More stories

  • in

    Startup accelerates progress toward light-speed computing

    Our ability to cram ever-smaller transistors onto a chip has enabled today’s age of ubiquitous computing. But that approach is finally running into limits, with some experts declaring an end to Moore’s Law and a related principle, known as Dennard’s Scaling.

    Those developments couldn’t be coming at a worse time. Demand for computing power has skyrocketed in recent years thanks in large part to the rise of artificial intelligence, and it shows no signs of slowing down.

    Now Lightmatter, a company founded by three MIT alumni, is continuing the remarkable progress of computing by rethinking the lifeblood of the chip. Instead of relying solely on electricity, the company also uses light for data processing and transport. The company’s first two products, a chip specializing in artificial intelligence operations and an interconnect that facilitates data transfer between chips, use both photons and electrons to drive more efficient operations.

    “The two problems we are solving are ‘How do chips talk?’ and ‘How do you do these [AI] calculations?’” Lightmatter co-founder and CEO Nicholas Harris PhD ’17 says. “With our first two products, Envise and Passage, we’re addressing both of those questions.”

    In a nod to the size of the problem and the demand for AI, Lightmatter raised just north of $300 million in 2023 at a valuation of $1.2 billion. Now the company is demonstrating its technology with some of the largest technology companies in the world in hopes of reducing the massive energy demand of data centers and AI models.

    “We’re going to enable platforms on top of our interconnect technology that are made up of hundreds of thousands of next-generation compute units,” Harris says. “That simply wouldn’t be possible without the technology that we’re building.”

    From idea to $100K

    Prior to MIT, Harris worked at the semiconductor company Micron Technology, where he studied the fundamental devices behind integrated chips. The experience made him see how the traditional approach for improving computer performance — cramming more transistors onto each chip — was hitting its limits.

    “I saw how the roadmap for computing was slowing, and I wanted to figure out how I could continue it,” Harris says. “What approaches can augment computers? Quantum computing and photonics were two of those pathways.”

    Harris came to MIT to work on photonic quantum computing for his PhD under Dirk Englund, an associate professor in the Department of Electrical Engineering and Computer Science. As part of that work, he built silicon-based integrated photonic chips that could send and process information using light instead of electricity.

    The work led to dozens of patents and more than 80 research papers in prestigious journals like Nature. But another technology also caught Harris’s attention at MIT.

    “I remember walking down the hall and seeing students just piling out of these auditorium-sized classrooms, watching relayed live videos of lectures to see professors teach deep learning,” Harris recalls, referring to the artificial intelligence technique. “Everybody on campus knew that deep learning was going to be a huge deal, so I started learning more about it, and we realized that the systems I was building for photonic quantum computing could actually be leveraged to do deep learning.”

    Harris had planned to become a professor after his PhD, but he realized he could attract more funding and innovate more quickly through a startup, so he teamed up with Darius Bunandar PhD ’18, who was also studying in Englund’s lab, and Thomas Graham MBA ’18. The co-founders successfully launched into the startup world by winning the 2017 MIT $100K Entrepreneurship Competition.

    Seeing the light

    Lightmatter’s Envise chip takes the part of computing that electrons do well, like memory, and combines it with what light does well, like performing the massive matrix multiplications of deep-learning models.

    “With photonics, you can perform multiple calculations at the same time because the data is coming in on different colors of light,” Harris explains. “In one color, you could have a photo of a dog. In another color, you could have a photo of a cat. In another color, maybe a tree, and you could have all three of those operations going through the same optical computing unit, this matrix accelerator, at the same time. That drives up operations per area, and it reuses the hardware that’s there, driving up energy efficiency.”

    Passage takes advantage of light’s latency and bandwidth advantages to link processors in a manner similar to how fiber optic cables use light to send data over long distances. It also enables chips as big as entire wafers to act as a single processor. Sending information between chips is central to running the massive server farms that power cloud computing and run AI systems like ChatGPT.

    Both products are designed to bring energy efficiencies to computing, which Harris says are needed to keep up with rising demand without bringing huge increases in power consumption.

    “By 2040, some predict that around 80 percent of all energy usage on the planet will be devoted to data centers and computing, and AI is going to be a huge fraction of that,” Harris says. “When you look at computing deployments for training these large AI models, they’re headed toward using hundreds of megawatts. Their power usage is on the scale of cities.”

    Lightmatter is currently working with chipmakers and cloud service providers for mass deployment. Harris notes that because the company’s equipment runs on silicon, it can be produced by existing semiconductor fabrication facilities without massive changes in process.

    The ambitious plans are designed to open up a new path forward for computing that would have huge implications for the environment and economy.

    “We’re going to continue looking at all of the pieces of computers to figure out where light can accelerate them, make them more energy efficient, and faster, and we’re going to continue to replace those parts,” Harris says. “Right now, we’re focused on interconnect with Passage and on compute with Envise. But over time, we’re going to build out the next generation of computers, and it’s all going to be centered around light.” More

  • in

    Power when the sun doesn’t shine

    In 2016, at the huge Houston energy conference CERAWeek, MIT materials scientist Yet-Ming Chiang found himself talking to a Tesla executive about a thorny problem: how to store the output of solar panels and wind turbines for long durations.        

    Chiang, the Kyocera Professor of Materials Science and Engineering, and Mateo Jaramillo, a vice president at Tesla, knew that utilities lacked a cost-effective way to store renewable energy to cover peak levels of demand and to bridge the gaps during windless and cloudy days. They also knew that the scarcity of raw materials used in conventional energy storage devices needed to be addressed if renewables were ever going to displace fossil fuels on the grid at scale.

