More stories

  • in

    Turning up the heat on next-generation semiconductors

    The scorching surface of Venus, where temperatures can climb to 480 degrees Celsius (hot enough to melt lead), is an inhospitable place for humans and machines alike. One reason scientists have not yet been able to send a rover to the planet’s surface is because silicon-based electronics can’t operate in such extreme temperatures for an extended period of time.For high-temperature applications like Venus exploration, researchers have recently turned to gallium nitride, a unique material that can withstand temperatures of 500 degrees or more.The material is already used in some terrestrial electronics, like phone chargers and cell phone towers, but scientists don’t have a good grasp of how gallium nitride devices would behave at temperatures beyond 300 degrees, which is the operational limit of conventional silicon electronics.In a new paper published in Applied Physics Letters, which is part of a multiyear research effort, a team of scientists from MIT and elsewhere sought to answer key questions about the material’s properties and performance at extremely high temperatures.  They studied the impact of temperature on the ohmic contacts in a gallium nitride device. Ohmic contacts are key components that connect a semiconductor device with the outside world.The researchers found that extreme temperatures didn’t cause significant degradation to the gallium nitride material or contacts. They were surprised to see that the contacts remained structurally intact even when held at 500 degrees Celsius for 48 hours.Understanding how contacts perform at extreme temperatures is an important step toward the group’s next goal of developing high-performance transistors that could operate on the surface of Venus. Such transistors could also be used on Earth in electronics for applications like extracting geothermal energy or monitoring the inside of jet engines.“Transistors are the heart of most modern electronics, but we didn’t want to jump straight to making a gallium nitride transistor because so much could go wrong. We first wanted to make sure the material and contacts could survive, and figure out how much they change as you increase the temperature. We’ll design our transistor from these basic material building blocks,” says John Niroula, an electrical engineering and computer science (EECS) graduate student and lead author of the paper.His co-authors include Qingyun Xie PhD ’24; Mengyang Yuan PhD ’22; EECS graduate students Patrick K. Darmawi-Iskandar and Pradyot Yadav; Gillian K. Micale, a graduate student in the Department of Materials Science and Engineering; senior author Tomás Palacios, the Clarence J. LeBel Professor of EECS, director of the Microsystems Technology Laboratories, and a member of the Research Laboratory of Electronics; as well as collaborators Nitul S. Rajput of the Technology Innovation Institute of the United Arab Emirates; Siddharth Rajan of Ohio State University; Yuji Zhao of Rice University; and Nadim Chowdhury of Bangladesh University of Engineering and Technology.Turning up the heatWhile gallium nitride has recently attracted much attention, the material is still decades behind silicon when it comes to scientists’ understanding of how its properties change under different conditions. One such property is resistance, the flow of electrical current through a material.A device’s overall resistance is inversely proportional to its size. But devices like semiconductors have contacts that connect them to other electronics. Contact resistance, which is caused by these electrical connections, remains fixed no matter the size of the device. Too much contact resistance can lead to higher power dissipation and slower operating frequencies for electronic circuits.“Especially when you go to smaller dimensions, a device’s performance often ends up being limited by contact resistance. People have a relatively good understanding of contact resistance at room temperature, but no one has really studied what happens when you go all the way up to 500 degrees,” Niroula says.For their study, the researchers used facilities at MIT.nano to build gallium nitride devices known as transfer length method structures, which are composed of a series of resistors. These devices enable them to measure the resistance of both the material and the contacts.They added ohmic contacts to these devices using the two most common methods. The first involves depositing metal onto gallium nitride and heating it to 825 degrees Celsius for about 30 seconds, a process called annealing.The second method involves removing chunks of gallium nitride and using a high-temperature technology to regrow highly doped gallium nitride in its place, a process led by Rajan and his team at Ohio State. The highly doped material contains extra electrons that can contribute to current conduction.“The regrowth method typically leads to lower contact resistance at room temperature, but we wanted to see if these methods still work well at high temperatures,” Niroula says.A comprehensive approachThey tested devices in two ways. Their collaborators at Rice University, led by Zhao, conducted short-term tests by placing devices on a hot chuck that reached 500 degrees Celsius and taking immediate resistance measurements.At MIT, they conducted longer-term experiments by placing devices into a specialized furnace the group previously developed. They left devices inside for up to 72 hours to measure how resistance changes as a function of temperature and time.Microscopy experts at MIT.nano (Aubrey N. Penn) and the Technology Innovation Institute (Nitul S. Rajput) used state-of-the-art transmission electron microscopes to see how such high temperatures affect gallium nitride and the ohmic contacts at the atomic level.“We went in thinking the contacts or the gallium nitride material itself would degrade significantly, but we found the opposite. Contacts made with both methods seemed to be remarkably stable,” says Niroula.While it is difficult to measure resistance at such high temperatures, their results indicate that contact resistance seems to remain constant even at temperatures of 500 degrees, for around 48 hours. And just like at room temperature, the regrowth process led to better performance.The material did start to degrade after being in the furnace for 48 hours, but the researchers are already working to boost long-term performance. One strategy involves adding protective insulators to keep the material from being directly exposed to the high-temperature environment.Moving forward, the researchers plan to use what they learned in these experiments to develop high-temperature gallium nitride transistors.“In our group, we focus on innovative, device-level research to advance the frontiers of microelectronics, while adopting a systematic approach across the hierarchy, from the material level to the circuit level. Here, we have gone all the way down to the material level to understand things in depth. In other words, we have translated device-level advancements to circuit-level impact for high-temperature electronics, through design, modeling and complex fabrication. We are also immensely fortunate to have forged close partnerships with our longtime collaborators in this journey,” Xie says.This work was funded, in part, by the U.S. Air Force Office of Scientific Research, Lockheed Martin Corporation, the Semiconductor Research Corporation through the U.S. Defense Advanced Research Projects Agency, the U.S. Department of Energy, Intel Corporation, and the Bangladesh University of Engineering and Technology.Fabrication and microscopy were conducted at MIT.nano, the Semiconductor Epitaxy and Analysis Laboratory at Ohio State University, the Center for Advanced Materials Characterization at the University of Oregon, and the Technology Innovation Institute of the United Arab Emirates. More

