More stories

  • in

    Q&A: How refusal can be an act of design

    This month in the ACM Journal on Responsible Computing, MIT graduate student Jonathan Zong SM ’20 and co-author J. Nathan Matias SM ’13, PhD ’17 of the Cornell Citizens and Technology Lab examine how the notion of refusal can open new avenues in the field of data ethics. In their open-access report, “Data Refusal From Below: A Framework for Understanding, Evaluating, and Envisioning Refusal as Design,” the pair proposes a framework in four dimensions to map how individuals can say “no” to technology misuses. At the same time, the researchers argue that just like design, refusal is generative, and has the potential to create alternate futures.

    Zong, a PhD candidate in electrical engineering and computer science, 2022-23 MIT Morningside Academy for Design Design Fellow, and member of the MIT Visualization Group, describes his latest work in this Q&A.

    Q: How do you define the concept of “refusal,” and where does it come from?

    A: Refusal was developed in feminist and Indigenous studies. It’s this idea of saying “no,” without being given permission to say “no.” Scholars like Ruha Benjamin write about refusal in the context of surveillance, race, and bioethics, and talk about it as a necessary counterpart to consent. Others, like the authors of the “Feminist Data Manifest-No,” think of refusal as something that can help us commit to building better futures.

    Benjamin illustrates cases where the choice to refuse is not equally possible for everyone, citing examples involving genetic data and refugee screenings in the U.K. The imbalance of power in these situations underscores the broader concept of refusal, extending beyond rejecting specific options to challenging the entire set of choices presented.

    Q: What inspired you to work on the notion of refusal as an act of design?

    A: In my work on data ethics, I’ve been thinking about how to incorporate processes into research data collection, particularly around consent and opt-out, with a focus on individual autonomy and the idea of giving people choices about the way that their data is used. But when it comes to data privacy, simply making choices available is not enough. Choices can be unequally available, or create no-win situations where all options are bad. This led me to the concept of refusal: questioning the authority of data collectors and challenging their legitimacy.

    The key idea of my work is that refusal is an act of design. I think of refusal as deliberate actions to redesign our socio-technical landscape by exerting some sort of influence. Like design, refusal is generative. Like design, it’s oriented towards creating alternate possibilities and alternate futures. Design is a process of exploring or traversing a space of possibility. Applying a design framework to cases of refusal drawn from scholarly and journalistic sources allowed me to establish a common language for talking about refusal and to imagine refusals that haven’t been explored yet.

    Q: What are the stakes around data privacy and data collection?

    A: The use of data for facial recognition surveillance in the U.S. is a big example we use in the paper. When people do everyday things like post on social media or walk past cameras in public spaces, they might be contributing their data to training facial recognition systems. For instance, a tech company may take photos from a social media site and build facial recognition that they then sell to the government. In the U.S., these systems are disproportionately used by police to surveil communities of color. It is difficult to apply concepts like consent and opt out of these processes, because they happen over time and involve multiple kinds of institutions. It’s also not clear that individual opt-out would do anything to change the overall situation. Refusal then becomes a crucial avenue, at both individual and community levels, to think more broadly of how affected people still exert some kind of voice or agency, without necessarily having an official channel to do so.

    Q: Why do you think these issues are more particularly affecting disempowered communities?

    A: People who are affected by technologies are not always included in the design process for those technologies. Refusal then becomes a meaningful expression of values and priorities for those who were not part of the early design conversations. Actions taken against technologies like face surveillance — be it legal battles against companies, advocacy for stricter regulations, or even direct action like disabling security cameras — may not fit the conventional notion of participating in a design process. And yet, these are the actions available to refusers who may be excluded from other forms of participation.

    I’m particularly inspired by the movement around Indigenous data sovereignty. Organizations like the First Nations Information Governance Centre work towards prioritizing Indigenous communities’ perspectives in data collection, and refuse inadequate representation in official health data from the Canadian government. I think this is a movement that exemplifies the potential of refusal, not only as a way to reject what’s being offered, but also as a means to propose a constructive alternative, very much like design. Refusal is not merely a negation, but a pathway to different futures.

    Q: Can you elaborate on the design framework you propose?

    A: Refusals vary widely across contexts and scales. Developing a framework for refusal is about helping people see actions that are seemingly very different as instances of the same broader idea. Our framework consists of four facets: autonomy, time, power, and cost.

    Consider the case of IBM creating a facial recognition dataset using people’s photos without consent. We saw multiple forms of refusal emerge in response. IBM allowed individuals to opt out by withdrawing their photos. People collectively refused by creating a class-action lawsuit against IBM. Around the same time, many U.S. cities started passing local legislation banning the government use of facial recognition. Evaluating these cases through the framework highlights commonalities and differences. The framework highlights varied approaches to autonomy, like individual opt-out and collective action. Regarding time, opt-outs and lawsuits react to past harm, while legislation might proactively prevent future harm. Power dynamics differ; withdrawing individual photos minimally influences IBM, while legislation could potentially cause longer-term change. And as for cost, individual opt-out seems less demanding, while other approaches require more time and effort, balanced against potential benefits.