    Energy storage technologies can facilitate access to renewable energy sources, boost the stability and reliability of power grids, and ultimately accelerate grid decarbonization. The global market for these systems — essentially large batteries — is expected to grow tremendously in the coming years. A study by the nonprofit LDES (Long Duration Energy Storage) Council pegs the long-duration energy storage market at between 80 and 140 terawatt-hours by 2040. “That’s a really big number,” Chiang notes. “Every 10 people on the planet will need access to the equivalent of one EV [electric vehicle] battery to support their energy needs.”

    In 2017, one year after they met in Houston, Chiang and Jaramillo joined forces to co-found Form Energy in Somerville, Massachusetts, with MIT graduates Marco Ferrara SM ’06, PhD ’08 and William Woodford PhD ’13, and energy storage veteran Ted Wiley.

    “There is a burgeoning market for electrical energy storage because we want to achieve decarbonization as fast and as cost-effectively as possible,” says Ferrara, Form’s senior vice president in charge of software and analytics.

    Investors agreed. Over the next six years, Form Energy would raise more than $800 million in venture capital.

    Bridging gaps

    The simplest battery consists of an anode, a cathode, and an electrolyte. During discharge, with the help of the electrolyte, electrons flow from the negative anode to the positive cathode. During charge, external voltage reverses the process. The anode becomes the positive terminal, the cathode becomes the negative terminal, and electrons move back to where they started. Materials used for the anode, cathode, and electrolyte determine the battery’s weight, power, and cost “entitlement,” which is the total cost at the component level.

    During the 1980s and 1990s, the use of lithium revolutionized batteries, making them smaller, lighter, and able to hold a charge for longer. The storage devices Form Energy has devised are rechargeable batteries based on iron, which has several advantages over lithium. A big one is cost.

    Chiang once declared to the MIT Club of Northern California, “I love lithium-ion.” Two of the four MIT spinoffs Chiang founded center on innovative lithium-ion batteries. But at hundreds of dollars a kilowatt-hour (kWh) and with a storage capacity typically measured in hours, lithium-ion was ill-suited for the use he now had in mind.

    The approach Chiang envisioned had to be cost-effective enough to boost the attractiveness of renewables. Making solar and wind energy reliable enough for millions of customers meant storing it long enough to fill the gaps created by extreme weather conditions, grid outages, and when there is a lull in the wind or a few days of clouds.

    To be competitive with legacy power plants, Chiang’s method had to come in at around $20 per kilowatt-hour of stored energy — one-tenth the cost of lithium-ion battery storage.

    But how to transition from expensive batteries that store and discharge over a couple of hours to some as-yet-undefined, cheap, longer-duration technology?

    “One big ball of iron”

    That’s where Ferrara comes in. Ferrara has a PhD in nuclear engineering from MIT and a PhD in electrical engineering and computer science from the University of L’Aquila in his native Italy. In 2017, as a research affiliate at the MIT Department of Materials Science and Engineering, he worked with Chiang to model the grid’s need to manage renewables’ intermittency.

    How intermittent depends on where you are. In the United States, for instance, there’s the windy Great Plains; the sun-drenched, relatively low-wind deserts of Arizona, New Mexico, and Nevada; and the often-cloudy Pacific Northwest.

    Ferrara, in collaboration with Professor Jessika Trancik of MIT’s Institute for Data, Systems, and Society and her MIT team, modeled four representative locations in the United States and concluded that energy storage with capacity costs below roughly $20/kWh and discharge durations of multiple days would allow a wind-solar mix to provide cost-competitive, firm electricity in resource-abundant locations.

    Now that they had a time frame, they turned their attention to materials. At the price point Form Energy was aiming for, lithium was out of the question. Chiang looked at plentiful and cheap sulfur. But a sulfur, sodium, water, and air battery had technical challenges.

    Thomas Edison once used iron as an electrode, and iron-air batteries were first studied in the 1960s. They were too heavy to make good transportation batteries. But this time, Chiang and team were looking at a battery that sat on the ground, so weight didn’t matter. Their priorities were cost and availability.

    “Iron is produced, mined, and processed on every continent,” Chiang says. “The Earth is one big ball of iron. We wouldn’t ever have to worry about even the most ambitious projections of how much storage that the world might use by mid-century.” If Form ever moves into the residential market, “it’ll be the safest battery you’ve ever parked at your house,” Chiang laughs. “Just iron, air, and water.”

    Scientists call it reversible rusting. While discharging, the battery takes in oxygen and converts iron to rust. Applying an electrical current converts the rusty pellets back to iron, and the battery “breathes out” oxygen as it charges. “In chemical terms, you have iron, and it becomes iron hydroxide,” Chiang says. “That means electrons were extracted. You get those electrons to go through the external circuit, and now you have a battery.”

    Form Energy’s battery modules are approximately the size of a washer-and-dryer unit. They are stacked in 40-foot containers, and several containers are electrically connected with power conversion systems to build storage plants that can cover several acres.

    The right place at the right time

    The modules don’t look or act like anything utilities have contracted for before.

    That’s one of Form’s key challenges. “There is not widespread knowledge of needing these new tools for decarbonized grids,” Ferrara says. “That’s not the way utilities have typically planned. They’re looking at all the tools in the toolkit that exist today, which may not contemplate a multi-day energy storage asset.”

    Form Energy’s customers are largely traditional power companies seeking to expand their portfolios of renewable electricity. Some are in the process of decommissioning coal plants and shifting to renewables.

    Ferrara’s research pinpointing the need for very low-cost multi-day storage provides key data for power suppliers seeking to determine the most cost-effective way to integrate more renewable energy.

