More stories

  • in

    3 Questions: Leo Anthony Celi on ChatGPT and medicine

    Launched in November 2022, ChatGPT is a chatbot that can not only engage in human-like conversation, but also provide accurate answers to questions in a wide range of knowledge domains. The chatbot, created by the firm OpenAI, is based on a family of “large language models” — algorithms that can recognize, predict, and generate text based on patterns they identify in datasets containing hundreds of millions of words.

    In a study appearing in PLOS Digital Health this week, researchers report that ChatGPT performed at or near the passing threshold of the U.S. Medical Licensing Exam (USMLE) — a comprehensive, three-part exam that doctors must pass before practicing medicine in the United States. In an editorial accompanying the paper, Leo Anthony Celi, a principal research scientist at MIT’s Institute for Medical Engineering and Science, a practicing physician at Beth Israel Deaconess Medical Center, and an associate professor at Harvard Medical School, and his co-authors argue that ChatGPT’s success on this exam should be a wake-up call for the medical community.

    Q: What do you think the success of ChatGPT on the USMLE reveals about the nature of the medical education and evaluation of students? 

    A: The framing of medical knowledge as something that can be encapsulated into multiple choice questions creates a cognitive framing of false certainty. Medical knowledge is often taught as fixed model representations of health and disease. Treatment effects are presented as stable over time despite constantly changing practice patterns. Mechanistic models are passed on from teachers to students with little emphasis on how robustly those models were derived, the uncertainties that persist around them, and how they must be recalibrated to reflect advances worthy of incorporation into practice. 

    ChatGPT passed an examination that rewards memorizing the components of a system rather than analyzing how it works, how it fails, how it was created, how it is maintained. Its success demonstrates some of the shortcomings in how we train and evaluate medical students. Critical thinking requires appreciation that ground truths in medicine continually shift, and more importantly, an understanding how and why they shift.

    Q: What steps do you think the medical community should take to modify how students are taught and evaluated?  

    A: Learning is about leveraging the current body of knowledge, understanding its gaps, and seeking to fill those gaps. It requires being comfortable with and being able to probe the uncertainties. We fail as teachers by not teaching students how to understand the gaps in the current body of knowledge. We fail them when we preach certainty over curiosity, and hubris over humility.  

    Medical education also requires being aware of the biases in the way medical knowledge is created and validated. These biases are best addressed by optimizing the cognitive diversity within the community. More than ever, there is a need to inspire cross-disciplinary collaborative learning and problem-solving. Medical students need data science skills that will allow every clinician to contribute to, continually assess, and recalibrate medical knowledge.

    Q: Do you see any upside to ChatGPT’s success in this exam? Are there beneficial ways that ChatGPT and other forms of AI can contribute to the practice of medicine? 

    A: There is no question that large language models (LLMs) such as ChatGPT are very powerful tools in sifting through content beyond the capabilities of experts, or even groups of experts, and extracting knowledge. However, we will need to address the problem of data bias before we can leverage LLMs and other artificial intelligence technologies. The body of knowledge that LLMs train on, both medical and beyond, is dominated by content and research from well-funded institutions in high-income countries. It is not representative of most of the world.

    We have also learned that even mechanistic models of health and disease may be biased. These inputs are fed to encoders and transformers that are oblivious to these biases. Ground truths in medicine are continuously shifting, and currently, there is no way to determine when ground truths have drifted. LLMs do not evaluate the quality and the bias of the content they are being trained on. Neither do they provide the level of uncertainty around their output. But the perfect should not be the enemy of the good. There is tremendous opportunity to improve the way health care providers currently make clinical decisions, which we know are tainted with unconscious bias. I have no doubt AI will deliver its promise once we have optimized the data input. More

  • in

    Gaining real-world industry experience through Break Through Tech AI at MIT

    Taking what they learned conceptually about artificial intelligence and machine learning (ML) this year, students from across the Greater Boston area had the opportunity to apply their new skills to real-world industry projects as part of an experiential learning opportunity offered through Break Through Tech AI at MIT.

