More stories

  • in

    Improving predictions of sea level rise for the next century

    When we think of climate change, one of the most dramatic images that comes to mind is the loss of glacial ice. As the Earth warms, these enormous rivers of ice become a casualty of the rising temperatures. But, as ice sheets retreat, they also become an important contributor to one the more dangerous outcomes of climate change: sea-level rise. At MIT, an interdisciplinary team of scientists is determined to improve sea level rise predictions for the next century, in part by taking a closer look at the physics of ice sheets.

    Last month, two research proposals on the topic, led by Brent Minchew, the Cecil and Ida Green Career Development Professor in the Department of Earth, Atmospheric and Planetary Sciences (EAPS), were announced as finalists in the MIT Climate Grand Challenges initiative. Launched in July 2020, Climate Grand Challenges fielded almost 100 project proposals from collaborators across the Institute who heeded the bold charge: to develop research and innovations that will deliver game-changing advances in the world’s efforts to address the climate challenge.

    As finalists, Minchew and his collaborators from the departments of Urban Studies and Planning, Economics, Civil and Environmental Engineering, the Haystack Observatory, and external partners, received $100,000 to develop their research plans. A subset of the 27 proposals tapped as finalists will be announced next month, making up a portfolio of multiyear “flagship” projects receiving additional funding and support.

    One goal of both Minchew proposals is to more fully understand the most fundamental processes that govern rapid changes in glacial ice, and to use that understanding to build next-generation models that are more predictive of ice sheet behavior as they respond to, and influence, climate change.

    “We need to develop more accurate and computationally efficient models that provide testable projections of sea-level rise over the coming decades. To do so quickly, we want to make better and more frequent observations and learn the physics of ice sheets from these data,” says Minchew. “For example, how much stress do you have to apply to ice before it breaks?”

    Currently, Minchew’s Glacier Dynamics and Remote Sensing group uses satellites to observe the ice sheets on Greenland and Antarctica primarily with interferometric synthetic aperture radar (InSAR). But the data are often collected over long intervals of time, which only gives them “before and after” snapshots of big events. By taking more frequent measurements on shorter time scales, such as hours or days, they can get a more detailed picture of what is happening in the ice.

    “Many of the key unknowns in our projections of what ice sheets are going to look like in the future, and how they’re going to evolve, involve the dynamics of glaciers, or our understanding of how the flow speed and the resistances to flow are related,” says Minchew.

    At the heart of the two proposals is the creation of SACOS, the Stratospheric Airborne Climate Observatory System. The group envisions developing solar-powered drones that can fly in the stratosphere for months at a time, taking more frequent measurements using a new lightweight, low-power radar and other high-resolution instrumentation. They also propose air-dropping sensors directly onto the ice, equipped with seismometers and GPS trackers to measure high-frequency vibrations in the ice and pinpoint the motions of its flow.

    How glaciers contribute to sea level rise

    Current climate models predict an increase in sea levels over the next century, but by just how much is still unclear. Estimates are anywhere from 20 centimeters to two meters, which is a large difference when it comes to enacting policy or mitigation. Minchew points out that response measures will be different, depending on which end of the scale it falls toward. If it’s closer to 20 centimeters, coastal barriers can be built to protect low-level areas. But with higher surges, such measures become too expensive and inefficient to be viable, as entire portions of cities and millions of people would have to be relocated.

    “If we’re looking at a future where we could get more than a meter of sea level rise by the end of the century, then we need to know about that sooner rather than later so that we can start to plan and to do our best to prepare for that scenario,” he says.

    There are two ways glaciers and ice sheets contribute to rising sea levels: direct melting of the ice and accelerated transport of ice to the oceans. In Antarctica, warming waters melt the margins of the ice sheets, which tends to reduce the resistive stresses and allow ice to flow more quickly to the ocean. This thinning can also cause the ice shelves to be more prone to fracture, facilitating the calving of icebergs — events which sometimes cause even further acceleration of ice flow.

    Using data collected by SACOS, Minchew and his group can better understand what material properties in the ice allow for fracturing and calving of icebergs, and build a more complete picture of how ice sheets respond to climate forces. 

    “What I want is to reduce and quantify the uncertainties in projections of sea level rise out to the year 2100,” he says.

    From that more complete picture, the team — which also includes economists, engineers, and urban planning specialists — can work on developing predictive models and methods to help communities and governments estimate the costs associated with sea level rise, develop sound infrastructure strategies, and spur engineering innovation.