    Using the same modeling techniques, Ferrara and team show potential customers how the technology fits in with their existing system, how it competes with other technologies, and how, in some cases, it can operate synergistically with other storage technologies.

    “They may need a portfolio of storage technologies to fully balance renewables on different timescales of intermittency,” he says. But other than the technology developed at Form, “there isn’t much out there, certainly not within the cost entitlement of what we’re bringing to market.”  Thanks to Chiang and Jaramillo’s chance encounter in Houston, Form has a several-year lead on other companies working to address this challenge. 

    In June 2023, Form Energy closed its biggest deal to date for a single project: Georgia Power’s order for a 15-megawatt/1,500-megawatt-hour system. That order brings Form’s total amount of energy storage under contracts with utility customers to 40 megawatts/4 gigawatt-hours. To meet the demand, Form is building a new commercial-scale battery manufacturing facility in West Virginia.

    The fact that Form Energy is creating jobs in an area that lost more than 10,000 steel jobs over the past decade is not lost on Chiang. “And these new jobs are in clean tech. It’s super exciting to me personally to be doing something that benefits communities outside of our traditional technology centers.

    “This is the right time for so many reasons,” Chiang says. He says he and his Form Energy co-founders feel “tremendous urgency to get these batteries out into the world.”

    This article appears in the Winter 2024 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Putting AI into the hands of people with problems to solve

    As Media Lab students in 2010, Karthik Dinakar SM ’12, PhD ’17 and Birago Jones SM ’12 teamed up for a class project to build a tool that would help content moderation teams at companies like Twitter (now X) and YouTube. The project generated a huge amount of excitement, and the researchers were invited to give a demonstration at a cyberbullying summit at the White House — they just had to get the thing working.

    The day before the White House event, Dinakar spent hours trying to put together a working demo that could identify concerning posts on Twitter. Around 11 p.m., he called Jones to say he was giving up.

    Then Jones decided to look at the data. It turned out Dinakar’s model was flagging the right types of posts, but the posters were using teenage slang terms and other indirect language that Dinakar didn’t pick up on. The problem wasn’t the model; it was the disconnect between Dinakar and the teens he was trying to help.

    “We realized then, right before we got to the White House, that the people building these models should not be folks who are just machine-learning engineers,” Dinakar says. “They should be people who best understand their data.”

    The insight led the researchers to develop point-and-click tools that allow nonexperts to build machine-learning models. Those tools became the basis for Pienso, which today is helping people build large language models for detecting misinformation, human trafficking, weapons sales, and more, without writing any code.

    “These kinds of applications are important to us because our roots are in cyberbullying and understanding how to use AI for things that really help humanity,” says Jones.

    As for the early version of the system shown at the White House, the founders ended up collaborating with students at nearby schools in Cambridge, Massachusetts, to let them train the models.

    “The models those kids trained were so much better and nuanced than anything I could’ve ever come up with,” Dinakar says. “Birago and I had this big ‘Aha!’ moment where we realized empowering domain experts — which is different from democratizing AI — was the best path forward.”

    A project with purpose

    Jones and Dinakar met as graduate students in the Software Agents research group of the MIT Media Lab. Their work on what became Pienso started in Course 6.864 (Natural Language Processing) and continued until they earned their master’s degrees in 2012.

    It turned out 2010 wasn’t the last time the founders were invited to the White House to demo their project. The work generated a lot of enthusiasm, but the founders worked on Pienso part time until 2016, when Dinakar finished his PhD at MIT and deep learning began to explode in popularity.

    “We’re still connected to many people around campus,” Dinakar says. “The exposure we had at MIT, the melding of human and computer interfaces, widened our understanding. Our philosophy at Pienso couldn’t be possible without the vibrancy of MIT’s campus.”

    The founders also credit MIT’s Industrial Liaison Program (ILP) and Startup Accelerator (STEX) for connecting them to early partners.

    One early partner was SkyUK. The company’s customer success team used Pienso to build models to understand their customer’s most common problems. Today those models are helping to process half a million customer calls a day, and the founders say they have saved the company over £7 million pounds to date by shortening the length of calls into the company’s call center.

    “The difference between democratizing AI and empowering people with AI comes down to who understands the data best — you or a doctor or a journalist or someone who works with customers every day?” Jones says. “Those are the people who should be creating the models. That’s how you get insights out of your data.”

    In 2020, just as Covid-19 outbreaks began in the U.S., government officials contacted the founders to use their tool to better understand the emerging disease. Pienso helped experts in virology and infectious disease set up machine-learning models to mine thousands of research articles about coronaviruses. Dinakar says they later learned the work helped the government identify and strengthen critical supply chains for drugs, including the popular antiviral remdesivir.

    “Those compounds were surfaced by a team that did not know deep learning but was able to use our platform,” Dinakar says.

    Building a better AI future

    Because Pienso can run on internal servers and cloud infrastructure, the founders say it offers an alternative for businesses being forced to donate their data by using services offered by other AI companies.

    “The Pienso interface is a series of web apps stitched together,” Dinakar explains. “You can think of it like an Adobe Photoshop for large language models, but in the web. You can point and import data without writing a line of code. You can refine the data, prepare it for deep learning, analyze it, give it structure if it’s not labeled or annotated, and you can walk away with fine-tuned, large language model in a matter of 25 minutes.”

    Earlier this year, Pienso announced a partnership with GraphCore, which provides a faster, more efficient computing platform for machine learning. The founders say the partnership will further lower barriers to leveraging AI by dramatically reducing latency.