    The framework facilitates case description and comparison across these dimensions. I think its generative nature encourages exploration of novel forms of refusal as well. By identifying the characteristics we want to see in future refusal strategies — collective, proactive, powerful, low-cost… — we can aspire to shape future approaches and change the behavior of data collectors. We may not always be able to combine all these criteria, but the framework provides a means to articulate our aspirational goals in this context.

    Q: What impact do you hope this research will have?

    A: I hope to expand the notion of who can participate in design, and whose actions are seen as legitimate expressions of design input. I think a lot of work so far in the conversation around data ethics prioritizes the perspective of computer scientists who are trying to design better systems, at the expense of the perspective of people for whom the systems are not currently working. So, I hope designers and computer scientists can embrace the concept of refusal as a legitimate form of design, and a source of inspiration. There’s a vital conversation happening, one that should influence the design of future systems, even if expressed through unconventional means.

    One of the things I want to underscore in the paper is that design extends beyond software. Taking a socio-technical perspective, the act of designing encompasses software, institutions, relationships, and governance structures surrounding data use. I want people who aren’t software engineers, like policymakers or activists, to view themselves as integral to the technology design process. More

  • in

    Inclusive research for social change

    Pair a decades-old program dedicated to creating research opportunities for underrepresented minorities and populations with a growing initiative committed to tackling the very issues at the heart of such disparities, and you’ll get a transformative partnership that only MIT can deliver. 

    Since 1986, the MIT Summer Research Program (MSRP) has led an institutional effort to prepare underrepresented students (minorities, women in STEM, or students with low socioeconomic status) for doctoral education by pairing them with MIT labs and research groups. For the past three years, the Initiative on Combatting Systemic Racism (ICSR), a cross-disciplinary research collaboration led by MIT’s Institute for Data, Systems, and Society (IDSS), has joined them in their mission, helping bring the issue full circle by providing MSRP students with the opportunity to use big data and computational tools to create impactful changes toward racial equity.

    “ICSR has further enabled our direct engagement with undergrads, both within and outside of MIT,” says Fotini Christia, the Ford International Professor of the Social Sciences, associate director of IDSS, and co-organizer for the initiative. “We’ve found that this line of research has attracted students interested in examining these topics with the most rigorous methods.”

    The initiative fits well under the IDSS banner, as IDSS research seeks solutions to complex societal issues through a multidisciplinary approach that includes statistics, computation, modeling, social science methodologies, human behavior, and an understanding of complex systems. With the support of faculty and researchers from all five schools and the MIT Schwarzman College of Computing, the objective of ICSR is to work on an array of different societal aspects of systemic racism through a set of verticals including policing, housing, health care, and social media.

    Where passion meets impact

    Grinnell senior Mia Hines has always dreamed of using her love for computer science to support social justice. She has experience working with unhoused people and labor unions, and advocating for Indigenous peoples’ rights. When applying to college, she focused her essay on using technology to help Syrian refugees.

    “As a Black woman, it’s very important to me that we focus on these areas, especially on how we can use technology to help marginalized communities,” Hines says. “And also, how do we stop technology or improve technology that is already hurting marginalized communities?”   

    Through MSRP, Hines was paired with research advisor Ufuoma Ovienmhada, a fourth-year doctoral student in the Department of Aeronautics and Astronautics at MIT. A member of Professor Danielle Wood’s Space Enabled research group at MIT’s Media Lab, Ovienmhada received funding from an ICSR Seed Grant and NASA’s Applied Sciences Program to support her ongoing research measuring environmental injustice and socioeconomic disparities in prison landscapes. 

    “I had been doing satellite remote sensing for environmental challenges and sustainability, starting out looking at coastal ecosystems, when I learned about an issue called ‘prison ecology,’” Ovienmhada explains. “This refers to the intersection of mass incarceration and environmental justice.”

    Ovienmhada’s research uses satellite remote sensing and environmental data to characterize exposures to different environmental hazards such as air pollution, extreme heat, and flooding. “This allows others to use these datasets for real-time advocacy, in addition to creating public awareness,” she says.

    Focused especially on extreme heat, Hines used satellite remote sensing to monitor the fluctuation of temperature to assess the risk being imposed on prisoners, including death, especially in states like Texas, where 75 percent of prisons either don’t have full air conditioning or have none at all.

    “Before this project I had done little to no work with geospatial data, and as a budding data scientist, getting to work with and understanding different types of data and resources is really helpful,” Hines says. “I was also funded and afforded the flexibility to take advantage of IDSS’s Data Science and Machine Learning online course. It was really great to be able to do that and learn even more.”

    Filling the gap

    Much like Hines, Harvey Mudd senior Megan Li was specifically interested in the IDSS-supported MSRP projects. She was drawn to the interdisciplinary approach, and she seeks in her own work to apply computational methods to societal issues and to make computer science more inclusive, considerate, and ethical. 