    Understanding glacier dynamics

    More frequent radar measurements and the collection of higher-resolution seismic and GPS data will allow Minchew and the team to develop a better understanding of the broad category of glacier dynamics — including calving, an important process in setting the rate of sea level rise which is currently not well understood.  

    “Some of what we’re doing is quite similar to what seismologists do,” he says. “They measure seismic waves following an earthquake, or a volcanic eruption, or things of this nature and use those observations to better understand the mechanisms that govern these phenomena.”

    Air-droppable sensors will help them collect information about ice sheet movement, but this method comes with drawbacks — like installation and maintenance, which is difficult to do out on a massive ice sheet that is moving and melting. Also, the instruments can each only take measurements at a single location. Minchew equates it to a bobber in water: All it can tell you is how the bobber moves as the waves disturb it.

    But by also taking continuous radar measurements from the air, Minchew’s team can collect observations both in space and in time. Instead of just watching the bobber in the water, they can effectively make a movie of the waves propagating out, as well as visualize processes like iceberg calving happening in multiple dimensions.

    Once the bobbers are in place and the movies recorded, the next step is developing machine learning algorithms to help analyze all the new data being collected. While this data-driven kind of discovery has been a hot topic in other fields, this is the first time it has been applied to glacier research.

    “We’ve developed this new methodology to ingest this huge amount of data,” he says, “and from that create an entirely new way of analyzing the system to answer these fundamental and critically important questions.”  More

  • in

    Fighting discrimination in mortgage lending

    Although the U.S. Equal Credit Opportunity Act prohibits discrimination in mortgage lending, biases still impact many borrowers. One 2021 Journal of Financial Economics study found that borrowers from minority groups were charged interest rates that were nearly 8 percent higher and were rejected for loans 14 percent more often than those from privileged groups.

    When these biases bleed into machine-learning models that lenders use to streamline decision-making, they can have far-reaching consequences for housing fairness and even contribute to widening the racial wealth gap.

    If a model is trained on an unfair dataset, such as one in which a higher proportion of Black borrowers were denied loans versus white borrowers with the same income, credit score, etc., those biases will affect the model’s predictions when it is applied to real situations. To stem the spread of mortgage lending discrimination, MIT researchers created a process that removes bias in data that are used to train these machine-learning models.

    While other methods try to tackle this bias, the researchers’ technique is new in the mortgage lending domain because it can remove bias from a dataset that has multiple sensitive attributes, such as race and ethnicity, as well as several “sensitive” options for each attribute, such as Black or white, and Hispanic or Latino or non-Hispanic or Latino. Sensitive attributes and options are features that distinguish a privileged group from an underprivileged group.

    The researchers used their technique, which they call DualFair, to train a machine-learning classifier that makes fair predictions of whether borrowers will receive a mortgage loan. When they applied it to mortgage lending data from several U.S. states, their method significantly reduced the discrimination in the predictions while maintaining high accuracy.

    “As Sikh Americans, we deal with bias on a frequent basis and we think it is unacceptable to see that transform to algorithms in real-world applications. For things like mortgage lending and financial systems, it is very important that bias not infiltrate these systems because it can emphasize the gaps that are already in place against certain groups,” says Jashandeep Singh, a senior at Floyd Buchanan High School and co-lead author of the paper with his twin brother, Arashdeep. The Singh brothers were recently accepted into MIT.

    Joining Arashdeep and Jashandeep Singh on the paper are MIT sophomore Ariba Khan and senior author Amar Gupta, a researcher in the Computer Science and Artificial Intelligence Laboratory at MIT, who studies the use of evolving technology to address inequity and other societal issues. The research was recently published online and will appear in a special issue of Machine Learning and Knowledge Extraction.

    Double take

    DualFair tackles two types of bias in a mortgage lending dataset — label bias and selection bias. Label bias occurs when the balance of favorable or unfavorable outcomes for a particular group is unfair. (Black applicants are denied loans more frequently than they should be.) Selection bias is created when data are not representative of the larger population. (The dataset only includes individuals from one neighborhood where incomes are historically low.)

    The DualFair process eliminates label bias by subdividing a dataset into the largest number of subgroups based on combinations of sensitive attributes and options, such as white men who are not Hispanic or Latino, Black women who are Hispanic or Latino, etc.

    By breaking down the dataset into as many subgroups as possible, DualFair can simultaneously address discrimination based on multiple attributes.

