitness goals by consciously getting their daily steps power walking the expansive terminals. The team’s prototype, FitAir, is a smart, biometric token integrated virtual coach, which plans walking routes within the airport to promote passenger health and wellness.

    Another team noted a common frustration among frequent travelers who manage multiple mileage rewards program profiles, passwords, and status reports. They proposed AirPoint, a digital wallet that consolidates different rewards programs and presents passengers with all their airport redemption opportunities in one place.

    “Today, there is no loser,” said Vivian Cheung, chief operating officer of AAHK, who served as one of the judges. “Everyone is a winner. I am a winner, too. I have learned a lot from the showcase. Some of the ideas, I believe, can really become a business.”

    Cheung noted that in just 12 days, all teams observed and solved her organization’s pain points and successfully designed solutions to address them.

    More than a competition

    Although many of the models pitched are inventive enough to potentially shape the future of travel, the main focus of MEMSI isn’t to act as yet another startup challenge and incubator.

    “What we’re really focusing on is giving students the ability to learn entrepreneurial thinking,” explains Marina Chan, senior director and head of education at the Node. “It’s the dynamic experience in a highly connected environment that makes being in Hong Kong truly unique. When students can adapt and apply theory to an international context, it builds deeper cultural competency.”

    From an aerial view, the boot camp produced many entrepreneurs in the making and lasting friendships, and respect for other cultural backgrounds and operating environments.

    “I learned the overarching process of how to make a startup pitch, all the way from idea generation, market research, and making business models, to the pitch itself and the presentation,” says Arun Wongprommoon, a senior double majoring in computer science and engineering and linguistics.  “It was all a black box to me before I came into the program.”

    He said he gained tremendous respect for the startup world and the pure hard work and collaboration required to get ahead.

    Spearheaded by the Node, MEMSI is a collaboration among the MIT Innovation Initiative, the Martin Trust Center for Entrepreneurship, the MIT International Science and Technology Initiatives, and Project Manus. Learn more about applying to MEMSI. More

  • in

    Research, education, and connection in the face of war

    When Russian forces invaded Ukraine in February 2022, Tetiana Herasymova had several decisions to make: What should she do, where should she live, and should she take her MITx MicroMasters capstone exams? She had registered for the Statistics and Data Science Program’s final exams just days prior to moving out of her apartment and into a bomb shelter. Although it was difficult to focus on studying and preparations with air horns sounding overhead and uncertainty lingering around her, she was determined to try. “I wouldn’t let the aggressor in the war squash my dreams,” she says.

    A love of research and the desire to improve teaching 

    An early love of solving puzzles and problems for fun piqued Herasymova’s initial interest in mathematics. When she later pursued her PhD in mathematics at Kiev National Taras Shevchenko University, Herasymova’s love of math evolved into a love of research. Throughout Herasymova’s career, she’s worked to close the gap between scientific researchers and educators. Starting as a math tutor at MBA Strategy, a company that prepares Ukrainian leaders for qualifying standardized tests for MBA programs, she was later promoted as the head of their test preparation department. Afterward, she moved on to an equivalent position at ZNOUA, a new project that prepared high school students for Ukraine’s standardized test, and she eventually became ZNOUA’s CEO.

    In 2018, she founded Prosteer, a “self-learning community” of educators who share research, pedagogy, and experience to learn from one another. “It’s really interesting to have a community of teachers from different domains,” she says, speaking of educators and researchers whose specialties range across language, mathematics, physics, music, and more.

    Implementing new pedagogical research in the classroom is often up to educators who seek out studies on an individual basis, Herasymova has found. “Lots of scientists are not practitioners,” she says, and the reverse is also true. She only became more determined to build these connections once she was promoted to head of test preparation at MBA Strategy because she wanted to share more effective pedagogy with the tutors she was mentoring.

    First, Herasymova knew she needed a way to measure the teachers’ effectiveness. She was able to determine whether students who received the company’s tutoring services improved their scores. Moreover, Ukraine keeps an open-access database of national standardized test scores, so anyone could analyze the data in hopes of improving the level of education in the country. She says, “I could do some analytics because I am a mathematician, but I knew I could do much more with this data if I knew data science and machine learning knowledge.”