  • in

    Janabel Xia: Algorithms, dance rhythms, and the drive to succeed

    Senior math major Janabel Xia is a study of a person in constant motion.When she isn’t sorting algorithms and improving traffic control systems for driverless vehicles, she’s dancing as a member of at least four dance clubs. She’s joined several social justice organizations, worked on cryptography and web authentication technology, and created a polling app that allows users to vote anonymously.In her final semester, she’s putting the pedal to the metal, with a green light to lessen the carbon footprint of urban transportation by using sensors at traffic light intersections.First stepsGrowing up in Lexington, Massachusetts, Janabel has been competing on math teams since elementary school. On her math team, which met early mornings before the start of school, she discovered a love of problem-solving that challenged her more than her classroom “plug-and-chug exercises.”At Lexington High School, she was math team captain, a two-time Math Olympiad attendee, and a silver medalist for Team USA at the European Girls’ Mathematical Olympiad.As a math major, she studies combinatorics and theoretical computer science, including theoretical and applied cryptography. In her sophomore year, she was a researcher in the Cryptography and Information Security Group at the MIT Computer Science and Artificial Intelligence Laboratory, where she conducted cryptanalysis research under Professor Vinod Vaikuntanathan.Part of her interests in cryptography stem from the beauty of the underlying mathematics itself — the field feels like clever engineering with mathematical tools. But another part of her interest in cryptography stems from its political dimensions, including its potential to fundamentally change existing power structures and governance. Xia and students at the University of California at Berkeley and Stanford University created zkPoll, a private polling app written with the Circom programming language, that allows users to create polls for specific sets of people, while generating a zero-knowledge proof that keeps personal information hidden to decrease negative voting influences from public perception.Her participation in the PKG Center’s Active Community Engagement Freshman Pre-Orientation Program introduced her to local community organizations focusing on food security, housing for formerly incarcerated individuals, and access to health care. She is also part of Reading for Revolution, a student book club that discusses race, class, and working-class movements within MIT and the Greater Boston area.Xia’s educational journey led to her ongoing pursuit of combining mathematical and computational methods in areas adjacent to urban planning.  “When I realized how much planning was concerned with social justice as it was concerned with design, I became more attracted to the field.”Going on autopilotShe took classes with the Department of Urban Studies and Planning and is currently working on an Undergraduate Research Opportunities Program (UROP) project with Professor Cathy Wu in the Institute for Data, Systems, and Society.Recent work on eco-driving by Wu and doctoral student Vindula Jayawardana investigated semi-autonomous vehicles that communicate with sensors localized at traffic intersections, which in theory could reduce carbon emissions by up to 21 percent.Xia aims to optimize the implementation scheme for these sensors at traffic intersections, considering a graded scheme where perhaps only 20 percent of all sensors are initially installed, and more sensors get added in waves. She wants to maximize the emission reduction rates at each step of the process, as well as ensure there is no unnecessary installation and de-installation of such sensors.  Dance numbersMeanwhile, Xia has been a member of MIT’s Fixation, Ridonkulous, and MissBehavior groups, and as a traditional Chinese dance choreographer for the MIT Asian Dance Team. A dancer since she was 3, Xia started with Chinese traditional dance, and later added ballet and jazz. Because she is as much of a dancer as a researcher, she has figured out how to make her schedule work.“Production weeks are always madness, with dancers running straight from class to dress rehearsals and shows all evening and coming back early next morning to take down lights and roll up marley [material that covers the stage floor],” she says. “As busy as it keeps me, I couldn’t have survived MIT without dance. I love the discipline, creativity, and most importantly the teamwork that dance demands of us. I really love the dance community here with my whole heart. These friends have inspired me and given me the love to power me through MIT.”Xia lives with her fellow Dance Team members at the off-campus Women’s Independent Living Group (WILG).  “I really value WILG’s culture of independence, both in lifestyle — cooking, cleaning up after yourself, managing house facilities, etc. — and thought — questioning norms, staying away from status games, finding new passions.”In addition to her UROP, she’s wrapping up some graduation requirements, finishing up a research paper on sorting algorithms from her summer at the University of Minnesota Duluth Research Experience for Undergraduates in combinatorics, and deciding between PhD programs in math and computer science.  “My biggest goal right now is to figure out how to combine my interests in mathematics and urban studies, and more broadly connect technical perspectives with human-centered work in a way that feels right to me,” she says.“Overall, MIT has given me so many avenues to explore that I would have never thought about before coming here, for which I’m infinitely grateful. Every time I find something new, it’s hard for me not to find it cool. There’s just so much out there to learn about. While it can feel overwhelming at times, I hope to continue that learning and exploration for the rest of my life.” More