    “Researchers have mostly tried to classify biased cases as binary so far. There are multiple parameters to bias, and these multiple parameters have their own impact in different cases. They are not equally weighed. Our method is able to calibrate it much better,” says Gupta.

    After the subgroups have been generated, DualFair evens out the number of borrowers in each subgroup by duplicating individuals from minority groups and deleting individuals from the majority group. DualFair then balances the proportion of loan acceptances and rejections in each subgroup so they match the median in the original dataset before recombining the subgroups.

    DualFair then eliminates selection bias by iterating on each data point to see if discrimination is present. For instance, if an individual is a non-Hispanic or Latino Black woman who was rejected for a loan, the system will adjust her race, ethnicity, and gender one at a time to see if the outcome changes. If this borrower is granted a loan when her race is changed to white, DualFair considers that data point biased and removes it from the dataset.

    Fairness vs. accuracy

    To test DualFair, the researchers used the publicly available Home Mortgage Disclosure Act dataset, which spans 88 percent of all mortgage loans in the U.S. in 2019, and includes 21 features, including race, sex, and ethnicity. They used DualFair to “de-bias” the entire dataset and smaller datasets for six states, and then trained a machine-learning model to predict loan acceptances and rejections.

    After applying DualFair, the fairness of predictions increased while the accuracy level remained high across all states. They used an existing fairness metric known as average odds difference, but it can only measure fairness in one sensitive attribute at a time.

    So, they created their own fairness metric, called alternate world index, that considers bias from multiple sensitive attributes and options as a whole. Using this metric, they found that DualFair increased fairness in predictions for four of the six states while maintaining high accuracy.

    “It is the common belief that if you want to be accurate, you have to give up on fairness, or if you want to be fair, you have to give up on accuracy. We show that we can make strides toward lessening that gap,” Khan says.

    The researchers now want to apply their method to de-bias different types of datasets, such as those that capture health care outcomes, car insurance rates, or job applications. They also plan to address limitations of DualFair, including its instability when there are small amounts of data with multiple sensitive attributes and options.

    While this is only a first step, the researchers are hopeful their work can someday have an impact on mitigating bias in lending and beyond.

    “Technology, very bluntly, works only for a certain group of people. In the mortgage loan domain in particular, African American women have been historically discriminated against. We feel passionate about making sure that systemic racism does not extend to algorithmic models. There is no point in making an algorithm that can automate a process if it doesn’t work for everyone equally,” says Khan.

    This research is supported, in part, by the FinTech@CSAIL initiative. More

  • in

    Security tool guarantees privacy in surveillance footage

    Surveillance cameras have an identity problem, fueled by an inherent tension between utility and privacy. As these powerful little devices have cropped up seemingly everywhere, the use of machine learning tools has automated video content analysis at a massive scale — but with increasing mass surveillance, there are currently no legally enforceable rules to limit privacy invasions. 

    Security cameras can do a lot — they’ve become smarter and supremely more competent than their ghosts of grainy pictures past, the ofttimes “hero tool” in crime media. (“See that little blurry blue blob in the right hand corner of that densely populated corner — we got him!”) Now, video surveillance can help health officials measure the fraction of people wearing masks, enable transportation departments to monitor the density and flow of vehicles, bikes, and pedestrians, and provide businesses with a better understanding of shopping behaviors. But why has privacy remained a weak afterthought? 

    The status quo is to retrofit video with blurred faces or black boxes. Not only does this prevent analysts from asking some genuine queries (e.g., Are people wearing masks?), it also doesn’t always work; the system may miss some faces and leave them unblurred for the world to see. Dissatisfied with this status quo, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), in collaboration with other institutions, came up with a system to better guarantee privacy in video footage from surveillance cameras. Called “Privid,” the system lets analysts submit video data queries, and adds a little bit of noise (extra data) to the end result to ensure that an individual can’t be identified. The system builds on a formal definition of privacy — “differential privacy” — which allows access to aggregate statistics about private data without revealing personally identifiable information.

    Typically, analysts would just have access to the entire video to do whatever they want with it, but Privid makes sure the video isn’t a free buffet. Honest analysts can get access to the information they need, but that access is restrictive enough that malicious analysts can’t do too much with it. To enable this, rather than running the code over the entire video in one shot, Privid breaks the video into small pieces and runs processing code over each chunk. Instead of getting results back from each piece, the segments are aggregated, and that additional noise is added. (There’s also information on the error bound you’re going to get on your result — maybe a 2 percent error margin, given the extra noisy data added). 