    Working with Aurora Zhang, a grad student in IDSS’s Social and Engineering Systems PhD program, Li used county-level data on income and housing prices to quantify and visualize how affordability based on income alone varies across the United States. She then expanded the analysis to include assets and debt to determine the most common barriers to home ownership.

    “I spent my day-to-day looking at census data and writing Python scripts that could work with it,” reports Li. “I also reached out to the Census Bureau directly to learn a little bit more about how they did their data collection, and discussed questions related to some of their previous studies and working papers that I had reviewed.” 

    Outside of actual day-to-day research, Li says she learned a lot in conversations with fellow researchers, particularly changing her “skeptical view” of whether or not mortgage lending algorithms would help or hurt home buyers in the approval process. “I think I have a little bit more faith now, which is a good thing.”

    “Harvey Mudd is undergraduate-only, and while professors do run labs here, my specific research areas are not well represented,” Li says. “This opportunity was enormous in that I got the experience I need to see if this research area is actually something that I want to do long term, and I got more mirrors into what I would be doing in grad school from talking to students and getting to know faculty.”

    Closing the loop

    While participating in MSRP offered crucial research experience to Hines, the ICSR projects enabled her to engage in topics she’s passionate about and work that could drive tangible societal change.

    “The experience felt much more concrete because we were working on these very sophisticated projects, in a supportive environment where people were very excited to work with us,” she says.

    A significant benefit for Li was the chance to steer her research in alignment with her own interests. “I was actually given the opportunity to propose my own research idea, versus supporting a graduate student’s work in progress,” she explains. 

    For Ovienmhada, the pairing of the two initiatives solidifies the efforts of MSRP and closes a crucial loop in diversity, equity, and inclusion advocacy. 

    “I’ve participated in a lot of different DEI-related efforts and advocacy and one thing that always comes up is the fact that it’s not just about bringing people in, it’s also about creating an environment and opportunities that align with people’s values,” Ovienmhada says. “Programs like MSRP and ICSR create opportunities for people who want to do work that’s aligned with certain values by providing the needed mentoring and financial support.” More

  • in

    Improving US air quality, equitably

    Decarbonization of national economies will be key to achieving global net-zero emissions by 2050, a major stepping stone to the Paris Agreement’s long-term goal of keeping global warming well below 2 degrees Celsius (and ideally 1.5 C), and thereby averting the worst consequences of climate change. Toward that end, the United States has pledged to reduce its greenhouse gas emissions by 50-52 percent from 2005 levels by 2030, backed by its implementation of the 2022 Inflation Reduction Act. This strategy is consistent with a 50-percent reduction in carbon dioxide (CO2) by the end of the decade.

    If U.S. federal carbon policy is successful, the nation’s overall air quality will also improve. Cutting CO2 emissions reduces atmospheric concentrations of air pollutants that lead to the formation of fine particulate matter (PM2.5), which causes more than 200,000 premature deaths in the United States each year. But an average nationwide improvement in air quality will not be felt equally; air pollution exposure disproportionately harms people of color and lower-income populations.

    How effective are current federal decarbonization policies in reducing U.S. racial and economic disparities in PM2.5 exposure, and what changes will be needed to improve their performance? To answer that question, researchers at MIT and Stanford University recently evaluated a range of policies which, like current U.S. federal carbon policies, reduce economy-wide CO2 emissions by 40-60 percent from 2005 levels by 2030. Their findings appear in an open-access article in the journal Nature Communications.

    First, they show that a carbon-pricing policy, while effective in reducing PM2.5 exposure for all racial/ethnic groups, does not significantly mitigate relative disparities in exposure. On average, the white population undergoes far less exposure than Black, Hispanic, and Asian populations. This policy does little to reduce exposure disparities because the CO2 emissions reductions that it achieves primarily occur in the coal-fired electricity sector. Other sectors, such as industry and heavy-duty diesel transportation, contribute far more PM2.5-related emissions.

    The researchers then examine thousands of different reduction options through an optimization approach to identify whether any possible combination of carbon dioxide reductions in the range of 40-60 percent can mitigate disparities. They find that that no policy scenario aligned with current U.S. carbon dioxide emissions targets is likely to significantly reduce current PM2.5 exposure disparities.

    “Policies that address only about 50 percent of CO2 emissions leave many polluting sources in place, and those that prioritize reductions for minorities tend to benefit the entire population,” says Noelle Selin, supervising author of the study and a professor at MIT’s Institute for Data, Systems and Society and Department of Earth, Atmospheric and Planetary Sciences. “This means that a large range of policies that reduce CO2 can improve air quality overall, but can’t address long-standing inequities in air pollution exposure.”

    So if climate policy alone cannot adequately achieve equitable air quality results, what viable options remain? The researchers suggest that more ambitious carbon policies could narrow racial and economic PM2.5 exposure disparities in the long term, but not within the next decade. To make a near-term difference, they recommend interventions designed to reduce PM2.5 emissions resulting from non-CO2 sources, ideally at the economic sector or community level.