  • in

    From steel engineering to ovarian tumor research

    Ashutosh Kumar is a classically trained materials engineer. Having grown up with a passion for making things, he has explored steel design and studied stress fractures in alloys.Throughout Kumar’s education, however, he was also drawn to biology and medicine. When he was accepted into an undergraduate metallurgical engineering and materials science program at Indian Institute of Technology (IIT) Bombay, the native of Jamshedpur was very excited — and “a little dissatisfied, since I couldn’t do biology anymore.”Now a PhD candidate and a MathWorks Fellow in MIT’s Department of Materials Science and Engineering, Kumar can merge his wide-ranging interests. He studies the effect of certain bacteria that have been observed encouraging the spread of ovarian cancer and possibly reducing the effectiveness of chemotherapy and immunotherapy.“Some microbes have an affinity toward infecting ovarian cancer cells, which can lead to changes in the cellular structure and reprogramming cells to survive in stressful conditions,” Kumar says. “This means that cells can migrate to different sites and may have a mechanism to develop chemoresistance. This opens an avenue to develop therapies to see if we can start to undo some of these changes.”Kumar’s research combines microbiology, bioengineering, artificial intelligence, big data, and materials science. Using microbiome sequencing and AI, he aims to define microbiome changes that may correlate with poor patient outcomes. Ultimately, his goal is to engineer bacteriophage viruses to reprogram bacteria to work therapeutically.Kumar started inching toward work in the health sciences just months into earning his bachelor’s degree at IIT Bombay.“I realized engineering is so flexible that its applications extend to any field,” he says, adding that he started working with biomaterials “to respect both my degree program and my interests.”“I loved it so much that I decided to go to graduate school,” he adds.Starting his PhD program at MIT, he says, “was a fantastic opportunity to switch gears and work on more interdisciplinary or ‘MIT-type’ work.”Kumar says he and Angela Belcher, the James Mason Crafts Professor of biological engineering and materials science, began discussing the impact of the microbiome on ovarian cancer when he first arrived at MIT.“I shared my enthusiasm about human health and biology, and we started brainstorming,” he says. “We realized that there’s an unmet need to understand a lot of gynecological cancers. Ovarian cancer is an aggressive cancer, which is usually diagnosed when it’s too late and has already spread.”In 2022, Kumar was awarded a MathWorks Fellowship. The fellowships are awarded to School of Engineering graduate students, preferably those who use MATLAB or Simulink — which were developed by the mathematical computer software company MathWorks — in their research. The philanthropic support fueled Kumar’s full transition into health science research.“The work we are doing now was initially not funded by traditional sources, and the MathWorks Fellowship gave us the flexibility to pursue this field,” Kumar says. “It provided me with opportunities to learn new skills and ask questions about this topic. MathWorks gave me a chance to explore my interests and helped me navigate from being a steel engineer to a cancer scientist.”Kumar’s work on the relationship between bacteria and ovarian cancer started with studying which bacteria are incorporated into tumors in mouse models.“We started looking closely at changes in cell structure and how those changes impact cancer progression,” he says, adding that MATLAB image processing helps him and his collaborators track tumor metastasis.The research team also uses RNA sequencing and MATLAB algorithms to construct a taxonomy of the bacteria.“Once we have identified the microbiome composition,” Kumar says, “we want to see how the microbiome changes as cancer progresses and identify changes in, let’s say, patients who develop chemoresistance.”He says recent findings that ovarian cancer may originate in the fallopian tubes are promising because detecting cancer-related biomarkers or lesions before cancer spreads to the ovaries could lead to better prognoses.As he pursues his research, Kumar says he is extremely thankful to Belcher “for believing in me to work on this project.“She trusted me and my passion for making an impact on human health — even though I come from a materials engineering background — and supported me throughout. It was her passion to take on new challenges that made it possible for me to work on this idea. She has been an amazing mentor and motivated me to continue moving forward.”For her part, Belcher is equally enthralled.“It has been amazing to work with Ashutosh on this ovarian cancer microbiome project,” she says. “He has been so passionate and dedicated to looking for less-conventional approaches to solve this debilitating disease. His innovations around looking for very early changes in the microenvironment of this disease could be critical in interception and prevention of ovarian cancer. We started this project with very little preliminary data, so his MathWorks fellowship was critical in the initiation of the project.”Kumar, who has been very active in student government and community-building activities, believes it is very important for students to feel included and at home at their institutions so they can develop in ways outside of academics. He says that his own involvement helps him take time off from work.“Science can never stop, and there will always be something to do,” he says, explaining that he deliberately schedules time off and that social engagement helps him to experience downtime. “Engaging with community members through events on campus or at the dorm helps set a mental boundary with work.”Regarding his unusual route through materials science to cancer research, Kumar regards it as something that occurred organically.“I have observed that life is very dynamic,” he says. “What we think we might do versus what we end up doing is never consistent. Five years back, I had no idea I would be at MIT working with such excellent scientific mentors around me.” More

  • in

    Exploring the mysterious alphabet of sperm whales

    The allure of whales has stoked human consciousness for millennia, casting these ocean giants as enigmatic residents of the deep seas. From the biblical Leviathan to Herman Melville’s formidable Moby Dick, whales have been central to mythologies and folklore. And while cetology, or whale science, has improved our knowledge of these marine mammals in the past century in particular, studying whales has remained a formidable a challenge.Now, thanks to machine learning, we’re a little closer to understanding these gentle giants. Researchers from the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) and Project CETI (Cetacean Translation Initiative) recently used algorithms to decode the “sperm whale phonetic alphabet,” revealing sophisticated structures in sperm whale communication akin to human phonetics and communication systems in other animal species. In a new open-access study published in Nature Communications, the research shows that sperm whales codas, or short bursts of clicks that they use to communicate, vary significantly in structure depending on the conversational context, revealing a communication system far more intricate than previously understood. 