    For example, the code might output the number of people observed in each video chunk, and the aggregation might be the “sum,” to count the total number of people wearing face coverings, or the “average” to estimate the density of crowds. 

    Privid allows analysts to use their own deep neural networks that are commonplace for video analytics today. This gives analysts the flexibility to ask questions that the designers of Privid did not anticipate. Across a variety of videos and queries, Privid was accurate within 79 to 99 percent of a non-private system.

    “We’re at a stage right now where cameras are practically ubiquitous. If there’s a camera on every street corner, every place you go, and if someone could actually process all of those videos in aggregate, you can imagine that entity building a very precise timeline of when and where a person has gone,” says MIT CSAIL PhD student ​​Frank Cangialosi, the lead author on a paper about Privid. “People are already worried about location privacy with GPS — video data in aggregate could capture not only your location history, but also moods, behaviors, and more at each location.” 

    Privid introduces a new notion of “duration-based privacy,” which decouples the definition of privacy from its enforcement — with obfuscation, if your privacy goal is to protect all people, the enforcement mechanism needs to do some work to find the people to protect, which it may or may not do perfectly. With this mechanism, you don’t need to fully specify everything, and you’re not hiding more information than you need to. 

    Let’s say we have a video overlooking a street. Two analysts, Alice and Bob, both claim they want to count the number of people that pass by each hour, so they submit a video processing module and ask for a sum aggregation.

    The first analyst is the city planning department, which hopes to use this information to understand footfall patterns and plan sidewalks for the city. Their model counts people and outputs this count for each video chunk.

    The other analyst is malicious. They hope to identify every time “Charlie” passes by the camera. Their model only looks for Charlie’s face, and outputs a large number if Charlie is present (i.e., the “signal” they’re trying to extract), or zero otherwise. Their hope is that the sum will be non-zero if Charlie was present. 

    From Privid’s perspective, these two queries look identical. It’s hard to reliably determine what their models might be doing internally, or what the analyst hopes to use the data for. This is where the noise comes in. Privid executes both of the queries, and adds the same amount of noise for each. In the first case, because Alice was counting all people, this noise will only have a small impact on the result, but likely won’t impact the usefulness. 

    In the second case, since Bob was looking for a specific signal (Charlie was only visible for a few chunks), the noise is enough to prevent them from knowing if Charlie was there or not. If they see a non-zero result, it might be because Charlie was actually there, or because the model outputs “zero,” but the noise made it non-zero. Privid didn’t need to know anything about when or where Charlie appeared, the system just needed to know a rough upper bound on how long Charlie might appear for, which is easier to specify than figuring out the exact locations, which prior methods rely on. 

    The challenge is determining how much noise to add — Privid wants to add just enough to hide everyone, but not so much that it would be useless for analysts. Adding noise to the data and insisting on queries over time windows means that your result isn’t going to be as accurate as it could be, but the results are still useful while providing better privacy. 

    Cangialosi wrote the paper with Princeton PhD student Neil Agarwal, MIT CSAIL PhD student Venkat Arun, assistant professor at the University of Chicago Junchen Jiang, assistant professor at Rutgers University and former MIT CSAIL postdoc Srinivas Narayana, associate professor at Rutgers University Anand Sarwate, and assistant professor at Princeton University and Ravi Netravali SM ’15, PhD ’18. Cangialosi will present the paper at the USENIX Symposium on Networked Systems Design and Implementation Conference in April in Renton, Washington. 

    This work was partially supported by a Sloan Research Fellowship and National Science Foundation grants. More

  • in

    A tool for predicting the future

    Whether someone is trying to predict tomorrow’s weather, forecast future stock prices, identify missed opportunities for sales in retail, or estimate a patient’s risk of developing a disease, they will likely need to interpret time-series data, which are a collection of observations recorded over time.

    Making predictions using time-series data typically requires several data-processing steps and the use of complex machine-learning algorithms, which have such a steep learning curve they aren’t readily accessible to nonexperts.

    To make these powerful tools more user-friendly, MIT researchers developed a system that directly integrates prediction functionality on top of an existing time-series database. Their simplified interface, which they call tspDB (time series predict database), does all the complex modeling behind the scenes so a nonexpert can easily generate a prediction in only a few seconds.