    “Achieving improved PM2.5 exposure for populations that are disproportionately exposed across the United States will require thinking that goes beyond current CO2 policy strategies, most likely involving large-scale structural changes,” says Selin. “This could involve changes in local and regional transportation and housing planning, together with accelerated efforts towards decarbonization.” More

  • in

    How machine learning models can amplify inequities in medical diagnosis and treatment

    Prior to receiving a PhD in computer science from MIT in 2017, Marzyeh Ghassemi had already begun to wonder whether the use of AI techniques might enhance the biases that already existed in health care. She was one of the early researchers to take up this issue, and she’s been exploring it ever since. In a new paper, Ghassemi, now an assistant professor in MIT’s Department of Electrical Science and Engineering (EECS), and three collaborators based at the Computer Science and Artificial Intelligence Laboratory, have probed the roots of the disparities that can arise in machine learning, often causing models that perform well overall to falter when it comes to subgroups for which relatively few data have been collected and utilized in the training process. The paper — written by two MIT PhD students, Yuzhe Yang and Haoran Zhang, EECS computer scientist Dina Katabi (the Thuan and Nicole Pham Professor), and Ghassemi — was presented last month at the 40th International Conference on Machine Learning in Honolulu, Hawaii.

    In their analysis, the researchers focused on “subpopulation shifts” — differences in the way machine learning models perform for one subgroup as compared to another. “We want the models to be fair and work equally well for all groups, but instead we consistently observe the presence of shifts among different groups that can lead to inferior medical diagnosis and treatment,” says Yang, who along with Zhang are the two lead authors on the paper. The main point of their inquiry is to determine the kinds of subpopulation shifts that can occur and to uncover the mechanisms behind them so that, ultimately, more equitable models can be developed.

    The new paper “significantly advances our understanding” of the subpopulation shift phenomenon, claims Stanford University computer scientist Sanmi Koyejo. “This research contributes valuable insights for future advancements in machine learning models’ performance on underrepresented subgroups.”

    Camels and cattle

    The MIT group has identified four principal types of shifts — spurious correlations, attribute imbalance, class imbalance, and attribute generalization — which, according to Yang, “have never been put together into a coherent and unified framework. We’ve come up with a single equation that shows you where biases can come from.”

    Biases can, in fact, stem from what the researchers call the class, or from the attribute, or both. To pick a simple example, suppose the task assigned to the machine learning model is to sort images of objects — animals in this case — into two classes: cows and camels. Attributes are descriptors that don’t specifically relate to the class itself. It might turn out, for instance, that all the images used in the analysis show cows standing on grass and camels on sand — grass and sand serving as the attributes here. Given the data available to it, the machine could reach an erroneous conclusion — namely that cows can only be found on grass, not on sand, with the opposite being true for camels. Such a finding would be incorrect, however, giving rise to a spurious correlation, which, Yang explains, is a “special case” among subpopulation shifts — “one in which you have a bias in both the class and the attribute.”

    In a medical setting, one could rely on machine learning models to determine whether a person has pneumonia or not based on an examination of X-ray images. There would be two classes in this situation, one consisting of people who have the lung ailment, another for those who are infection-free. A relatively straightforward case would involve just two attributes: the people getting X-rayed are either female or male. If, in this particular dataset, there were 100 males diagnosed with pneumonia for every one female diagnosed with pneumonia, that could lead to an attribute imbalance, and the model would likely do a better job of correctly detecting pneumonia for a man than for a woman. Similarly, having 1,000 times more healthy (pneumonia-free) subjects than sick ones would lead to a class imbalance, with the model biased toward healthy cases. Attribute generalization is the last shift highlighted in the new study. If your sample contained 100 male patients with pneumonia and zero female subjects with the same illness, you still would like the model to be able to generalize and make predictions about female subjects even though there are no samples in the training data for females with pneumonia.

    The team then took 20 advanced algorithms, designed to carry out classification tasks, and tested them on a dozen datasets to see how they performed across different population groups. They reached some unexpected conclusions: By improving the “classifier,” which is the last layer of the neural network, they were able to reduce the occurrence of spurious correlations and class imbalance, but the other shifts were unaffected. Improvements to the “encoder,” one of the uppermost layers in the neural network, could reduce the problem of attribute imbalance. “However, no matter what we did to the encoder or classifier, we did not see any improvements in terms of attribute generalization,” Yang says, “and we don’t yet know how to address that.”

    Precisely accurate

    There is also the question of assessing how well your model actually works in terms of evenhandedness among different population groups. The metric normally used, called worst-group accuracy or WGA, is based on the assumption that if you can improve the accuracy — of, say, medical diagnosis — for the group that has the worst model performance, you would have improved the model as a whole. “The WGA is considered the gold standard in subpopulation evaluation,” the authors contend, but they made a surprising discovery: boosting worst-group accuracy results in a decrease in what they call “worst-case precision.” In medical decision-making of all sorts, one needs both accuracy — which speaks to the validity of the findings — and precision, which relates to the reliability of the methodology. “Precision and accuracy are both very important metrics in classification tasks, and that is especially true in medical diagnostics,” Yang explains. “You should never trade precision for accuracy. You always need to balance the two.”