    Hosted by the MIT Schwarzman College of Computing, Break Through Tech AI is a pilot program that aims to bridge the talent gap for women and underrepresented genders in computing fields by providing skills-based training, industry-relevant portfolios, and mentoring to undergraduate students in regional metropolitan areas in order to position them more competitively for careers in data science, machine learning, and artificial intelligence.

    “Programs like Break Through Tech AI gives us opportunities to connect with other students and other institutions, and allows us to bring MIT’s values of diversity, equity, and inclusion to the learning and application in the spaces that we hold,” says Alana Anderson, assistant dean of diversity, equity, and inclusion for the MIT Schwarzman College of Computing.

    The inaugural cohort of 33 undergraduates from 18 Greater Boston-area schools, including Salem State University, Smith College, and Brandeis University, began the free, 18-month program last summer with an eight-week, online skills-based course to learn the basics of AI and machine learning. Students then split into small groups in the fall to collaborate on six machine learning challenge projects presented to them by MathWorks, MIT-IBM Watson AI Lab, and Replicate. The students dedicated five hours or more each week to meet with their teams, teaching assistants, and project advisors, including convening once a month at MIT, while juggling their regular academic course load with other daily activities and responsibilities.

    The challenges gave the undergraduates the chance to help contribute to actual projects that industry organizations are working on and to put their machine learning skills to the test. Members from each organization also served as project advisors, providing encouragement and guidance to the teams throughout.

    “Students are gaining industry experience by working closely with their project advisors,” says Aude Oliva, director of strategic industry engagement at the MIT Schwarzman College of Computing and the MIT director of the MIT-IBM Watson AI Lab. “These projects will be an add-on to their machine learning portfolio that they can share as a work example when they’re ready to apply for a job in AI.”

    Over the course of 15 weeks, teams delved into large-scale, real-world datasets to train, test, and evaluate machine learning models in a variety of contexts.

    In December, the students celebrated the fruits of their labor at a showcase event held at MIT in which the six teams gave final presentations on their AI projects. The projects not only allowed the students to build up their AI and machine learning experience, it helped to “improve their knowledge base and skills in presenting their work to both technical and nontechnical audiences,” Oliva says.

    For a project on traffic data analysis, students got trained on MATLAB, a programming and numeric computing platform developed by MathWorks, to create a model that enables decision-making in autonomous driving by predicting future vehicle trajectories. “It’s important to realize that AI is not that intelligent. It’s only as smart as you make it and that’s exactly what we tried to do,” said Brandeis University student Srishti Nautiyal as she introduced her team’s project to the audience. With companies already making autonomous vehicles from planes to trucks a reality, Nautiyal, a physics and mathematics major, shared that her team was also highly motivated to consider the ethical issues of the technology in their model for the safety of passengers, drivers, and pedestrians.

    Using census data to train a model can be tricky because they are often messy and full of holes. In a project on algorithmic fairness for the MIT-IBM Watson AI Lab, the hardest task for the team was having to clean up mountains of unorganized data in a way where they could still gain insights from them. The project — which aimed to create demonstration of fairness applied on a real dataset to evaluate and compare effectiveness of different fairness interventions and fair metric learning techniques — could eventually serve as an educational resource for data scientists interested in learning about fairness in AI and using it in their work, as well as to promote the practice of evaluating the ethical implications of machine learning models in industry.

    Other challenge projects included an ML-assisted whiteboard for nontechnical people to interact with ready-made machine learning models, and a sign language recognition model to help disabled people communicate with others. A team that worked on a visual language app set out to include over 50 languages in their model to increase access for the millions of people that are visually impaired throughout the world. According to the team, similar apps on the market currently only offer up to 23 languages. 