    The new system is more accurate and more efficient than state-of-the-art deep learning methods when performing two tasks: predicting future values and filling in missing data points.

    One reason tspDB is so successful is that it incorporates a novel time-series-prediction algorithm, explains electrical engineering and computer science (EECS) graduate student Abdullah Alomar, an author of a recent research paper in which he and his co-authors describe the algorithm. This algorithm is especially effective at making predictions on multivariate time-series data, which are data that have more than one time-dependent variable. In a weather database, for instance, temperature, dew point, and cloud cover each depend on their past values.

    The algorithm also estimates the volatility of a multivariate time series to provide the user with a confidence level for its predictions.

    “Even as the time-series data becomes more and more complex, this algorithm can effectively capture any time-series structure out there. It feels like we have found the right lens to look at the model complexity of time-series data,” says senior author Devavrat Shah, the Andrew and Erna Viterbi Professor in EECS and a member of the Institute for Data, Systems, and Society and of the Laboratory for Information and Decision Systems.

    Joining Alomar and Shah on the paper is lead author Anish Agrawal, a former EECS graduate student who is currently a postdoc at the Simons Institute at the University of California at Berkeley. The research will be presented at the ACM SIGMETRICS conference.

    Adapting a new algorithm

    Shah and his collaborators have been working on the problem of interpreting time-series data for years, adapting different algorithms and integrating them into tspDB as they built the interface.

    About four years ago, they learned about a particularly powerful classical algorithm, called singular spectrum analysis (SSA), that imputes and forecasts single time series. Imputation is the process of replacing missing values or correcting past values. While this algorithm required manual parameter selection, the researchers suspected it could enable their interface to make effective predictions using time series data. In earlier work, they removed this need to manually intervene for algorithmic implementation.  

    The algorithm for single time series transformed it into a matrix and utilized matrix estimation procedures. The key intellectual challenge was how to adapt it to utilize multiple time series.  After a few years of struggle, they realized the answer was something very simple: “Stack” the matrices for each individual time series, treat it as a one big matrix, and then apply the single time-series algorithm on it.

    This utilizes information across multiple time series naturally — both across the time series and across time, which they describe in their new paper.

    This recent publication also discusses interesting alternatives, where instead of transforming the multivariate time series into a big matrix, it is viewed as a three-dimensional tensor. A tensor is a multi-dimensional array, or grid, of numbers. This established a promising connection between the classical field of time series analysis and the growing field of tensor estimation, Alomar says.

    “The variant of mSSA that we introduced actually captures all of that beautifully. So, not only does it provide the most likely estimation, but a time-varying confidence interval, as well,” Shah says.

    The simpler, the better

    They tested the adapted mSSA against other state-of-the-art algorithms, including deep-learning methods, on real-world time-series datasets with inputs drawn from the electricity grid, traffic patterns, and financial markets.

    Their algorithm outperformed all the others on imputation and it outperformed all but one of the other algorithms when it came to forecasting future values. The researchers also demonstrated that their tweaked version of mSSA can be applied to any kind of time-series data.

    “One reason I think this works so well is that the model captures a lot of time series dynamics, but at the end of the day, it is still a simple model. When you are working with something simple like this, instead of a neural network that can easily overfit the data, you can actually perform better,” Alomar says.

    The impressive performance of mSSA is what makes tspDB so effective, Shah explains. Now, their goal is to make this algorithm accessible to everyone.

    One a user installs tspDB on top of an existing database, they can run a prediction query with just a few keystrokes in about 0.9 milliseconds, as compared to 0.5 milliseconds for a standard search query. The confidence intervals are also designed to help nonexperts to make a more informed decision by incorporating the degree of uncertainty of the predictions into their decision making.

    For instance, the system could enable a nonexpert to predict future stock prices with high accuracy in just a few minutes, even if the time-series dataset contains missing values.

    Now that the researchers have shown why mSSA works so well, they are targeting new algorithms that can be incorporated into tspDB. One of these algorithms utilizes the same model to automatically enable change point detection, so if the user believes their time series will change its behavior at some point, the system will automatically detect that change and incorporate that into its predictions.

    They also want to continue gathering feedback from current tspDB users to see how they can improve the system’s functionality and user-friendliness, Shah says.

    “Our interest at the highest level is to make tspDB a success in the form of a broadly utilizable, open-source system. Time-series data are very important, and this is a beautiful concept of actually building prediction functionalities directly into the database. It has never been done before, and so we want to make sure the world uses it,” he says.