    The MIT scientists are putting their theories into practice. In a study they’re conducting with a medical center, they’re looking at public datasets for tens of thousands of patients and hundreds of thousands of chest X-rays, trying to see whether it’s possible for machine learning models to work in an unbiased manner for all populations. That’s still far from the case, even though more awareness has been drawn to this problem, Yang says. “We are finding many disparities across different ages, gender, ethnicity, and intersectional groups.”

    He and his colleagues agree on the eventual goal, which is to achieve fairness in health care among all populations. But before we can reach that point, they maintain, we still need a better understanding of the sources of unfairness and how they permeate our current system. Reforming the system as a whole will not be easy, they acknowledge. In fact, the title of the paper they introduced at the Honolulu conference, “Change is Hard,” gives some indications as to the challenges that they and like-minded researchers face. More

  • in

    Understanding viral justice

    In the wake of the Covid-19 pandemic, the word “viral” has a new resonance, and it’s not necessarily positive. Ruha Benjamin, a scholar who investigates the social dimensions of science, medicine, and technology, advocates a shift in perspective. She thinks justice can also be contagious. That’s the premise of Benjamin’s award-winning book “Viral Justice: How We Grow the World We Want,” as she shared with MIT Libraries staff on a June 14 visit. 

    “If this pandemic has taught us anything, it’s that something almost undetectable can be deadly, and that we can transmit it without even knowing,” said Benjamin, professor of African American studies at Princeton University. “Doesn’t this imply that small things, seemingly minor actions, decisions, or habits, could have exponential effects in the other direction, tipping the scales towards justice?” 

    To seek a more just world, Benjamin exhorted library staff to notice the ways exclusion is built into our daily lives, showing examples of park benches with armrests at regular intervals. On the surface they appear welcoming, but they also make lying down — or sleeping — impossible. This idea is taken to the extreme with “Pay and Sit,” an art installation by Fabian Brunsing in the form of a bench that deploys sharp spikes on the seat if the user doesn’t pay a meter. It serves as a powerful metaphor for discriminatory design. 

    “Dr. Benjamin’s keynote was seriously mind-blowing,” said Cherry Ibrahim, human resources generalist in the MIT Libraries. “One part that really grabbed my attention was when she talked about benches purposely designed to prevent unhoused people from sleeping on them. There are these hidden spikes in our community that we might not even realize because they don’t directly impact us.” 

    Benjamin urged the audience to look for those “spikes,” which new technologies can make even more insidious — gender and racial bias in facial recognition, the use of racial data in software used to predict student success, algorithmic bias in health care — often in the guise of progress. She coined the term “the New Jim Code” to describe the combination of coded bias and the imagined objectivity we ascribe to technology. 

    “At the MIT Libraries, we’re deeply concerned with combating inequities through our work, whether it’s democratizing access to data or investigating ways disparate communities can participate in scholarship with minimal bias or barriers,” says Director of Libraries Chris Bourg. “It’s our mission to remove the ‘spikes’ in the systems through which we create, use, and share knowledge.”

    Calling out the harms encoded into our digital world is critical, argues Benjamin, but we must also create alternatives. This is where the collective power of individuals can be transformative. Benjamin shared examples of those who are “re-imagining the default settings of technology and society,” citing initiatives like Data for Black Lives movement and the Detroit Community Technology Project. “I’m interested in the way that everyday people are changing the digital ecosystem and demanding different kinds of rights and responsibilities and protections,” she said.

    In 2020, Benjamin founded the Ida B. Wells Just Data Lab with a goal of bringing together students, educators, activists, and artists to develop a critical and creative approach to data conception, production, and circulation. Its projects have examined different aspects of data and racial inequality: assessing the impact of Covid-19 on student learning; providing resources that confront the experience of Black mourning, grief, and mental health; or developing a playbook for Black maternal mental health. Through the lab’s student-led projects Benjamin sees the next generation re-imagining technology in ways that respond to the needs of marginalized people.

    “If inequity is woven into the very fabric of our society — we see it from policing to education to health care to work — then each twist, coil, and code is a chance for us to weave new patterns, practices, and politics,” she said. “The vastness of the problems that we’re up against will be their undoing.” More

  • in

    Using data to write songs for progress

    A three-year recipient of MIT’s Emerson Classical Vocal Scholarships, senior Ananya Gurumurthy recalls getting ready to step onto the Carnegie Hall stage to sing a Mozart opera that she once sang with the New York All-State Choir. The choir conductor reminded her to articulate her words and to engage her diaphragm.

    “If you don’t project your voice, how are people going to hear you when you perform?” Gurumurthy recalls her conductor telling her. “This is your moment, your chance to connect with such a tremendous audience.”