    Play video

    The Secret Language of Sperm Whales, DecodedVideo: MIT CSAIL

    Nine thousand codas, collected from Eastern Caribbean sperm whale families observed by the Dominica Sperm Whale Project, proved an instrumental starting point in uncovering the creatures’ complex communication system. Alongside the data gold mine, the team used a mix of algorithms for pattern recognition and classification, as well as on-body recording equipment. It turned out that sperm whale communications were indeed not random or simplistic, but rather structured in a complex, combinatorial manner. The researchers identified something of a “sperm whale phonetic alphabet,” where various elements that researchers call  “rhythm,” “tempo,” “rubato,” and “ornamentation” interplay to form a vast array of distinguishable codas. For example, the whales would systematically modulate certain aspects of their codas based on the conversational context, such as smoothly varying the duration of the calls — rubato — or adding extra ornamental clicks. But even more remarkably, they found that the basic building blocks of these codas could be combined in a combinatorial fashion, allowing the whales to construct a vast repertoire of distinct vocalizations.The experiments were conducted using acoustic bio-logging tags (specifically something called “D-tags”) deployed on whales from the Eastern Caribbean clan. These tags captured the intricate details of the whales’ vocal patterns. By developing new visualization and data analysis techniques, the CSAIL researchers found that individual sperm whales could emit various coda patterns in long exchanges, not just repeats of the same coda. These patterns, they say, are nuanced, and include fine-grained variations that other whales also produce and recognize.“We are venturing into the unknown, to decipher the mysteries of sperm whale communication without any pre-existing ground truth data,” says Daniela Rus, CSAIL director and professor of electrical engineering and computer science (EECS) at MIT. “Using machine learning is important for identifying the features of their communications and predicting what they say next. Our findings indicate the presence of structured information content and also challenges the prevailing belief among many linguists that complex communication is unique to humans. This is a step toward showing that other species have levels of communication complexity that have not been identified so far, deeply connected to behavior. Our next steps aim to decipher the meaning behind these communications and explore the societal-level correlations between what is being said and group actions.”Whaling aroundSperm whales have the largest brains among all known animals. This is accompanied by very complex social behaviors between families and cultural groups, necessitating strong communication for coordination, especially in pressurized environments like deep sea hunting.Whales owe much to Roger Payne, former Project CETI advisor, whale biologist, conservationist, and MacArthur Fellow who was a major figure in elucidating their musical careers. In the noted 1971 Science article “Songs of Humpback Whales,” Payne documented how whales can sing. His work later catalyzed the “Save the Whales” movement, a successful and timely conservation initiative.“Roger’s research highlights the impact science can have on society. His finding that whales sing led to the marine mammal protection act and helped save several whale species from extinction. This interdisciplinary research now brings us one step closer to knowing what sperm whales are saying,” says David Gruber, lead and founder of Project CETI and distinguished professor of biology at the City University of New York.Today, CETI’s upcoming research aims to discern whether elements like rhythm, tempo, ornamentation, and rubato carry specific communicative intents, potentially providing insights into the “duality of patterning” — a linguistic phenomenon where simple elements combine to convey complex meanings previously thought unique to human language.Aliens among us“One of the intriguing aspects of our research is that it parallels the hypothetical scenario of contacting alien species. It’s about understanding a species with a completely different environment and communication protocols, where their interactions are distinctly different from human norms,” says Pratyusha Sharma, an MIT PhD student in EECS, CSAIL affiliate, and the study’s lead author. “We’re exploring how to interpret the basic units of meaning in their communication. This isn’t just about teaching animals a subset of human language, but decoding a naturally evolved communication system within their unique biological and environmental constraints. Essentially, our work could lay the groundwork for deciphering how an ‘alien civilization’ might communicate, providing insights into creating algorithms or systems to understand entirely unfamiliar forms of communication.”“Many animal species have repertoires of several distinct signals, but we are only beginning to uncover the extent to which they combine these signals to create new messages,” says Robert Seyfarth, a University of Pennsylvania professor emeritus of psychology who was not involved in the research. “Scientists are particularly interested in whether signal combinations vary according to the social or ecological context in which they are given, and the extent to which signal combinations follow discernible ‘rules’ that are recognized by listeners. The problem is particularly challenging in the case of marine mammals, because scientists usually cannot see their subjects or identify in complete detail the context of communication. Nonetheless, this paper offers new, tantalizing details of call combinations and the rules that underlie them in sperm whales.”Joining Sharma, Rus, and Gruber are two others from MIT, both CSAIL principal investigators and professors in EECS: Jacob Andreas and Antonio Torralba. They join Shane Gero, biology lead at CETI, founder of the Dominica Sperm Whale Project, and scientist-in residence at Carleton University. The paper was funded by Project CETI via Dalio Philanthropies and Ocean X, Sea Grape Foundation, Rosamund Zander/Hansjorg Wyss, and Chris Anderson/Jacqueline Novogratz through The Audacious Project: a collaborative funding initiative housed at TED, with further support from the J.H. and E.V. Wade Fund at MIT. More