    “This work is very interesting for a number of reasons. It provides a practical variant of mSSA which requires no hand tuning, they provide the first known analysis of mSSA, and the authors demonstrate the real-world value of their algorithm by being competitive with or out-performing several known algorithms for imputations and predictions in (multivariate) time series for several real-world data sets,” says Vishal Misra, a professor of computer science at Columbia University who was not involved with this research. “At the heart of it all is the beautiful modeling work where they cleverly exploit correlations across time (within a time series) and space (across time series) to create a low-rank spatiotemporal factor representation of a multivariate time series. Importantly this model connects the field of time series analysis to that of the rapidly evolving topic of tensor completion, and I expect a lot of follow-on research spurred by this paper.” More

  • in

    Study: With masking and distancing in place, NFL stadium openings in 2020 had no impact on local Covid-19 infections

    As with most everything in the world, football looked very different in 2020. As the Covid-19 pandemic unfolded, many National Football League (NFL) games were played in empty stadiums, while other stadiums opened to fans at significantly reduced capacity, with strict safety protocols in place.

    At the time it was unclear what impact such large sporting events would have on Covid-19 case counts, particularly at a time when vaccination against the virus was not widely available.

    Now, MIT engineers have taken a look back at the NFL’s 2020 regular season and found that for this specific period during the pandemic, opening stadiums to fans while requiring face coverings, social distancing, and other measures had no impact on the number of Covid-19 infections in those stadiums’ local counties.

    As they write in a new paper appearing this week in the Proceedings of the National Academy of Sciences, “the benefits of providing a tightly controlled outdoor spectating environment — including masking and distancing requirements — counterbalanced the risks associated with opening.”

    The study concentrates on the NFL’s 2020 regular season (September 2020 to early January 2021), at a time when earlier strains of the virus dominated, before the rise of more transmissible Delta and Omicron variants. Nevertheless, the results may inform decisions on whether and how to hold large outdoor gatherings in the face of future public health crises.

    “These results show that the measures adopted by the NFL were effective in safely opening stadiums,” says study author Anette “Peko” Hosoi, the Neil and Jane Pappalardo Professor of Mechanical Engineering at MIT. “If case counts start to rise again, we know what to do: mask people, put them outside, and distance them from each other.”

    The study’s co-authors are members of MIT’s Institue for Data, Systems, and Society (IDSS), and include Bernardo García Bulle, Dennis Shen, and Devavrat Shah, the Andrew and Erna Viterbi Professor in the Department of Electrical Engineering and Computer Science (EECS).

    Preseason patterns

    Last year a group led by the University of Southern Mississippi compared Covid-19 case counts in the counties of NFL stadiums that allowed fans in, versus those that did not. Their analysis showed that stadiums that opened to large numbers of fans led to “tangible increases” in the local county’s number of Covid-19 cases.

    But there are a number of factors in addition to a stadium’s opening that can affect case counts, including local policies, mandates, and attitudes. As the MIT team writes, “it is not at all obvious that one can attribute the differences in case spikes to the stadiums given the enormous number of confounding factors.”

    To truly isolate the effects of a stadium’s opening, one could imagine tracking Covid cases in a county with an open stadium through the 2020 season, then turning back the clock, closing the stadium, then tracking that same county’s Covid cases through the same season, all things being equal.

    “That’s the perfect experiment, with the exception that you would need a time machine,” Hosoi says.

    As it turns out, the next best thing is synthetic control — a statistical method that is used to determine the effect of an “intervention” (such as the opening of a stadium) compared with the exact same scenario without that intervention.

    In synthetic control, researchers use a weighted combination of groups to construct a “synthetic” version of an actual  scenario. In this case, the actual scenario is a county such as Dallas that hosts an open stadium. A synthetic version would be a county that looks similar to Dallas, only without a stadium. In the context of this study, a county that “looks” like Dallas has a similar preseason pattern of Covid-19 cases.

    To construct a synthetic Dallas, the researchers looked for surrounding counties without stadiums, that had similar Covid-19 trajectories leading up to the 2020 football season. They combined these counties in a way that best fit Dallas’ actual case trajectory. They then used data from the combined counties to calculate the number of Covid cases for this synthetic Dallas through the season, and compared these counts to the real Dallas.

    The team carried out this analysis for every “stadium county.” They determined a county to be a stadium county if more than 10 percent of a stadium’s fans came from that county, which the researchers estimated based on attendance data provided by the NFL.