    Gurumurthy reflects on the universal truth of those words as she adds her musical talents to her math and computer science studies to campaign for social and economic justice.

    The daughter of immigrants

    Growing up in Edgemont, New York, she was inspired to fight on behalf of others by her South Asian immigrant parents, who came to the United States in the 1980s. Her father is a management consultant and her mother has experience as an investment banker.

    “They came barely 15 years after the passage of the 1965 Immigration and Nationality Act, which removed national origin quotas from the American immigration system,” she says. “I would not be here if it had not been for the Civil Rights Movement, which preceded both me and my parents.”

    Her parents told her about their new home’s anti-immigrant sentiments; for example, her father was a graduate student in Dallas exiting a store when he was pelted with glass bottles and racial slurs.

    “I often consider the amount of bravery that it must have taken them to abandon everything they knew to immigrate to a new, but still imperfect, country in search of something better,” she says. “As a result, I have always felt so grounded in my identity both as a South Asian American and a woman of color. These identities have allowed me to think critically about how I can most effectively reform the institutions surrounding me.”

    Gurumurthy has been singing since she was 11, but in high school, she decided to also build her political voice by working for New York Senator Andrea Stewart-Cousins. At one point, Gurumurthy noted a log was kept for the subjects of constituent calls, such as “affordable housing” and  “infrastructure,” and it was then that she became aware that Stewart-Cousins would address the most pressing of these callers’ issues before the Senate.

    “This experience was my first time witnessing how powerful the mobilization of constituents in vast numbers was for influencing meaningful legislative change,” says Gurumurthy.

    After she began applying her math skills to political campaigns, Gurumurthy was soon tapped to run analytics for the Democratic National Committee’s (DNC) midterm election initiative. As a lead analyst for the New York DNC, she adapted an interactive activation-competition (IAC) model to understand voting patterns in the 2018 and 2020 elections. She collected data from public voting records to predict how constituents would cast their ballots and used an IAC algorithm to strategize alongside grassroots organizations and allocate resources to empower historically disenfranchised groups in municipal, state, and federal elections to encourage them to vote.

    Research and student organizing at MIT

    When she arrived at MIT in 2019 to study mathematics with computer science, along with minors in music and economics, she admits she was saddled with the naïve notion that she would “build digital tools that could single-handedly alleviate all of the collective pressures of systemic injustice in this country.” 

    Since then, she has learned to create what she calls “a more nuanced view.” She picked up data analytics skills to build mobilization platforms for organizations that pursued social and economic justice, including working in Fulton County, Georgia, with Fair Fight Action (through the Kelly-Douglas Fund Scholarship) to analyze patterns of voter suppression, and MIT’s ethics laboratories in the Computer Science and Artificial Intelligence Laboratory to build symbolic artificial intelligence protocols to better understand bias in artificial intelligence algorithms. For her work on the International Monetary Fund (through the MIT Washington Summer Internship Program), Gurumurthy was awarded second place for the 2022 S. Klein Prize in Technical Writing for her paper “The Rapid Rise of Cryptocurrency.”

    “The outcomes of each project gave me more hope to begin the next because I could see the impact of these digital tools,” she says. “I saw people feel empowered to use their voices whether it was voting for the first time, protesting exploitative global monetary policy, or fighting gender discrimination. I’ve been really fortunate to see the power of mathematical analysis firsthand.”

    “I have come to realize that the constructive use of technology could be a powerful voice of resistance against injustice,” she says. “Because numbers matter, and when people bear witness to them, they are pushed to take action in meaningful ways.”

    Hoping to make a difference in her own community, she joined several Institute committees. As co-chair of the Undergraduate Association’s education committee, she propelled MIT’s first-ever digital petition for grade transparency and worked with faculty members on Institute committees to ensure that all students were being provided adequate resources to participate in online education in the wake of the Covid-19 pandemic. The digital petition inspired her to begin a project, called Insite, to develop a more centralized digital means of data collection on student life at MIT to better inform policies made by its governing bodies. As Ring Committee chair, she ensured that the special traditions of the “Brass Rat” were made economically accessible to all class members by helping the committee nearly triple its financial aid budget. For her efforts at MIT, last May she received the William L. Stewart, Jr. Award for “[her] contributions [as] an individual student at MIT to extracurricular activities and student life.”

    Ananya plans on going to law school after graduation, to study constitutional law so that she can use her technical background to build quantitative evidence in cases pertaining to voting rights, social welfare, and ethical technology, and set legal standards ”for the humane use of data,” she says.

    “In building digital tools for a variety of social and economic justice organizations, I hope that we can challenge our existing systems of power and realize the progress we so dearly need to witness. There is strength in numbers, both algorithmically and organizationally. I believe it is our responsibility to simultaneously use these strengths to change the world.”

    Her ambitions, however, began when she began singing lessons when she was 11; without her background as a vocalist, she says she would be voiceless.