    Throughout the semester, students persisted and demonstrated grit in order to cross the finish line on their projects. With the final presentations marking the conclusion of the fall semester, students will return to MIT in the spring to continue their Break Through Tech AI journey to tackle another round of AI projects. This time, the students will work with Google on new machine learning challenges that will enable them to hone their AI skills even further with an eye toward launching a successful career in AI. More

  • in

    Empowering Cambridge youth through data activism

    For over 40 years, the Mayor’s Summer Youth Employment Program (MSYEP, or the Mayor’s Program) in Cambridge, Massachusetts, has been providing teenagers with their first work experience, but 2022 brought a new offering. Collaborating with MIT’s Personal Robots research group (PRG) and Responsible AI for Social Empowerment and Education (RAISE) this summer, MSYEP created a STEAM-focused learning site at the Institute. Eleven students joined the program to learn coding and programming skills through the lens of “Data Activism.”

    MSYEP’s partnership with MIT provides an opportunity for Cambridge high schoolers to gain exposure to more pathways for their future careers and education. The Mayor’s Program aims to respect students’ time and show the value of their work, so participants are compensated with an hourly wage as they learn workforce skills at MSYEP worksites. In conjunction with two ongoing research studies at MIT, PRG and RAISE developed the six-week Data Activism curriculum to equip students with critical-thinking skills so they feel prepared to utilize data science to challenge social injustice and empower their community.

    Rohan Kundargi, K-12 Community Outreach Administrator for MIT Office of Government and Community Relations (OGCR), says, “I see this as a model for a new type of partnership between MIT and Cambridge MSYEP. Specifically, an MIT research project that involves students from Cambridge getting paid to learn, research, and develop their own skills!”

    Cross-Cambridge collaboration

    Cambridge’s Office of Workforce Development initially contacted MIT OGCR about hosting a potential MSYEP worksite that taught Cambridge teens how to code. When Kundargi reached out to MIT pK-12 collaborators, MIT PRG’s graduate research assistant Raechel Walker proposed the Data Activism curriculum. Walker defines “data activism” as utilizing data, computing, and art to analyze how power operates in the world, challenge power, and empathize with people who are oppressed.

    Walker says, “I wanted students to feel empowered to incorporate their own expertise, talents, and interests into every activity. In order for students to fully embrace their academic abilities, they must remain comfortable with bringing their full selves into data activism.”

    As Kundargi and Walker recruited students for the Data Activism learning site, they wanted to make sure the cohort of students — the majority of whom are individuals of color — felt represented at MIT and felt they had the agency for their voice to be heard. “The pioneers in this field are people who look like them,” Walker says, speaking of well-known data activists Timnit Gebru, Rediet Abebe, and Joy Buolamwini.

    When the program began this summer, some of the students were not aware of the ways data science and artificial intelligence exacerbate systemic oppression in society, or some of the tools currently being used to mitigate those societal harms. As a result, Walker says, the students wanted to learn more about discriminatory design in every aspect of life. They were also interested in creating responsible machine learning algorithms and AI fairness metrics.

    A different side of STEAM

    The development and execution of the Data Activism curriculum contributed to Walker’s and postdoc Xiaoxue Du’s respective research at PRG. Walker is studying AI education, specifically creating and teaching data activism curricula for minoritized communities. Du’s research explores processes, assessments, and curriculum design that prepares educators to use, adapt, and integrate AI literacy curricula. Additionally, her research targets how to leverage more opportunities for students with diverse learning needs.

    The Data Activism curriculum utilizes a “libertatory computing” framework, a term Walker coined in her position paper with Professor Cynthia Breazeal, director of MIT RAISE, dean for digital learning, and head of PRG, and Eman Sherif, a then-undergraduate researcher from University of California at San Diego, titled “Liberty Computing for African American Students.” This framework ensures that students, especially minoritized students, acquire a sound racial identity, critical consciousness, collective obligation, liberation centered academic/achievement identity, as well as the activism skills to use computing to transform a multi-layered system of barriers in which racism persists. Walker says, “We encouraged students to demonstrate competency in every pillar because all of the pillars are interconnected and build upon each other.”

    Walker developed a series of interactive coding and project-based activities that focused on understanding systemic racism, utilizing data science to analyze systemic oppression, data drawing, responsible machine learning, how racism can be embedded into AI, and different AI fairness metrics.