    “Go outside”

    Of the stadiums included in the study, 13 were closed through the regular season, while 16 opened with reduced capacity and multiple pandemic requirements in place, such as required masking, distanced seating, mobile ticketing, and enhanced cleaning protocols.

    The researchers found the trajectory of infections in all stadium counties mirrored that of synthetic counties, showing that the number of infections would have been the same if the stadiums had remained closed. In other words, they found no evidence that NFL stadium openings led to any increase in local Covid case counts.

    To check that their method wasn’t missing any case spikes, they tested it on a known superspreader: the Sturgis Motorcycle Rally, which was held in August of 2020. The analysis successfully picked up an increase in cases in Meade, the host county, compared to a synthetic counterpart, in the two weeks following the rally.

    Surprisingly, the researchers found that several stadium counties’ case counts dipped slightly compared to their synthetic counterparts. In these counties — including Hamilton, Ohio, home of the Cincinnati Bengals — it appeared that opening the stadium to fans was tied to a dip in Covid-19 infections. Hosoi has a guess as to why:

    “These are football communities with dedicated fans. Rather than stay home alone, those fans may have gone to a sports bar or hosted indoor football gatherings if the stadium had not opened,” Hosoi proposes. “Opening the stadium under those circumstances would have been beneficial to the community because it makes people go outside.”

    The team’s analysis also revealed another connection: Counties with similar Covid trajectories also shared similar politics. To illustrate this point, the team mapped the county-wide temporal trajectories of Covid case counts in Ohio in 2020 and found them to be a strong predictor of the state’s 2020 electoral map.

    “That is not a coincidence,” Hosoi notes. “It tells us that local political leanings determined the temporal trajectory of the pandemic.”

    The team plans to apply their analysis to see how other factors may have influenced the pandemic.

    “Covid is a different beast [today],” she says. “Omicron is more transmissive, and more of the population is vaccinated. It’s possible we’d find something different if we ran this analysis on the upcoming season, and I think we probably should try.” More

  • in

    When it comes to AI, can we ditch the datasets?

    Huge amounts of data are needed to train machine-learning models to perform image classification tasks, such as identifying damage in satellite photos following a natural disaster. However, these data are not always easy to come by. Datasets may cost millions of dollars to generate, if usable data exist in the first place, and even the best datasets often contain biases that negatively impact a model’s performance.

    To circumvent some of the problems presented by datasets, MIT researchers developed a method for training a machine learning model that, rather than using a dataset, uses a special type of machine-learning model to generate extremely realistic synthetic data that can train another model for downstream vision tasks.

    Their results show that a contrastive representation learning model trained using only these synthetic data is able to learn visual representations that rival or even outperform those learned from real data.

    This special machine-learning model, known as a generative model, requires far less memory to store or share than a dataset. Using synthetic data also has the potential to sidestep some concerns around privacy and usage rights that limit how some real data can be distributed. A generative model could also be edited to remove certain attributes, like race or gender, which could address some biases that exist in traditional datasets.

    “We knew that this method should eventually work; we just needed to wait for these generative models to get better and better. But we were especially pleased when we showed that this method sometimes does even better than the real thing,” says Ali Jahanian, a research scientist in the Computer Science and Artificial Intelligence Laboratory (CSAIL) and lead author of the paper.

    Jahanian wrote the paper with CSAIL grad students Xavier Puig and Yonglong Tian, and senior author Phillip Isola, an assistant professor in the Department of Electrical Engineering and Computer Science. The research will be presented at the International Conference on Learning Representations.

    Generating synthetic data

    Once a generative model has been trained on real data, it can generate synthetic data that are so realistic they are nearly indistinguishable from the real thing. The training process involves showing the generative model millions of images that contain objects in a particular class (like cars or cats), and then it learns what a car or cat looks like so it can generate similar objects.

    Essentially by flipping a switch, researchers can use a pretrained generative model to output a steady stream of unique, realistic images that are based on those in the model’s training dataset, Jahanian says.

    But generative models are even more useful because they learn how to transform the underlying data on which they are trained, he says. If the model is trained on images of cars, it can “imagine” how a car would look in different situations — situations it did not see during training — and then output images that show the car in unique poses, colors, or sizes.

    Having multiple views of the same image is important for a technique called contrastive learning, where a machine-learning model is shown many unlabeled images to learn which pairs are similar or different.