    That’s why Herasymova sought out the MITx MicroMasters Program in Statistics and Data Science offered by the MIT Institute for Data, Systems, and Society (IDSS). “I wanted to learn the fundamentals so I could join the Learning Analytics domain,” she says. She was looking for a comprehensive program that covered the foundations without being overly basic. “I had some knowledge from the ground, so I could see the deepness of that course,” she says. Because of her background as an instructional designer, she thought the MicroMasters curriculum was well-constructed, calling the variety of videos, practice problems, and homework assignments that encouraged learners to approach the course material in different ways, “a perfect experience.”

    Another benefit of the MicroMasters program was its online format. “I had my usual work, so it was impossible to study in a stationary way,” she says. She found the structure to be more flexible than other programs. “It’s really great that you can construct your course schedule your own way, especially with your own adult life,” she says.

    Determination and support in the midst of war

    When the war first forced Herasymova to flee her apartment, she had already registered to take the exams for her four courses. “It was quite hard to prepare for exams when you could hear explosions outside of the bomb shelter,” she says. She and other Ukranians were invited to postpone their exams until the following session, but the next available testing period wouldn’t be held until October. “It was a hard decision, but I had to allow myself to try,” she says. “For all people in Ukraine, when you don’t know if you’re going to live or die, you try to live in the now. You have to appreciate every moment and what life brings to you. You don’t say, ‘Someday’ — you do it today or tomorrow.”

    In addition to emotional support from her boyfriend, Herasymova had a group of friends who had also enrolled in the program, and they supported each other through study sessions and an ongoing chat. Herasymova’s personal support network helped her accomplish what she set out to do with her MicroMasters program, and in turn, she was able to support her professional network. While Prosteer halted its regular work during the early stages of the war, Herasymova was determined to support the community of educators and scientists that she had built. They continued meeting weekly to exchange ideas as usual. “It’s intrinsic motivation,” she says. They managed to restore all of their activities by October.

    Despite the factors stacked against her, Herasymova’s determination paid off — she passed all of her exams in May, the final step to earning her MicroMasters certificate in statistics and data science. “I just couldn’t believe it,” she says. “It was definitely a bifurcation point. The moment when you realize that you have something to rely on, and that life is just beginning to show all its diversity despite the fact that you live in war.” With her newly minted certificate in hand, Herasymova has continued her research on the effectiveness of educational models — analyzing the data herself — with a summer research program at New York University. 

    The student becomes the master

    After moving seven times between February and October, heading west from Kyiv until most recently settling near the border of Poland, Herasymova hopes she’s moved for the last time. Ukrainian Catholic University offered her a position teaching both mathematics and programming. Before enrolling in the MicroMasters Program in Statistics and Data Science, she had some prior knowledge of programming languages and mathematical algorithms, but she didn’t know Python. She took MITx’s Introduction to Computer Science and Programming Using Python to prepare. “It gave me a huge step forward,” she says. “I learned a lot. Now, not only can I work with Python machine learning models in programming language R, I also have knowledge of the big picture of the purpose and the point to do so.”

    In addition to the skills the MicroMasters Program trained her in, she gained firsthand experience in learning new subjects and exploring topics more deeply. She will be sharing that practice with the community of students and teachers she’s built, plus, she plans on guiding them through this course during the next year. As a continuation of her own educational growth, says she’s looking forward to her next MITx course this year, Data Analysis.

    Herasymova advises that the best way to keep progressing is investing a lot of time. “Adults don’t want to hear this, but you need one or two years,” she says. “Allow yourself to be stupid. If you’re an expert in one domain and want to switch to another, or if you want to understand something new, a lot of people don’t ask questions or don’t ask for help. But from this point, if I don’t know something, I know I should ask for help because that’s the start of learning. With a fixed mindset, you won’t grow.”