  • in

    Fostering research, careers, and community in materials science

    Gabrielle Wood, a junior at Howard University majoring in chemical engineering, is on a mission to improve the sustainability and life cycles of natural resources and materials. Her work in the Materials Initiative for Comprehensive Research Opportunity (MICRO) program has given her hands-on experience with many different aspects of research, including MATLAB programming, experimental design, data analysis, figure-making, and scientific writing.Wood is also one of 10 undergraduates from 10 universities around the United States to participate in the first MICRO Summit earlier this year. The internship program, developed by the MIT Department of Materials Science and Engineering (DMSE), first launched in fall 2021. Now in its third year, the program continues to grow, providing even more opportunities for non-MIT undergraduate students — including the MICRO Summit and the program’s expansion to include Northwestern University.“I think one of the most valuable aspects of the MICRO program is the ability to do research long term with an experienced professor in materials science and engineering,” says Wood. “My school has limited opportunities for undergraduate research in sustainable polymers, so the MICRO program allowed me to gain valuable experience in this field, which I would not otherwise have.”Like Wood, Griheydi Garcia, a senior chemistry major at Manhattan College, values the exposure to materials science, especially since she is not able to learn as much about it at her home institution.“I learned a lot about crystallography and defects in materials through the MICRO curriculum, especially through videos,” says Garcia. “The research itself is very valuable, as well, because we get to apply what we’ve learned through the videos in the research we do remotely.”Expanding research opportunitiesFrom the beginning, the MICRO program was designed as a fully remote, rigorous education and mentoring program targeted toward students from underserved backgrounds interested in pursuing graduate school in materials science or related fields. Interns are matched with faculty to work on their specific research interests.Jessica Sandland ’99, PhD ’05, principal lecturer in DMSE and co-founder of MICRO, says that research projects for the interns are designed to be work that they can do remotely, such as developing a machine-learning algorithm or a data analysis approach.“It’s important to note that it’s not just about what the program and faculty are bringing to the student interns,” says Sandland, a member of the MIT Digital Learning Lab, a joint program between MIT Open Learning and the Institute’s academic departments. “The students are doing real research and work, and creating things of real value. It’s very much an exchange.”Cécile Chazot PhD ’22, now an assistant professor of materials science and engineering at Northwestern University, had helped to establish MICRO at MIT from the very beginning. Once at Northwestern, she quickly realized that expanding MICRO to Northwestern would offer even more research opportunities to interns than by relying on MIT alone — leveraging the university’s strong materials science and engineering department, as well as offering resources for biomaterials research through Northwestern’s medical school. The program received funding from 3M and officially launched at Northwestern in fall 2023. Approximately half of the MICRO interns are now in the program with MIT and half are with Northwestern. Wood and Garcia both participate in the program via Northwestern.“By expanding to another school, we’ve been able to have interns work with a much broader range of research projects,” says Chazot. “It has become easier for us to place students with faculty and research that match their interests.”Building communityThe MICRO program received a Higher Education Innovation grant from the Abdul Latif Jameel World Education Lab, part of MIT Open Learning, to develop an in-person summit. In January 2024, interns visited MIT for three days of presentations, workshops, and campus tours — including a tour of the MIT.nano building — as well as various community-building activities.“A big part of MICRO is the community,” says Chazot. “A highlight of the summit was just seeing the students come together.”The summit also included panel discussions that allowed interns to gain insights and advice from graduate students and professionals. The graduate panel discussion included MIT graduate students Sam Figueroa (mechanical engineering), Isabella Caruso (DMSE), and Eliana Feygin (DMSE). The career panel was led by Chazot and included Jatin Patil PhD ’23, head of product at SiTration; Maureen Reitman ’90, ScD ’93, group vice president and principal engineer at Exponent; Lucas Caretta PhD ’19, assistant professor of engineering at Brown University; Raquel D’Oyen ’90, who holds a PhD from Northwestern University and is a senior engineer at Raytheon; and Ashley Kaiser MS ’19, PhD ’21, senior process engineer at 6K.Students also had an opportunity to share their work with each other through research presentations. Their presentations covered a wide range of topics, including: developing a computer program to calculate solubility parameters for polymers used in textile manufacturing; performing a life-cycle analysis of a photonic chip and evaluating its environmental impact in comparison to a standard silicon microchip; and applying machine learning algorithms to scanning transmission electron microscopy images of CrSBr, a two-dimensional magnetic material. “The summit was wonderful and the best academic experience I have had as a first-year college student,” says MICRO intern Gabriella La Cour, who is pursuing a major in chemistry and dual degree biomedical engineering at Spelman College and participates in MICRO through MIT. “I got to meet so many students who were all in grades above me … and I learned a little about how to navigate college as an upperclassman.” “I actually have an extremely close friendship with one of the students, and we keep in touch regularly,” adds La Cour. “Professor Chazot gave valuable advice about applications and recommendation letters that will be useful when I apply to REUs [Research Experiences for Undergraduates] and graduate schools.”Looking to the future, MICRO organizers hope to continue to grow the program’s reach.“We would love to see other schools taking on this model,” says Sandland. “There are a lot of opportunities out there. The more departments, research groups, and mentors that get involved with this program, the more impact it can have.” More

  • in

    This tiny chip can safeguard user data while enabling efficient computing on a smartphone

    Health-monitoring apps can help people manage chronic diseases or stay on track with fitness goals, using nothing more than a smartphone. However, these apps can be slow and energy-inefficient because the vast machine-learning models that power them must be shuttled between a smartphone and a central memory server.