    This was the students’ first time learning how to create data visualizations using the programming language Python and the data analysis tool Pandas. In one project meant to examine how different systems of oppression can affect different aspects of students’ own identities, students created datasets with data from their respective intersectional identities. Another activity highlighted African American achievements, where students analyzed two datasets about African American scientists, activists, artists, scholars, and athletes. Using the data visualizations, students then created zines about the African Americans who inspired them.

    RAISE hired Olivia Dias, Sophia Brady, Lina Henriquez, and Zeynep Yalcin through the MIT Undergraduate Research Opportunity Program (UROP) and PRG hired freelancer Matt Taylor to work with Walker on developing the curriculum and designing interdisciplinary experience projects. Walker and the four undergraduate researchers constructed an intersectional data analysis activity about different examples of systemic oppression. PRG also hired three high school students to test activities and offer insights about making the curriculum engaging for program participants. Throughout the program, the Data Activism team taught students in small groups, continually asked students how to improve each activity, and structured each lesson based on the students’ interests. Walker says Dias, Brady, Henriquez, and Yalcin were invaluable to cultivating a supportive classroom environment and helping students complete their projects.

    Cambridge Rindge and Latin School senior Nina works on her rubber block stamp that depicts the importance of representation in media and greater representation in the tech industry.

    Photo: Katherine Ouellette

    Previous item
    Next item

    Student Nina says, “It’s opened my eyes to a different side of STEM. I didn’t know what ‘data’ meant before this program, or how intersectionality can affect AI and data.” Before MSYEP, Nina took Intro to Computer Science and AP Computer Science, but she has been coding since Girls Who Code first sparked her interest in middle school. “The community was really nice. I could talk with other girls. I saw there needs to be more women in STEM, especially in coding.” Now she’s interested in applying to colleges with strong computer science programs so she can pursue a coding-related career.

    From MSYEP to the mayor’s office

    Mayor Sumbul Siddiqui visited the Data Activism learning site on Aug. 9, accompanied by Breazeal. A graduate of MSYEP herself, Siddiqui says, “Through hands-on learning through computer programming, Cambridge high school students have the unique opportunity to see themselves as data scientists. Students were able learn ways to combat discrimination that occurs through artificial intelligence.” In an Instagram post, Siddiqui also said, “I had a blast visiting the students and learning about their projects.”

    Students worked on an activity that asked them to envision how data science might be used to support marginalized communities. They transformed their answers into block-printed T-shirt designs, carving pictures of their hopes into rubber block stamps. Some students focused on the importance of data privacy, like Jacob T., who drew a birdcage to represent data stored and locked away by third party apps. He says, “I want to open that cage and restore my data to myself and see what can be done with it.”

    The subject of Cambridge Community Charter School student Jacob T.’s project was the importance of data privacy. For his T-shirt design, he drew a birdcage to represent data stored and locked away by third party apps. (From right to left:) Breazeal, Jacob T. Kiki, Raechel Walker, and Zeynep Yalcin.

    Photo: Katherine Ouellette

    Previous item
    Next item

    Many students wanted to see more representation in both the media they consume and across various professional fields. Nina talked about the importance of representation in media and how that could contribute to greater representation in the tech industry, while Kiki talked about encouraging more women to pursue STEM fields. Jesmin said, “I wanted to show that data science is accessible to everyone, no matter their origin or language you speak. I wrote ‘hello’ in Bangla, Arabic, and English, because I speak all three languages and they all resonate with me.”

    Student Jesmin (left) explains the concept of her T-shirt design to Mayor Siddiqui. She wants data science to be accessible to everyone, no matter their origin or language, so she drew a globe and wrote ‘hello’ in the three languages she speaks: Bangla, Arabic, and English.

    Photo: Katherine Ouellette

    Previous item
    Next item

    “Overall, I hope the students continue to use their data activism skills to re-envision a society that supports marginalized groups,” says Walker. “Moreover, I hope they are empowered to become data scientists and understand how their race can be a positive part of their identity.” More

  • in

    MIT Schwarzman College of Computing unveils Break Through Tech AI

    Aimed at driving diversity and inclusion in artificial intelligence, the MIT Stephen A. Schwarzman College of Computing is launching Break Through Tech AI, a new program to bridge the talent gap for women and underrepresented genders in AI positions in industry.