    July 2022 MicroMasters Program Joint Completion Celebration. Ukrainian student Tetiana Herasymova, who completed her program amid war in her home country, speaks at 43:55. More

  • in

    Gaining real-world industry experience through Break Through Tech AI at MIT

    Taking what they learned conceptually about artificial intelligence and machine learning (ML) this year, students from across the Greater Boston area had the opportunity to apply their new skills to real-world industry projects as part of an experiential learning opportunity offered through Break Through Tech AI at MIT.

    Hosted by the MIT Schwarzman College of Computing, Break Through Tech AI is a pilot program that aims to bridge the talent gap for women and underrepresented genders in computing fields by providing skills-based training, industry-relevant portfolios, and mentoring to undergraduate students in regional metropolitan areas in order to position them more competitively for careers in data science, machine learning, and artificial intelligence.

    “Programs like Break Through Tech AI gives us opportunities to connect with other students and other institutions, and allows us to bring MIT’s values of diversity, equity, and inclusion to the learning and application in the spaces that we hold,” says Alana Anderson, assistant dean of diversity, equity, and inclusion for the MIT Schwarzman College of Computing.

    The inaugural cohort of 33 undergraduates from 18 Greater Boston-area schools, including Salem State University, Smith College, and Brandeis University, began the free, 18-month program last summer with an eight-week, online skills-based course to learn the basics of AI and machine learning. Students then split into small groups in the fall to collaborate on six machine learning challenge projects presented to them by MathWorks, MIT-IBM Watson AI Lab, and Replicate. The students dedicated five hours or more each week to meet with their teams, teaching assistants, and project advisors, including convening once a month at MIT, while juggling their regular academic course load with other daily activities and responsibilities.

    The challenges gave the undergraduates the chance to help contribute to actual projects that industry organizations are working on and to put their machine learning skills to the test. Members from each organization also served as project advisors, providing encouragement and guidance to the teams throughout.

    “Students are gaining industry experience by working closely with their project advisors,” says Aude Oliva, director of strategic industry engagement at the MIT Schwarzman College of Computing and the MIT director of the MIT-IBM Watson AI Lab. “These projects will be an add-on to their machine learning portfolio that they can share as a work example when they’re ready to apply for a job in AI.”

    Over the course of 15 weeks, teams delved into large-scale, real-world datasets to train, test, and evaluate machine learning models in a variety of contexts.

    In December, the students celebrated the fruits of their labor at a showcase event held at MIT in which the six teams gave final presentations on their AI projects. The projects not only allowed the students to build up their AI and machine learning experience, it helped to “improve their knowledge base and skills in presenting their work to both technical and nontechnical audiences,” Oliva says.

    For a project on traffic data analysis, students got trained on MATLAB, a programming and numeric computing platform developed by MathWorks, to create a model that enables decision-making in autonomous driving by predicting future vehicle trajectories. “It’s important to realize that AI is not that intelligent. It’s only as smart as you make it and that’s exactly what we tried to do,” said Brandeis University student Srishti Nautiyal as she introduced her team’s project to the audience. With companies already making autonomous vehicles from planes to trucks a reality, Nautiyal, a physics and mathematics major, shared that her team was also highly motivated to consider the ethical issues of the technology in their model for the safety of passengers, drivers, and pedestrians.

    Using census data to train a model can be tricky because they are often messy and full of holes. In a project on algorithmic fairness for the MIT-IBM Watson AI Lab, the hardest task for the team was having to clean up mountains of unorganized data in a way where they could still gain insights from them. The project — which aimed to create demonstration of fairness applied on a real dataset to evaluate and compare effectiveness of different fairness interventions and fair metric learning techniques — could eventually serve as an educational resource for data scientists interested in learning about fairness in AI and using it in their work, as well as to promote the practice of evaluating the ethical implications of machine learning models in industry.

    Other challenge projects included an ML-assisted whiteboard for nontechnical people to interact with ready-made machine learning models, and a sign language recognition model to help disabled people communicate with others. A team that worked on a visual language app set out to include over 50 languages in their model to increase access for the millions of people that are visually impaired throughout the world. According to the team, similar apps on the market currently only offer up to 23 languages. 