    Engineers often speed things up using hardware that reduces the need to move so much data back and forth. While these machine-learning accelerators can streamline computation, they are susceptible to attackers who can steal secret information.

    To reduce this vulnerability, researchers from MIT and the MIT-IBM Watson AI Lab created a machine-learning accelerator that is resistant to the two most common types of attacks. Their chip can keep a user’s health records, financial information, or other sensitive data private while still enabling huge AI models to run efficiently on devices.

    The team developed several optimizations that enable strong security while only slightly slowing the device. Moreover, the added security does not impact the accuracy of computations. This machine-learning accelerator could be particularly beneficial for demanding AI applications like augmented and virtual reality or autonomous driving.

    While implementing the chip would make a device slightly more expensive and less energy-efficient, that is sometimes a worthwhile price to pay for security, says lead author Maitreyi Ashok, an electrical engineering and computer science (EECS) graduate student at MIT.

    “It is important to design with security in mind from the ground up. If you are trying to add even a minimal amount of security after a system has been designed, it is prohibitively expensive. We were able to effectively balance a lot of these tradeoffs during the design phase,” says Ashok.

    Her co-authors include Saurav Maji, an EECS graduate student; Xin Zhang and John Cohn of the MIT-IBM Watson AI Lab; and senior author Anantha Chandrakasan, MIT’s chief innovation and strategy officer, dean of the School of Engineering, and the Vannevar Bush Professor of EECS. The research will be presented at the IEEE Custom Integrated Circuits Conference.

    Side-channel susceptibility

    The researchers targeted a type of machine-learning accelerator called digital in-memory compute. A digital IMC chip performs computations inside a device’s memory, where pieces of a machine-learning model are stored after being moved over from a central server.

    The entire model is too big to store on the device, but by breaking it into pieces and reusing those pieces as much as possible, IMC chips reduce the amount of data that must be moved back and forth.

    But IMC chips can be susceptible to hackers. In a side-channel attack, a hacker monitors the chip’s power consumption and uses statistical techniques to reverse-engineer data as the chip computes. In a bus-probing attack, the hacker can steal bits of the model and dataset by probing the communication between the accelerator and the off-chip memory.

    Digital IMC speeds computation by performing millions of operations at once, but this complexity makes it tough to prevent attacks using traditional security measures, Ashok says.

    She and her collaborators took a three-pronged approach to blocking side-channel and bus-probing attacks.

    First, they employed a security measure where data in the IMC are split into random pieces. For instance, a bit zero might be split into three bits that still equal zero after a logical operation. The IMC never computes with all pieces in the same operation, so a side-channel attack could never reconstruct the real information.

    But for this technique to work, random bits must be added to split the data. Because digital IMC performs millions of operations at once, generating so many random bits would involve too much computing. For their chip, the researchers found a way to simplify computations, making it easier to effectively split data while eliminating the need for random bits.

    Second, they prevented bus-probing attacks using a lightweight cipher that encrypts the model stored in off-chip memory. This lightweight cipher only requires simple computations. In addition, they only decrypted the pieces of the model stored on the chip when necessary.

    Third, to improve security, they generated the key that decrypts the cipher directly on the chip, rather than moving it back and forth with the model. They generated this unique key from random variations in the chip that are introduced during manufacturing, using what is known as a physically unclonable function.

    “Maybe one wire is going to be a little bit thicker than another. We can use these variations to get zeros and ones out of a circuit. For every chip, we can get a random key that should be consistent because these random properties shouldn’t change significantly over time,” Ashok explains.

    They reused the memory cells on the chip, leveraging the imperfections in these cells to generate the key. This requires less computation than generating a key from scratch.

    “As security has become a critical issue in the design of edge devices, there is a need to develop a complete system stack focusing on secure operation. This work focuses on security for machine-learning workloads and describes a digital processor that uses cross-cutting optimization. It incorporates encrypted data access between memory and processor, approaches to preventing side-channel attacks using randomization, and exploiting variability to generate unique codes. Such designs are going to be critical in future mobile devices,” says Chandrakasan.

    Safety testing

    To test their chip, the researchers took on the role of hackers and tried to steal secret information using side-channel and bus-probing attacks.

    Even after making millions of attempts, they couldn’t reconstruct any real information or extract pieces of the model or dataset. The cipher also remained unbreakable. By contrast, it took only about 5,000 samples to steal information from an unprotected chip.

    The addition of security did reduce the energy efficiency of the accelerator, and it also required a larger chip area, which would make it more expensive to fabricate.

    The team is planning to explore methods that could reduce the energy consumption and size of their chip in the future, which would make it easier to implement at scale.

    “As it becomes too expensive, it becomes harder to convince someone that security is critical. Future work could explore these tradeoffs. Maybe we could make it a little less secure but easier to implement and less expensive,” Ashok says.