    Break Through Tech AI will provide skills-based training, industry-relevant portfolios, and mentoring to qualified undergraduate students in the Greater Boston area in order to position them more competitively for careers in data science, machine learning, and artificial intelligence. The free, 18-month program will also provide each student with a stipend for participation to lower the barrier for those typically unable to engage in an unpaid, extra-curricular educational opportunity.

    “Helping position students from diverse backgrounds to succeed in fields such as data science, machine learning, and artificial intelligence is critical for our society’s future,” says Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing and Henry Ellis Warren Professor of Electrical Engineering and Computer Science. “We look forward to working with students from across the Greater Boston area to provide them with skills and mentorship to help them find careers in this competitive and growing industry.”

    The college is collaborating with Break Through Tech — a national initiative launched by Cornell Tech in 2016 to increase the number of women and underrepresented groups graduating with degrees in computing — to host and administer the program locally. In addition to Boston, the inaugural artificial intelligence and machine learning program will be offered in two other metropolitan areas — one based in New York hosted by Cornell Tech and another in Los Angeles hosted by the University of California at Los Angeles Samueli School of Engineering.

    “Break Through Tech’s success at diversifying who is pursuing computer science degrees and careers has transformed lives and the industry,” says Judith Spitz, executive director of Break Through Tech. “With our new collaborators, we can apply our impactful model to drive inclusion and diversity in artificial intelligence.”

    The new program will kick off this summer at MIT with an eight-week, skills-based online course and in-person lab experience that teaches industry-relevant tools to build real-world AI solutions. Students will learn how to analyze datasets and use several common machine learning libraries to build, train, and implement their own ML models in a business context.

    Following the summer course, students will be matched with machine-learning challenge projects for which they will convene monthly at MIT and work in teams to build solutions and collaborate with an industry advisor or mentor throughout the academic year, resulting in a portfolio of resume-quality work. The participants will also be paired with young professionals in the field to help build their network, prepare their portfolio, practice for interviews, and cultivate workplace skills.

    “Leveraging the college’s strong partnership with industry, Break Through AI will offer unique opportunities to students that will enhance their portfolio in machine learning and AI,” says Asu Ozdaglar, deputy dean of academics of the MIT Schwarzman College of Computing and head of the Department of Electrical Engineering and Computer Science. Ozdaglar, who will be the MIT faculty director of Break Through Tech AI, adds: “The college is committed to making computing inclusive and accessible for all. We’re thrilled to host this program at MIT for the Greater Boston area and to do what we can to help increase diversity in computing fields.”

    Break Through Tech AI is part of the MIT Schwarzman College of Computing’s focus to advance diversity, equity, and inclusion in computing. The college aims to improve and create programs and activities that broaden participation in computing classes and degree programs, increase the diversity of top faculty candidates in computing fields, and ensure that faculty search and graduate admissions processes have diverse slates of candidates and interviews.

    “By engaging in activities like Break Through Tech AI that work to improve the climate for underrepresented groups, we’re taking an important step toward creating more welcoming environments where all members can innovate and thrive,” says Alana Anderson, assistant dean for diversity, equity and inclusion for the Schwarzman College of Computing. More

  • in

    Studying learner engagement during the Covid-19 pandemic

    While massive open online classes (MOOCs) have been a significant trend in higher education for many years now, they have gained a new level of attention during the Covid-19 pandemic. Open online courses became a critical resource for a wide audience of new learners during the first stages of the pandemic — including students whose academic programs had shifted online, teachers seeking online resources, and individuals suddenly facing lockdown or unemployment and looking to build new skills.