    “If you’re building an interactive AI platform, users aren’t going to have a cup of coffee every time they click a button,” Dinakar says. “It needs to be fast and responsive.”

    The founders believe their solution is enabling a future where more effective AI models are developed for specific use cases by the people who are most familiar with the problems they are trying to solve.

    “No one model can do everything,” Dinakar says. “Everyone’s application is different, their needs are different, their data is different. It’s highly unlikely that one model will do everything for you. It’s about bringing a garden of models together and allowing them to collaborate with each other and orchestrating them in a way that makes sense — and the people doing that orchestration should be the people who understand the data best.” More

  • in

    Six MIT students selected as spring 2024 MIT-Pillar AI Collective Fellows

    The MIT-Pillar AI Collective has announced six fellows for the spring 2024 semester. With support from the program, the graduate students, who are in their final year of a master’s or PhD program, will conduct research in the areas of AI, machine learning, and data science with the aim of commercializing their innovations.

    Launched by MIT’s School of Engineering and Pillar VC in 2022, the MIT-Pillar AI Collective supports faculty, postdocs, and students conducting research on AI, machine learning, and data science. Supported by a gift from Pillar VC and administered by the MIT Deshpande Center for Technological Innovation, the mission of the program is to advance research toward commercialization.

    The spring 2024 MIT-Pillar AI Collective Fellows are:

    Yasmeen AlFaraj

    Yasmeen AlFaraj is a PhD candidate in chemistry whose interest is in the application of data science and machine learning to soft materials design to enable next-generation, sustainable plastics, rubber, and composite materials. More specifically, she is applying machine learning to the design of novel molecular additives to enable the low-cost manufacturing of chemically deconstructable thermosets and composites. AlFaraj’s work has led to the discovery of scalable, translatable new materials that could address thermoset plastic waste. As a Pillar Fellow, she will pursue bringing this technology to market, initially focusing on wind turbine blade manufacturing and conformal coatings. Through the Deshpande Center for Technological Innovation, AlFaraj serves as a lead for a team developing a spinout focused on recyclable versions of existing high-performance thermosets by incorporating small quantities of a degradable co-monomer. In addition, she participated in the National Science Foundation Innovation Corps program and recently graduated from the Clean Tech Open, where she focused on enhancing her business plan, analyzing potential markets, ensuring a complete IP portfolio, and connecting with potential funders. AlFaraj earned a BS in chemistry from University of California at Berkeley.

    Ruben Castro Ornelas

    Ruben Castro Ornelas is a PhD student in mechanical engineering who is passionate about the future of multipurpose robots and designing the hardware to use them with AI control solutions. Combining his expertise in programming, embedded systems, machine design, reinforcement learning, and AI, he designed a dexterous robotic hand capable of carrying out useful everyday tasks without sacrificing size, durability, complexity, or simulatability. Ornelas’s innovative design holds significant commercial potential in domestic, industrial, and health-care applications because it could be adapted to hold everything from kitchenware to delicate objects. As a Pillar Fellow, he will focus on identifying potential commercial markets, determining the optimal approach for business-to-business sales, and identifying critical advisors. Ornelas served as co-director of StartLabs, an undergraduate entrepreneurship club at MIT, where he earned an BS in mechanical engineering.

    Keeley Erhardt

    Keeley Erhardt is a PhD candidate in media arts and sciences whose research interests lie in the transformative potential of AI in network analysis, particularly for entity correlation and hidden link detection within and across domains. She has designed machine learning algorithms to identify and track temporal correlations and hidden signals in large-scale networks, uncovering online influence campaigns originating from multiple countries. She has similarly demonstrated the use of graph neural networks to identify coordinated cryptocurrency accounts by analyzing financial time series data and transaction dynamics. As a Pillar Fellow, Erhardt will pursue the potential commercial applications of her work, such as detecting fraud, propaganda, money laundering, and other covert activity in the finance, energy, and national security sectors. She has had internships at Google, Facebook, and Apple and held software engineering roles at multiple tech unicorns. Erhardt earned an MEng in electrical engineering and computer science and a BS in computer science, both from MIT.

    Vineet Jagadeesan Nair

    Vineet Jagadeesan Nair is a PhD candidate in mechanical engineering whose research focuses on modeling power grids and designing electricity markets to integrate renewables, batteries, and electric vehicles. He is broadly interested in developing computational tools to tackle climate change. As a Pillar Fellow, Nair will explore the application of machine learning and data science to power systems. Specifically, he will experiment with approaches to improve the accuracy of forecasting electricity demand and supply with high spatial-temporal resolution. In collaboration with Project Tapestry @ Google X, he is also working on fusing physics-informed machine learning with conventional numerical methods to increase the speed and accuracy of high-fidelity simulations. Nair’s work could help realize future grids with high penetrations of renewables and other clean, distributed energy resources. Outside academics, Nair is active in entrepreneurship, most recently helping to organize the 2023 MIT Global Startup Workshop in Greece. He earned an MS in computational science and engineering from MIT, an MPhil in energy technologies from Cambridge University as a Gates Scholar, and a BS in mechanical engineering and a BA in economics from University of California at Berkeley.