    “Operatic performance has given me the ability to truly step into my character and convey powerful emotions in my performance. In the process, I have realized that my voice is most powerful when it reflects my true convictions, whether I am performing or publicly speaking. I truly believe that this honesty has allowed me to become an effective community organizer. I’d like to believe that this voice is what compels those around me to act.”

    Private musical study is available for students through the Emerson/Harris Program, which offers merit-based financial awards to students of outstanding achievement on their instruments or voice in classical, jazz, or world music. The Emerson/Harris Program is funded by the late Cherry L. Emerson Jr. SM ’41, in response to an appeal from Associate Provost Ellen T. Harris (Class of 1949 professor emeritus of music). More

  • in

    Driving toward data justice

    As a person with a mixed-race background who has lived in four different cities, Amelia Dogan describes her early life as “growing up in a lot of in-betweens.” Now an MIT senior, she continues to link different perspectives together, working at the intersection of urban planning, computer science, and social justice.

    Dogan was born in Canada but spent her high school years in Philadelphia, where she developed a strong affinity for the city.  

    “I love Philadelphia to death,” says Dogan. “It’s my favorite place in the world. The energy in the city is amazing — I’m so sad I wasn’t there for the Super Bowl this year — but it is a city with really big disparities. That drives me to do the research that I do and shapes the things that I care about.”

    Dogan is double-majoring in urban science and planning with computer science and in American studies. She decided on the former after participating in the pre-orientation program offered by the Department of Urban Studies and Planning, which provides an introduction to both the department and the city of Boston. She followed that up with a UROP research project with the West Philadelphia Landscape Project, putting together historical census data on housing and race to find patterns for use in community advocacy.

    After taking WGS.231 (Writing About Race), a course offered by the Program in Women’s and Gender Studies, her first year at MIT, Dogan realized there was a lot of crosstalk between urban planning, computer science, and the social sciences.

    “There’s a lot of critical social theory that I want to have background in to make me a better planner or a better computer scientist,” says Dogan. “There’s also a lot of issues around fairness and participation in computer science, and a lot of computer scientists are trying to reinvent the wheel when there’s already really good, critical social science research and theory behind this.”

    Data science and feminism

    Dogan’s first year at MIT was interrupted by the onset of the Covid-19 pandemic, but there was a silver lining. An influx of funding to keep students engaged while attending school virtually enabled her to join the Data + Feminism Lab to work on a case study examining three places in Philadelphia with historical names that were renamed after activist efforts.

    In her first year at MIT, Dogan worked several UROPs to hone her own skills and find the best research fit. Besides the West Philadelphia Land Project, she worked on two projects within the MIT Sloan School of Management. The first involved searching for connections between entrepreneurship and immigration among Fortune 500 founders. The second involved interviewing warehouse workers and writing a report on their quality of life.

    Dogan has now spent three years in the Data + Feminism Lab under Associate Professor Catherine D’Ignazio, where she is particularly interested in how technology can be used by marginalized communities to invert historical power imbalances. A key concept in the lab’s work is that of counterdata, which are produced by civil society groups or individuals in order to counter missing data or to challenge existing official data.

    Most recently, she completed a SuperUROP project investigating how femicide data activist organizations use social media. She analyzed 600 social media posts by organizations across the U.S. and Canada. The work built off the lab’s greater body of work with these groups, which Dogan has contributed to by annotating news articles for machine-learning models.

    “Catherine works a lot at the intersection of data issues and feminism. It just seemed like the right fit for me,” says Dogan. “She’s my academic advisor, she’s my research advisor, and is also a really good mentor.”

    Advocating for the student experience

    Outside of the classroom, Dogan is a strong advocate for improving the student experience, particularly when it intersects with identity. An executive board member of the Asian American Initiative (AAI), she also sits on the student advisory council for the Office of Minority Education.

    “Doing that institutional advocacy has been important to me, because it’s for things that I expected coming into college and had not come in prepared to fight for,” says Dogan. As a high schooler, she participated in programs run by the University of Pennsylvania’s Pan-Asian American Community House and was surprised to find that MIT did not have an equivalent organization.

    “Building community based upon identity is something that I’ve been really passionate about,” says Dogan. “For the past two years, I’ve been working with AAI on a list of recommendations for MIT. I’ve talked to alums from the ’90s who were a part of an Asian American caucus who were asking for the same things.”

    She also holds a leadership role with MIXED @ MIT, a student group focused on creating space for mixed-heritage students to explore and discuss their identities.

    Following graduation, Dogan plans to pursue a PhD in information science at the University of Washington. Her breadth of skills has given her a range of programs to choose from. No matter where she goes next, Dogan wants to pursue a career where she can continue to make a tangible impact.

    “I would love to be doing community-engaged research around data justice, using citizen science and counterdata for policy and social change,” she says. More

  • in

    Subtle biases in AI can influence emergency decisions

    It’s no secret that people harbor biases — some unconscious, perhaps, and others painfully overt. The average person might suppose that computers — machines typically made of plastic, steel, glass, silicon, and various metals — are free of prejudice. While that assumption may hold for computer hardware, the same is not always true for computer software, which is programmed by fallible humans and can be fed data that is, itself, compromised in certain respects.