    The research is funded, in part, by the MIT-IBM Watson AI Lab, the National Science Foundation, and a Mathworks Engineering Fellowship. More

  • in

    Advancing technology for aquaculture

    According to the National Oceanic and Atmospheric Administration, aquaculture in the United States represents a $1.5 billion industry annually. Like land-based farming, shellfish aquaculture requires healthy seed production in order to maintain a sustainable industry. Aquaculture hatchery production of shellfish larvae — seeds — requires close monitoring to track mortality rates and assess health from the earliest stages of life. 

    Careful observation is necessary to inform production scheduling, determine effects of naturally occurring harmful bacteria, and ensure sustainable seed production. This is an essential step for shellfish hatcheries but is currently a time-consuming manual process prone to human error. 

    With funding from MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), MIT Sea Grant is working with Associate Professor Otto Cordero of the MIT Department of Civil and Environmental Engineering, Professor Taskin Padir and Research Scientist Mark Zolotas at the Northeastern University Institute for Experiential Robotics, and others at the Aquaculture Research Corporation (ARC), and the Cape Cod Commercial Fishermen’s Alliance, to advance technology for the aquaculture industry. Located on Cape Cod, ARC is a leading shellfish hatchery, farm, and wholesaler that plays a vital role in providing high-quality shellfish seed to local and regional growers.

    Two MIT students have joined the effort this semester, working with Robert Vincent, MIT Sea Grant’s assistant director of advisory services, through the Undergraduate Research Opportunities Program (UROP). 

    First-year student Unyime Usua and sophomore Santiago Borrego are using microscopy images of shellfish seed from ARC to train machine learning algorithms that will help automate the identification and counting process. The resulting user-friendly image recognition tool aims to aid aquaculturists in differentiating and counting healthy, unhealthy, and dead shellfish larvae, improving accuracy and reducing time and effort.

    Vincent explains that AI is a powerful tool for environmental science that enables researchers, industry, and resource managers to address challenges that have long been pinch points for accurate data collection, analysis, predictions, and streamlining processes. “Funding support from programs like J-WAFS enable us to tackle these problems head-on,” he says. 

    ARC faces challenges with manually quantifying larvae classes, an important step in their seed production process. “When larvae are in their growing stages they are constantly being sized and counted,” explains Cheryl James, ARC larval/juvenile production manager. “This process is critical to encourage optimal growth and strengthen the population.” 

    Developing an automated identification and counting system will help to improve this step in the production process with time and cost benefits. “This is not an easy task,” says Vincent, “but with the guidance of Dr. Zolotas at the Northeastern University Institute for Experiential Robotics and the work of the UROP students, we have made solid progress.” 

    The UROP program benefits both researchers and students. Involving MIT UROP students in developing these types of systems provides insights into AI applications that they might not have considered, providing opportunities to explore, learn, and apply themselves while contributing to solving real challenges.

    Borrego saw this project as an opportunity to apply what he’d learned in class 6.390 (Introduction to Machine Learning) to a real-world issue. “I was starting to form an idea of how computers can see images and extract information from them,” he says. “I wanted to keep exploring that.”

    Usua decided to pursue the project because of the direct industry impacts it could have. “I’m pretty interested in seeing how we can utilize machine learning to make people’s lives easier. We are using AI to help biologists make this counting and identification process easier.” While Usua wasn’t familiar with aquaculture before starting this project, she explains, “Just hearing about the hatcheries that Dr. Vincent was telling us about, it was unfortunate that not a lot of people know what’s going on and the problems that they’re facing.”

    On Cape Cod alone, aquaculture is an $18 million per year industry. But the Massachusetts Division of Marine Fisheries estimates that hatcheries are only able to meet 70–80 percent of seed demand annually, which impacts local growers and economies. Through this project, the partners aim to develop technology that will increase seed production, advance industry capabilities, and help understand and improve the hatchery microbiome.

    Borrego explains the initial challenge of having limited data to work with. “Starting out, we had to go through and label all of the data, but going through that process helped me learn a lot.” In true MIT fashion, he shares his takeaway from the project: “Try to get the best out of what you’re given with the data you have to work with. You’re going to have to adapt and change your strategies depending on what you have.”

    Usua describes her experience going through the research process, communicating in a team, and deciding what approaches to take. “Research is a difficult and long process, but there is a lot to gain from it because it teaches you to look for things on your own and find your own solutions to problems.”

    In addition to increasing seed production and reducing the human labor required in the hatchery process, the collaborators expect this project to contribute to cost savings and technology integration to support one of the most underserved industries in the United States. 

    Borrego and Usua both plan to continue their work for a second semester with MIT Sea Grant. Borrego is interested in learning more about how technology can be used to protect the environment and wildlife. Usua says she hopes to explore more projects related to aquaculture. “It seems like there’s an infinite amount of ways to tackle these issues.” More

  • in

    Improving drug development with a vast map of the immune system

    The human immune system is a network made up of trillions of cells that are constantly circulating throughout the body. The cellular network orchestrates interactions with every organ and tissue to carry out an impossibly long list of functions that scientists are still working to understand. All that complexity limits our ability to predict which patients will respond to treatments and which ones might suffer debilitating side effects.

    The issue often leads pharmaceutical companies to stop developing drugs that could help certain patients, halting clinical trials even when drugs show promising results for some people.

    Now, Immunai is helping to predict how patients will respond to treatments by building a comprehensive map of the immune system. The company has assembled a vast database it calls AMICA, that combines multiple layers of gene and protein expression data in cells with clinical trial data to match the right drugs to the right patients.