    Mahdi Ramadan

    Mahdi Ramadan is a PhD candidate in brain and cognitive sciences whose research interests lie at the intersection of cognitive science, computational modeling, and neural technologies. His work uses novel unsupervised methods for learning and generating interpretable representations of neural dynamics, capitalizing on recent advances in AI, specifically contrastive and geometric deep learning techniques capable of uncovering the latent dynamics underlying neural processes with high fidelity. As a Pillar Fellow, he will leverage these methods to gain a better understanding of dynamical models of muscle signals for generative motor control. By supplementing current spinal prosthetics with generative AI motor models that can streamline, speed up, and correct limb muscle activations in real time, as well as potentially using multimodal vision-language models to infer the patients’ high-level intentions, Ramadan aspires to build truly scalable, accessible, and capable commercial neuroprosthetics. Ramadan’s entrepreneurial experience includes being the co-founder of UltraNeuro, a neurotechnology startup, and co-founder of Presizely, a computer vision startup. He earned a BS in neurobiology from University of Washington.

    Rui (Raymond) Zhou

    Rui (Raymond) Zhou is a PhD candidate in mechanical engineering whose research focuses on multimodal AI for engineering design. As a Pillar Fellow, he will advance models that could enable designers to translate information in any modality or combination of modalities into comprehensive 2D and 3D designs, including parametric data, component visuals, assembly graphs, and sketches. These models could also optimize existing human designs to accomplish goals such as improving ergonomics or reducing drag coefficient. Ultimately, Zhou aims to translate his work into a software-as-a-service platform that redefines product design across various sectors, from automotive to consumer electronics. His efforts have the potential to not only accelerate the design process but also reduce costs, opening the door to unprecedented levels of customization, idea generation, and rapid prototyping. Beyond his academic pursuits, Zhou founded UrsaTech, a startup that integrates AI into education and engineering design. He earned a BS in electrical engineering and computer sciences from University of California at Berkeley. More

  • in

    Boosting passenger experience and increasing connectivity at the Hong Kong International Airport

    Recently, a cohort of 36 students from MIT and universities across Hong Kong came together for the MIT Entrepreneurship and Maker Skills Integrator (MEMSI), an intense two-week startup boot camp hosted at the MIT Hong Kong Innovation Node.

    “We’re very excited to be in Hong Kong,” said Professor Charles Sodini, LeBel Professor of Electrical Engineering and faculty director of the Node. “The dream always was to bring MIT and Hong Kong students together.”

    Students collaborated on six teams to meet real-world industry challenges through action learning, defining a problem, designing a solution, and crafting a business plan. The experience culminated in the MEMSI Showcase, where each team presented its process and unique solution to a panel of judges. “The MEMSI program is a great demonstration of important international educational goals for MIT,” says Professor Richard Lester, associate provost for international activities and chair of the Node Steering Committee at MIT. “It creates opportunities for our students to solve problems in a particular and distinctive cultural context, and to learn how innovations can cross international boundaries.” 

    Meeting an urgent challenge in the travel and tourism industry

    The Hong Kong Airport Authority (AAHK) served as the program’s industry partner for the third consecutive year, challenging students to conceive innovative ideas to make passenger travel more personalized from end-to-end while increasing connectivity. As the travel industry resuscitates profitability and welcomes crowds back amidst ongoing delays and labor shortages, the need for a more passenger-centric travel ecosystem is urgent.

    The airport is the third-busiest international passenger airport and the world’s busiest cargo transit. Students experienced an insider’s tour of the Hong Kong International Airport to gain on-the-ground orientation. They observed firsthand the complex logistics, possibilities, and constraints of operating with a team of 78,000 employees who serve 71.5 million passengers with unique needs and itineraries.

    Throughout the program, the cohort was coached and supported by MEMSI alumni, travel industry mentors, and MIT faculty such as Richard de Neufville, professor of engineering systems.

    The mood inside the open-plan MIT Hong Kong Innovation Node was nonstop energetic excitement for the entire program. Each of the six teams was composed of students from MIT and from Hong Kong universities. They learned to work together under time pressure, develop solutions, receive feedback from industry mentors, and iterate around the clock.

    “MEMSI was an enriching and amazing opportunity to learn about entrepreneurship while collaborating with a diverse team to solve a complex problem,” says Maria Li, a junior majoring in computer science, economics, and data science at MIT. “It was incredible to see the ideas we initially came up with as a team turn into a single, thought-out solution by the end.”

    Unsurprisingly given MIT’s focus on piloting the latest technology and the tech-savvy culture of Hong Kong as a global center, many team projects focused on virtual reality, apps, and wearable technology designed to make passengers’ journeys more individualized, efficient, or enjoyable.

    After observing geospatial patterns charting passengers’ movement through an airport, one team realized that many people on long trips aim to meet fitness goals by consciously getting their daily steps power walking the expansive terminals. The team’s prototype, FitAir, is a smart, biometric token integrated virtual coach, which plans walking routes within the airport to promote passenger health and wellness.

    Another team noted a common frustration among frequent travelers who manage multiple mileage rewards program profiles, passwords, and status reports. They proposed AirPoint, a digital wallet that consolidates different rewards programs and presents passengers with all their airport redemption opportunities in one place.

    “Today, there is no loser,” said Vivian Cheung, chief operating officer of AAHK, who served as one of the judges. “Everyone is a winner. I am a winner, too. I have learned a lot from the showcase. Some of the ideas, I believe, can really become a business.”

    Cheung noted that in just 12 days, all teams observed and solved her organization’s pain points and successfully designed solutions to address them.

    More than a competition

    Although many of the models pitched are inventive enough to potentially shape the future of travel, the main focus of MEMSI isn’t to act as yet another startup challenge and incubator.

    “What we’re really focusing on is giving students the ability to learn entrepreneurial thinking,” explains Marina Chan, senior director and head of education at the Node. “It’s the dynamic experience in a highly connected environment that makes being in Hong Kong truly unique. When students can adapt and apply theory to an international context, it builds deeper cultural competency.”