    Mary Ellen Wiltrout, director of online and blended learning initiatives and lecturer in digital learning in the Department of Biology, and Virginia “Katie” Blackwell, currently an MIT PhD student in biology, published a paper this summer in the European MOOC Stakeholder Summit (EMOOCs 2021) conference proceedings evaluating data for the online course 7.00x (Introduction to Biology). Their research objective was to better understand whether the shift to online learning that occurred during the pandemic led to increased learner engagement in the course.Blackwell participated in this research as part of the Bernard S. and Sophie G. Gould MIT Summer Research Program (MSRP) in Biology, during the uniquely remote MSRPx-Biology 2020 student cohort. She collaborated on the project while working toward her bachelor’s degree in biochemistry and molecular biology from the University of Texas at Dallas, and collaborated on the research while in Texas. She has since applied and been accepted into MIT’s PhD program in biology.

    “MSRP Biology was a transformative experience for me. I learned a lot about the nature of research and the MIT community in a very short period of time and loved every second of the program. Without MSRP, I would never have even considered applying to MIT for my PhD. After MSRP and working with Mary Ellen, MIT biology became my first-choice program and I felt like I had a shot at getting in,” says Blackwell.

    Play video

    Many MOOC platforms experienced increased website traffic in 2020, with 30 new MOOC-based degrees and more than 60 million new learners.

    “We find that the tremendous, lifelong learning opportunities that MOOCs provide are even more important and sought-after when traditional education is disrupted. During the pandemic, people had to be at home more often, and some faced unemployment requiring a career transition,” says Wiltrout.

    Wiltrout and Blackwell wanted to build a deeper understanding of learner profiles rather than looking exclusively at enrollments. They looked at all available data, including: enrollment demographics (i.e., country and “.edu” participants); proportion of learners engaged with videos, problems, and forums; number of individual engagement events with videos, problems, and forums; verification and performance; and the course “track” level — including auditing (for free) and verified (paying and receiving access to additional course content, including access to a comprehensive competency exam). They analyzed data in these areas from five runs of 7.00x in this study, including three pre-pandemic runs of April, July, and November 2019 and two pandemic runs of March and July 2020. 

    The March 2020 run had the same count of verified-track participants as all three pre-pandemic runs combined. The July 2020 run enrolled nearly as many verified-track participants as the March 2020 run. Wiltrout says that introductory biology content may have attracted great attention during the early days and months of the Covid-19 pandemic, as people may have had a new (or renewed) interest in learning about (or reviewing) viruses, RNA, the inner workings of cells, and more.

    Wiltrout and Blackwell found that the enrollment count for the March 2020 run of the course increased at almost triple the rate of the three pre-pandemic runs. During the early days of March 2020, the enrollment metrics appeared similar to enrollment metrics for the April 2019 run — both in rate and count — but the enrollment rate increased sharply around March 15, 2020. The July 2020 run began with more than twice as many learners already enrolled by the first day of the course, but continued with half the enrollment rate of the March 2020 course. In terms of learner demographics, during the pandemic, there was a higher proportion of learners with .edu addresses, indicating that MOOCs were often used by students enrolled in other schools. 

    Viewings of course videos increased at the beginning of the pandemic. During the March 2020 run, both verified-track and certified participants viewed far more unique videos during March 2020 than in the pre-pandemic runs of the course; even auditor-track learners — not aiming for certification — still viewed all videos offered. During the July 2020 run, however, both verified-track and certified participants viewed far fewer unique videos than during all prior runs. The proportion of participants who viewed at least one video decreased in the July 2020 run to 53 percent, from a mean of 64 percent in prior runs. Blackwell and Wiltrout say that this decrease — as well as the overall dip in participation in July 2020 — might be attributed to shifting circumstances for learners that allowed for less time to watch videos and participate in the course, as well as some fatigue from the extra screen time.

    The study found that 4.4 percent of March 2020 participants and 4.5 percent of July 2020 participants engaged through forum posting — which was 1.4 to 3.3 times higher than pre-pandemic proportions of forum posting. The increase in forum engagement may point to a desire for community engagement during a time when many were isolated and sheltering in place.

    “Through the day-to-day work of my research team and also through the engagement of the learners in 7.00x, we can see that there is great potential for meaningful connections in remote experiences,” says Wiltrout. “An increase in participation for an online course may not always remain at the same high level, in the long term, but overall, we’re continuing to see an increase in the number of MOOCs and other online programs offered by all universities and institutions, as well as an increase in online learners.” More