    “Our starting point was creating what I call the Google Maps for the immune system,” Immunai co-founder and CEO Noam Solomon says. “We started with single-cell RNA sequencing, and over time we’ve added more and more ‘omics’: genomics, proteomics, epigenomics, all to measure the immune system’s cellular expression and function, to measure the immune environment holistically. Then we started working with pharmaceutical companies and hospitals to profile the immune systems of patients undergoing treatments to really get to the root mechanisms of action and resistance for therapeutics.”

    Immunai’s big data foundation is a result of its founders’ unique background. Solomon and co-founder Luis Voloch ’13, SM ’15 hold degrees in mathematics and computer science. In fact, Solomon was a postdoc in MIT’s Department of Mathematics at the time of Immunai’s founding.

    Solomon frames Immunai’s mission as stopping the decades-long divergence of computer science and the life sciences. He believes the single biggest factor driving the explosion of computing has been Moore’s Law — our ability to exponentially increase the number of transistors on a chip over the past 60 years. In the pharmaceutical industry, the reverse is happening: By one estimate, the cost of developing a new drug roughly doubles every nine years. The phenomenon has been dubbed Eroom’s Law (“Eroom” for “Moore” spelled backward).

    Solomon sees the trend eroding the case for developing new drugs, with huge consequences for patients.

    “Why should pharmaceutical companies invest in discovery if they won’t get a return on investment?” Solomon asks. “Today, there’s only a 5 to 10 percent chance that any given clinical trial will be successful. What we’ve built through a very robust and granular mapping of the immune system is a chance to improve the preclinical and clinical stages of drug development.”

    A change in plans

    Solomon entered Tel Aviv University when he was 14 and earned his bachelor’s degree in computer science by 19. He earned two PhDs in Israel, one in computer science and the other in mathematics, before coming to MIT in 2017 as a postdoc to continue his mathematical research career.

    That year Solomon met Voloch, who had already earned bachelor’s and master’s degrees in math and computer science from MIT. But the researchers were soon exposed to a problem that would take them out of their comfort zones and change the course of their careers.

    Voloch’s grandfather was receiving a cocktail of treatments for cancer at the time. The cancer went into remission, but he suffered terrible side effects that caused him to stop taking his medication.

    Voloch and Solomon began wondering if their expertise could help patients like Voloch’s grandfather.

    “When we realized we could make an impact, we made the difficult decision to stop our academic pursuits and start a new journey,” Solomon recalls. “That was the starting point for Immunai.”

    Voloch and Solomon soon partnered with Immunai scientific co-founders Ansu Satpathy, a researcher at Stanford University at the time, and Danny Wells, a researcher at the Parker Institute for Cancer Immunotherapy. Satpathy and Wells had shown that single-cell RNA sequencing could be used to gain insights into why patients respond differently to a common cancer treatment.

    The team began analyzing single-cell RNA sequencing data published in scientific papers, trying to link common biomarkers with patient outcomes. Then they integrated data from the United Kingdom’s Biobank public health database, finding they were able to improve their models’ predictions. Soon they were incorporating data from hospitals, academic research institutions, and pharmaceutical companies, analyzing information about the structure, function, and environment of cells — multiomics — to get a clearer picture of immune activity.

    “Single cell sequencing gives you metrics you can measure in thousands of cells, where you can look at 20,000 different genes, and those metrics give you an immune profile,” Solomon explains. “When you measure all of that over time, especially before and after getting therapy, and compare patients who do respond with patients who don’t, you can apply machine learning models to understand why.”

    Those data and models make up AMICA, what Immunai calls the world’s largest cell-level immune knowledge base. AMICA stands for Annotated Multiomic Immune Cell Atlas. It analyzes single cell multiomic data from almost 10,000 patients and bulk-RNA data from 100,000 patients across more than 800 cell types and 500 diseases.

    At the core of Immunai’s approach is a focus on the immune system, which other companies shy away from because of its complexity.

    “We don’t want to be like other groups that are studying mainly tumor microenvironments,” Solomon says. “We look at the immune system because the immune system is the common denominator. It’s the one system that is implicated in every disease, in your body’s response to everything that you encounter, whether it’s a viral infection or bacterial infection or a drug that you are receiving — even how you are aging.”

    Turning data into better treatments

    Immunai has already partnered with some of the largest pharmaceutical companies in the world to help them identify promising treatments and set up their clinical trials for success. Immunai’s insights can help partners make critical decisions about treatment schedules, dosing, drug combinations, patient selection, and more.

    “Everyone is talking about AI, but I think the most exciting aspect of the platform we have built is the fact that it’s vertically integrated, from wet lab to computational modeling with multiple iterations,” Solomon says. “For example, we may do single-cell immune profiling of patient samples, then we upload that data to the cloud and our computational models come up with insights, and with those insights we do in vitro or in vivo validation to see if our models are right and iteratively improve them.”

    Ultimately Immunai wants to enable a future where lab experiments can more reliably turn into impactful new recommendations and treatments for patients.

    “Scientists can cure nearly every type of cancer, but only in mice,” Solomon says. “In preclinical models we know how to cure cancer. In human beings, in most cases, we still don’t. To overcome that, most scientists are looking for better ex vivo or in vivo models. Our approach is to be more agnostic as to the model system, but feed the machine with more and more data from multiple model systems. We’re demonstrating that our algorithms can repeatedly beat the top benchmarks in identifying the top preclinical immune features that match to patient outcomes.” More