    From an aerial view, the boot camp produced many entrepreneurs in the making and lasting friendships, and respect for other cultural backgrounds and operating environments.

    “I learned the overarching process of how to make a startup pitch, all the way from idea generation, market research, and making business models, to the pitch itself and the presentation,” says Arun Wongprommoon, a senior double majoring in computer science and engineering and linguistics.  “It was all a black box to me before I came into the program.”

    He said he gained tremendous respect for the startup world and the pure hard work and collaboration required to get ahead.

    Spearheaded by the Node, MEMSI is a collaboration among the MIT Innovation Initiative, the Martin Trust Center for Entrepreneurship, the MIT International Science and Technology Initiatives, and Project Manus. Learn more about applying to MEMSI. More

  • in

    Helping companies deploy AI models more responsibly

    Companies today are incorporating artificial intelligence into every corner of their business. The trend is expected to continue until machine-learning models are incorporated into most of the products and services we interact with every day.

    As those models become a bigger part of our lives, ensuring their integrity becomes more important. That’s the mission of Verta, a startup that spun out of MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL).

    Verta’s platform helps companies deploy, monitor, and manage machine-learning models safely and at scale. Data scientists and engineers can use Verta’s tools to track different versions of models, audit them for bias, test them before deployment, and monitor their performance in the real world.

    “Everything we do is to enable more products to be built with AI, and to do that safely,” Verta founder and CEO Manasi Vartak SM ’14, PhD ’18 says. “We’re already seeing with ChatGPT how AI can be used to generate data, artefacts — you name it — that look correct but aren’t correct. There needs to be more governance and control in how AI is being used, particularly for enterprises providing AI solutions.”

    Verta is currently working with large companies in health care, finance, and insurance to help them understand and audit their models’ recommendations and predictions. It’s also working with a number of high-growth tech companies looking to speed up deployment of new, AI-enabled solutions while ensuring those solutions are used appropriately.

    Vartak says the company has been able to decrease the time it takes customers to deploy AI models by orders of magnitude while ensuring those models are explainable and fair — an especially important factor for companies in highly regulated industries.

    Health care companies, for example, can use Verta to improve AI-powered patient monitoring and treatment recommendations. Such systems need to be thoroughly vetted for errors and biases before they’re used on patients.

    “Whether it’s bias or fairness or explainability, it goes back to our philosophy on model governance and management,” Vartak says. “We think of it like a preflight checklist: Before an airplane takes off, there’s a set of checks you need to do before you get your airplane off the ground. It’s similar with AI models. You need to make sure you’ve done your bias checks, you need to make sure there’s some level of explainability, you need to make sure your model is reproducible. We help with all of that.”

    From project to product

    Before coming to MIT, Vartak worked as a data scientist for a social media company. In one project, after spending weeks tuning machine-learning models that curated content to show in people’s feeds, she learned an ex-employee had already done the same thing. Unfortunately, there was no record of what they did or how it affected the models.

    For her PhD at MIT, Vartak decided to build tools to help data scientists develop, test, and iterate on machine-learning models. Working in CSAIL’s Database Group, Vartak recruited a team of graduate students and participants in MIT’s Undergraduate Research Opportunities Program (UROP).

    “Verta would not exist without my work at MIT and MIT’s ecosystem,” Vartak says. “MIT brings together people on the cutting edge of tech and helps us build the next generation of tools.”

    The team worked with data scientists in the CSAIL Alliances program to decide what features to build and iterated based on feedback from those early adopters. Vartak says the resulting project, named ModelDB, was the first open-source model management system.

    Vartak also took several business classes at the MIT Sloan School of Management during her PhD and worked with classmates on startups that recommended clothing and tracked health, spending countless hours in the Martin Trust Center for MIT Entrepreneurship and participating in the center’s delta v summer accelerator.

    “What MIT lets you do is take risks and fail in a safe environment,” Vartak says. “MIT afforded me those forays into entrepreneurship and showed me how to go about building products and finding first customers, so by the time Verta came around I had done it on a smaller scale.”

    ModelDB helped data scientists train and track models, but Vartak quickly saw the stakes were higher once models were deployed at scale. At that point, trying to improve (or accidentally breaking) models can have major implications for companies and society. That insight led Vartak to begin building Verta.

    “At Verta, we help manage models, help run models, and make sure they’re working as expected, which we call model monitoring,” Vartak explains. “All of those pieces have their roots back to MIT and my thesis work. Verta really evolved from my PhD project at MIT.”

    Verta’s platform helps companies deploy models more quickly, ensure they continue working as intended over time, and manage the models for compliance and governance. Data scientists can use Verta to track different versions of models and understand how they were built, answering questions like how data were used and which explainability or bias checks were run. They can also vet them by running them through deployment checklists and security scans.

    “Verta’s platform takes the data science model and adds half a dozen layers to it to transform it into something you can use to power, say, an entire recommendation system on your website,” Vartak says. “That includes performance optimizations, scaling, and cycle time, which is how quickly you can take a model and turn it into a valuable product, as well as governance.”

    Supporting the AI wave

    Vartak says large companies often use thousands of different models that influence nearly every part of their operations.

    “An insurance company, for example, will use models for everything from underwriting to claims, back-office processing, marketing, and sales,” Vartak says. “So, the diversity of models is really high, there’s a large volume of them, and the level of scrutiny and compliance companies need around these models are very high. They need to know things like: Did you use the data you were supposed to use? Who were the people who vetted it? Did you run explainability checks? Did you run bias checks?”

    Vartak says companies that don’t adopt AI will be left behind. The companies that ride AI to success, meanwhile, will need well-defined processes in place to manage their ever-growing list of models.