    Throughout the semester, students persisted and demonstrated grit in order to cross the finish line on their projects. With the final presentations marking the conclusion of the fall semester, students will return to MIT in the spring to continue their Break Through Tech AI journey to tackle another round of AI projects. This time, the students will work with Google on new machine learning challenges that will enable them to hone their AI skills even further with an eye toward launching a successful career in AI. More

  • in

    Meet the 2022-23 Accenture Fellows

    Launched in October 2020, the MIT and Accenture Convergence Initiative for Industry and Technology underscores the ways in which industry and technology can collaborate to spur innovation. The five-year initiative aims to achieve its mission through research, education, and fellowships. To that end, Accenture has once again awarded five annual fellowships to MIT graduate students working on research in industry and technology convergence who are underrepresented, including by race, ethnicity, and gender.This year’s Accenture Fellows work across research areas including telemonitoring, human-computer interactions, operations research,  AI-mediated socialization, and chemical transformations. Their research covers a wide array of projects, including designing low-power processing hardware for telehealth applications; applying machine learning to streamline and improve business operations; improving mental health care through artificial intelligence; and using machine learning to understand the environmental and health consequences of complex chemical reactions.As part of the application process, student nominations were invited from each unit within the School of Engineering, as well as from the Institute’s four other schools and the MIT Schwarzman College of Computing. Five exceptional students were selected as fellows for the initiative’s third year.Drew Buzzell is a doctoral candidate in electrical engineering and computer science whose research concerns telemonitoring, a fast-growing sphere of telehealth in which information is collected through internet-of-things (IoT) connected devices and transmitted to the cloud. Currently, the high volume of information involved in telemonitoring — and the time and energy costs of processing it — make data analysis difficult. Buzzell’s work is focused on edge computing, a new computing architecture that seeks to address these challenges by managing data closer to the source, in a distributed network of IoT devices. Buzzell earned his BS in physics and engineering science and his MS in engineering science from the Pennsylvania State University.

    Mengying (Cathy) Fang is a master’s student in the MIT School of Architecture and Planning. Her research focuses on augmented reality and virtual reality platforms. Fang is developing novel sensors and machine components that combine computation, materials science, and engineering. Moving forward, she will explore topics including soft robotics techniques that could be integrated with clothes and wearable devices and haptic feedback in order to develop interactions with digital objects. Fang earned a BS in mechanical engineering and human-computer interaction from Carnegie Mellon University.

    Xiaoyue Gong is a doctoral candidate in operations research at the MIT Sloan School of Management. Her research aims to harness the power of machine learning and data science to reduce inefficiencies in the operation of businesses, organizations, and society. With the support of an Accenture Fellowship, Gong seeks to find solutions to operational problems by designing reinforcement learning methods and other machine learning techniques to embedded operational problems. Gong earned a BS in honors mathematics and interactive media arts from New York University.

    Ruby Liu is a doctoral candidate in medical engineering and medical physics. Their research addresses the growing pandemic of loneliness among older adults, which leads to poor health outcomes and presents particularly high risks for historically marginalized people, including members of the LGBTQ+ community and people of color. Liu is designing a network of interconnected AI agents that foster connections between user and agent, offering mental health care while strengthening and facilitating human-human connections. Liu received a BS in biomedical engineering from Johns Hopkins University.

    Joules Provenzano is a doctoral candidate in chemical engineering. Their work integrates machine learning and liquid chromatography-high resolution mass spectrometry (LC-HRMS) to improve our understanding of complex chemical reactions in the environment. As an Accenture Fellow, Provenzano will build upon recent advances in machine learning and LC-HRMS, including novel algorithms for processing real, experimental HR-MS data and new approaches in extracting structure-transformation rules and kinetics. Their research could speed the pace of discovery in the chemical sciences and benefits industries including oil and gas, pharmaceuticals, and agriculture. Provenzano earned a BS in chemical engineering and international and global studies from the Rochester Institute of Technology. More