    Artificial intelligence (AI) systems — those based on machine learning, in particular — are seeing increased use in medicine for diagnosing specific diseases, for example, or evaluating X-rays. These systems are also being relied on to support decision-making in other areas of health care. Recent research has shown, however, that machine learning models can encode biases against minority subgroups, and the recommendations they make may consequently reflect those same biases.

    A new study by researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and the MIT Jameel Clinic, which was published last month in Communications Medicine, assesses the impact that discriminatory AI models can have, especially for systems that are intended to provide advice in urgent situations. “We found that the manner in which the advice is framed can have significant repercussions,” explains the paper’s lead author, Hammaad Adam, a PhD student at MIT’s Institute for Data Systems and Society. “Fortunately, the harm caused by biased models can be limited (though not necessarily eliminated) when the advice is presented in a different way.” The other co-authors of the paper are Aparna Balagopalan and Emily Alsentzer, both PhD students, and the professors Fotini Christia and Marzyeh Ghassemi.

    AI models used in medicine can suffer from inaccuracies and inconsistencies, in part because the data used to train the models are often not representative of real-world settings. Different kinds of X-ray machines, for instance, can record things differently and hence yield different results. Models trained predominately on white people, moreover, may not be as accurate when applied to other groups. The Communications Medicine paper is not focused on issues of that sort but instead addresses problems that stem from biases and on ways to mitigate the adverse consequences.

    A group of 954 people (438 clinicians and 516 nonexperts) took part in an experiment to see how AI biases can affect decision-making. The participants were presented with call summaries from a fictitious crisis hotline, each involving a male individual undergoing a mental health emergency. The summaries contained information as to whether the individual was Caucasian or African American and would also mention his religion if he happened to be Muslim. A typical call summary might describe a circumstance in which an African American man was found at home in a delirious state, indicating that “he has not consumed any drugs or alcohol, as he is a practicing Muslim.” Study participants were instructed to call the police if they thought the patient was likely to turn violent; otherwise, they were encouraged to seek medical help.

    The participants were randomly divided into a control or “baseline” group plus four other groups designed to test responses under slightly different conditions. “We want to understand how biased models can influence decisions, but we first need to understand how human biases can affect the decision-making process,” Adam notes. What they found in their analysis of the baseline group was rather surprising: “In the setting we considered, human participants did not exhibit any biases. That doesn’t mean that humans are not biased, but the way we conveyed information about a person’s race and religion, evidently, was not strong enough to elicit their biases.”

    The other four groups in the experiment were given advice that either came from a biased or unbiased model, and that advice was presented in either a “prescriptive” or a “descriptive” form. A biased model would be more likely to recommend police help in a situation involving an African American or Muslim person than would an unbiased model. Participants in the study, however, did not know which kind of model their advice came from, or even that models delivering the advice could be biased at all. Prescriptive advice spells out what a participant should do in unambiguous terms, telling them they should call the police in one instance or seek medical help in another. Descriptive advice is less direct: A flag is displayed to show that the AI system perceives a risk of violence associated with a particular call; no flag is shown if the threat of violence is deemed small.  

    A key takeaway of the experiment is that participants “were highly influenced by prescriptive recommendations from a biased AI system,” the authors wrote. But they also found that “using descriptive rather than prescriptive recommendations allowed participants to retain their original, unbiased decision-making.” In other words, the bias incorporated within an AI model can be diminished by appropriately framing the advice that’s rendered. Why the different outcomes, depending on how advice is posed? When someone is told to do something, like call the police, that leaves little room for doubt, Adam explains. However, when the situation is merely described — classified with or without the presence of a flag — “that leaves room for a participant’s own interpretation; it allows them to be more flexible and consider the situation for themselves.”

    Second, the researchers found that the language models that are typically used to offer advice are easy to bias. Language models represent a class of machine learning systems that are trained on text, such as the entire contents of Wikipedia and other web material. When these models are “fine-tuned” by relying on a much smaller subset of data for training purposes — just 2,000 sentences, as opposed to 8 million web pages — the resultant models can be readily biased.  

    Third, the MIT team discovered that decision-makers who are themselves unbiased can still be misled by the recommendations provided by biased models. Medical training (or the lack thereof) did not change responses in a discernible way. “Clinicians were influenced by biased models as much as non-experts were,” the authors stated.

    “These findings could be applicable to other settings,” Adam says, and are not necessarily restricted to health care situations. When it comes to deciding which people should receive a job interview, a biased model could be more likely to turn down Black applicants. The results could be different, however, if instead of explicitly (and prescriptively) telling an employer to “reject this applicant,” a descriptive flag is attached to the file to indicate the applicant’s “possible lack of experience.”

    The implications of this work are broader than just figuring out how to deal with individuals in the midst of mental health crises, Adam maintains.  “Our ultimate goal is to make sure that machine learning models are used in a fair, safe, and robust way.” More