    “In the next 10 years, every device we interact with is going to have intelligence built in, whether it’s a toaster or your email programs, and it’s going to make your life much, much easier,” Vartak says. “What’s going to enable that intelligence are better models and software, like Verta, that help you integrate AI into all of these applications very quickly.” More

  • in

    Transforming the travel experience for the Hong Kong airport

    MIT Hong Kong Innovation Node welcomed 33 students to its flagship program, MIT Entrepreneurship and Maker Skills Integrator (MEMSI). Designed to develop entrepreneurial prowess through exposure to industry-driven challenges, MIT students joined forces with Hong Kong peers in this two-week hybrid bootcamp, developing unique proposals for the Airport Authority of Hong Kong.

    Many airports across the world continue to be affected by the broader impact of Covid-19 with reduced air travel, prompting airlines to cut capacity. The result is a need for new business opportunities to propel economic development. For Hong Kong, the expansion toward non-aeronautical activities to boost regional consumption is therefore crucial, and included as part of the blueprint to transform the city’s airport into an airport city — characterized by capacity expansion, commercial developments, air cargo leadership, an autonomous transport system, connectivity to neighboring cities in mainland China, and evolution into a smart airport guided by sustainable practices. To enhance the customer experience, a key focus is capturing business opportunities at the nexus of digital and physical interactions. 

    These challenges “bring ideas and talent together to tackle real-world problems in the areas of digital service creation for the airport and engaging regional customers to experience the new airport city,” says Charles Sodini, the LeBel Professor of Electrical Engineering at MIT and faculty director at the Node. 

    The new travel standard

    Businesses are exploring new digital technologies, both to drive bookings and to facilitate safe travel. Developments such as Hong Kong airport’s Flight Token, a biometric technology using facial recognition to enable contactless check-ins and boarding at airports, unlock enormous potential that speeds up the departure journey of passengers. Seamless virtual experiences are not going to disappear.

    “What we may see could be a strong rebounce especially for travelers after the travel ban lifts … an opportunity to make travel easier, flying as simple as riding the bus,” says Chris Au Young, general manager of smart airport and general manager of data analytics at the Airport Authority of Hong Kong. 

    The passenger experience of the future will be “enabled by mobile technology, internet of things, and digital platforms,” he explains, adding that in the aviation community, “international organizations have already stipulated that biometric technology will be the new standard for the future … the next question is how this can be connected across airports.”  

    This extends further beyond travel, where Au Young illustrates, “If you go to a concert at Asia World Expo, which is the airport’s new arena in the future, you might just simply show your face rather than queue up in a long line waiting to show your tickets.”

    Accelerating the learning curve with industry support

    Working closely with industry mentors involved in the airport city’s development, students dived deep into discussions on the future of adapted travel, interviewed and surveyed travelers, and plowed through a range of airport data to uncover business insights.

    “With the large amount of data provided, my teammates and I worked hard to identify modeling opportunities that were both theoretically feasible and valuable in a business sense,” says Sean Mann, a junior at MIT studying computer science.

    Mann and his team applied geolocation data to inform machine learning predictions on a passenger’s journey once they enter the airside area. Coupled with biometric technology, passengers can receive personalized recommendations with improved accuracy via the airport’s bespoke passenger app, powered by data collected through thousands of iBeacons dispersed across the vicinity. Armed with these insights, the aim is to enhance the user experience by driving meaningful footfall to retail shops, restaurants, and other airport amenities.

    The support of industry partners inspired his team “with their deep understanding of the aviation industry,” he added. “In a short period of two weeks, we built a proof-of-concept and a rudimentary business plan — the latter of which was very new to me.”

    Collaborating across time zones, Rumen Dangovski, a PhD candidate in electrical engineering and computer science at MIT, joined MEMSI from his home in Bulgaria. For him, learning “how to continually revisit ideas to discover important problems and meaningful solutions for a large and complex real-world system” was a key takeaway. The iterative process helped his team overcome the obstacle of narrowing down the scope of their proposal, with the help of industry mentors and advisors. 

    “Without the feedback from industry partners, we would not have been able to formulate a concrete solution that is actually helpful to the airport,” says Dangovski.  

    Beyond valuable mentorship, he adds, “there was incredible energy in our team, consisting of diverse talent, grit, discipline and organization. I was positively surprised how MEMSI can form quickly and give continual support to our team. The overall experience was very fun.“

    A sustainable future

    Mrigi Munjal, a PhD candidate studying materials science and engineering at MIT, had just taken a long-haul flight from Boston to Delhi prior to the program, and “was beginning to fully appreciate the scale of carbon emissions from aviation.” For her, “that one journey basically overshadowed all of my conscious pro-sustainability lifestyle changes,” she says.

    Knowing that international flights constitute the largest part of an individual’s carbon footprint, Munjal and her team wanted “to make flying more sustainable with an idea that is economically viable for all of the stakeholders involved.” 

    They proposed a carbon offset API that integrates into an airline’s ticket payment system, empowering individuals to take action to offset their carbon footprint, track their personal carbon history, and pick and monitor green projects. The advocacy extends to a digital display of interactive art featured in physical installations across the airport city. The intent is to raise community awareness about one’s impact on the environment and making carbon offsetting accessible. 

    Shaping the travel narrative

    Six teams of students created innovative solutions for the Hong Kong airport which they presented in hybrid format to a panel of judges on Showcase Day. The diverse ideas included an app-based airport retail recommendations supported by iBeacons; a platform that empowers customers to offset their carbon footprint; an app that connects fellow travelers for social and incentive-driven retail experiences; a travel membership exchange platform offering added flexibility to earn and redeem loyalty rewards; an interactive and gamified location-based retail experience using augmented reality; and a digital companion avatar to increase adoption of the airport’s Flight Token and improve airside passenger experience.

    Among the judges was Julian Lee ’97, former president of the MIT Club of Hong Kong and current executive director of finance at the Airport Authority of Hong Kong, who commended the students for demonstrably having “worked very thoroughly and thinking through the specific challenges,” addressing the real pain points that the airport is experiencing.

    “The ideas were very thoughtful and very unique to us. Some of you defined transit passengers as a sub-segment of the market that works. It only happens at the airport and you’ve been able to leverage this transit time in between,” remarked Lee. 

    Strong solutions include an implementation plan to see a path for execution and a viable future. Among the solutions proposed, Au Young was impressed by teams for “paying a lot of attention to the business model … a very important aspect in all the ideas generated.”  

    Addressing the students, Au Young says, “What we love is the way you reinvent the airport business and partnerships, presenting a new way of attracting people to engage more in new services and experiences — not just returning for a flight or just shopping with us, but innovating beyond the airport and using emerging technologies, using location data, using the retailer’s capability and adding some social activities in your solutions.”

    Despite today’s rapidly evolving travel industry, what remains unchanged is a focus on the customer. In the end, “it’s still about the passengers,” added Au Young.  More

  • in

    Devavrat Shah appointed faculty director of the Deshpande Center

    Devavrat Shah, the Andrew (1956) and Erna Viterbi Professor in the Department of Electrical Engineering and Computer Science and the Institute for Data, Systems, and Society, has been named faculty director of the MIT Deshpande Center for Technological Innovations. The new role took effect on Feb. 1.

    Shah replaces Tim Swager, the John D. MacArthur Professor of Chemistry, who has held the position of faculty director since 2014. Working alongside Executive Director to the Deshpande Center Leon Sandler, Swager helped the Deshpande Center build an inclusive environment where innovation and entrepreneurship could thrive. By examining new models for directing, seeding, and fostering the commercialization of inventions and technology, Swager helped students and faculty breathe life into research, propelling it out of the lab and into the world as successful ventures.

    The MIT Deshpande Center for Technological Innovations is an interdepartmental center working to empower MIT’s most talented students and faculty by helping them bring new innovative technologies from the lab to the marketplace in the form of breakthrough products and new companies. Desh Deshpande founded the center with his wife, in 2002.

    “Professor Shah’s deep entrepreneurial experience coupled with his research on large complex networks will be tremendous assets to the center,” says Deshpande. “Devavrat is an impactful educator and inspiring mentor who will play a key role in the center’s mission to foster innovation and accelerate the impact of new discoveries.”

    Shah joined the Department of Electrical Engineering and Computer Science in 2005. With research focusing on statistical inference and stochastic networks, his research contributions span a variety of areas including resource allocation in communications networks, inference and learning on graphical models, algorithms for social data processing including ranking, recommendations and crowdsourcing, and more recently, causal inference using observational and experimental data.  

    While Shah’s work spans a range of areas across electrical engineering, computer science, and operations research, they are all tied together with the singular focus on developing algorithmic solutions for practical, challenging problems. He’s also authored two books, one on gossip algorithms in 2006 and the other on prediction methods of nearest neighbors in 2018. 

    A highly regarded teacher, Shah has been very active in curriculum development — most notably class 6.438 (Algorithms for Inference) and class 6.401 (Introduction to Statistical Data Analysis) — and has taken a leading role in developing educational programs in the statistics and data science at MIT as part of the Statistics and Data Science Center within the Institute for Data, Systems, and Society.

    “With his experience and contributions as a researcher, educator, and innovator, I have no doubt that Devavrat will excel as the next faculty director of the Deshpande Center and help usher in the next era of innovation for MIT,” says Anantha P. Chandrakasan, dean of the School of Engineering and Vannevar Bush Professor of Electrical Engineering and Computer Science. “I am grateful to Tim for the tremendous work he has done during his eight years as faculty director of the Deshpande Center. His commitment to building an inclusive environment for innovation and entrepreneurship to thrive was particularly impressive.” 

    A practiced entrepreneur, Shah co-founded Celect, Inc. — now part of Nike — in 2013, to help retailers accurately predict demand using omnichannel data. In 2019, he helped start IkigaiLabs, where he serves as CTO, with the mission to build self-driving organizations by enabling data-driven operations with human-in-the-loop with the ease of spreadsheet.

    Among his many achievements and accolades, Shah was named a Kavli Fellow of the National Academy of Science in 2014 and was just recently announced as an Institute of Electrical and Electronics Engineers (IEEE) Fellow for 2022. He’s also received a number of awards for his papers from INFORMS Applied Probability Society, INFORMS Management Science and Operations Management, NeurIPS, ACM Sigmetrics, and IEEE Infocom. His career prizes include the Erlang Prize from INFORMS Applied Probability Society and the Rising Star Award from ACM Sigmetrics. Shah has also received multiple Test of Time paper awards from ACM Sigmetrics and is recognized as a distinguished alumnus of his alma mater, the Indian Institute of Technology Bombay.

    “The Deshpande Center thanks Tim for his years of service as faculty director,” says the center’s executive director, Leon Sandler. “Tim’s commitment to innovation played an integral role in our success, and the center’s programs have thrived under his leadership. I look forward to working with Devavrat in the continuing effort to fulfill the mission of our center.”

    As part of his new post, Shah will work closely with Sandler, who has held the executive director position at the Deshpande Center since 2006. More