    The researchers connected a pretrained generative model to a contrastive learning model in a way that allowed the two models to work together automatically. The contrastive learner could tell the generative model to produce different views of an object, and then learn to identify that object from multiple angles, Jahanian explains.

    “This was like connecting two building blocks. Because the generative model can give us different views of the same thing, it can help the contrastive method to learn better representations,” he says.

    Even better than the real thing

    The researchers compared their method to several other image classification models that were trained using real data and found that their method performed as well, and sometimes better, than the other models.

    One advantage of using a generative model is that it can, in theory, create an infinite number of samples. So, the researchers also studied how the number of samples influenced the model’s performance. They found that, in some instances, generating larger numbers of unique samples led to additional improvements.

    “The cool thing about these generative models is that someone else trained them for you. You can find them in online repositories, so everyone can use them. And you don’t need to intervene in the model to get good representations,” Jahanian says.

    But he cautions that there are some limitations to using generative models. In some cases, these models can reveal source data, which can pose privacy risks, and they could amplify biases in the datasets they are trained on if they aren’t properly audited.

    He and his collaborators plan to address those limitations in future work. Another area they want to explore is using this technique to generate corner cases that could improve machine learning models. Corner cases often can’t be learned from real data. For instance, if researchers are training a computer vision model for a self-driving car, real data wouldn’t contain examples of a dog and his owner running down a highway, so the model would never learn what to do in this situation. Generating that corner case data synthetically could improve the performance of machine learning models in some high-stakes situations.

    The researchers also want to continue improving generative models so they can compose images that are even more sophisticated, he says.

    This research was supported, in part, by the MIT-IBM Watson AI Lab, the United States Air Force Research Laboratory, and the United States Air Force Artificial Intelligence Accelerator. More

  • in

    Transforming the travel experience for the Hong Kong airport

    MIT Hong Kong Innovation Node welcomed 33 students to its flagship program, MIT Entrepreneurship and Maker Skills Integrator (MEMSI). Designed to develop entrepreneurial prowess through exposure to industry-driven challenges, MIT students joined forces with Hong Kong peers in this two-week hybrid bootcamp, developing unique proposals for the Airport Authority of Hong Kong.

    Many airports across the world continue to be affected by the broader impact of Covid-19 with reduced air travel, prompting airlines to cut capacity. The result is a need for new business opportunities to propel economic development. For Hong Kong, the expansion toward non-aeronautical activities to boost regional consumption is therefore crucial, and included as part of the blueprint to transform the city’s airport into an airport city — characterized by capacity expansion, commercial developments, air cargo leadership, an autonomous transport system, connectivity to neighboring cities in mainland China, and evolution into a smart airport guided by sustainable practices. To enhance the customer experience, a key focus is capturing business opportunities at the nexus of digital and physical interactions. 

    These challenges “bring ideas and talent together to tackle real-world problems in the areas of digital service creation for the airport and engaging regional customers to experience the new airport city,” says Charles Sodini, the LeBel Professor of Electrical Engineering at MIT and faculty director at the Node. 

    The new travel standard

    Businesses are exploring new digital technologies, both to drive bookings and to facilitate safe travel. Developments such as Hong Kong airport’s Flight Token, a biometric technology using facial recognition to enable contactless check-ins and boarding at airports, unlock enormous potential that speeds up the departure journey of passengers. Seamless virtual experiences are not going to disappear.

    “What we may see could be a strong rebounce especially for travelers after the travel ban lifts … an opportunity to make travel easier, flying as simple as riding the bus,” says Chris Au Young, general manager of smart airport and general manager of data analytics at the Airport Authority of Hong Kong. 

    The passenger experience of the future will be “enabled by mobile technology, internet of things, and digital platforms,” he explains, adding that in the aviation community, “international organizations have already stipulated that biometric technology will be the new standard for the future … the next question is how this can be connected across airports.”  

    This extends further beyond travel, where Au Young illustrates, “If you go to a concert at Asia World Expo, which is the airport’s new arena in the future, you might just simply show your face rather than queue up in a long line waiting to show your tickets.”

    Accelerating the learning curve with industry support

    Working closely with industry mentors involved in the airport city’s development, students dived deep into discussions on the future of adapted travel, interviewed and surveyed travelers, and plowed through a range of airport data to uncover business insights.

    “With the large amount of data provided, my teammates and I worked hard to identify modeling opportunities that were both theoretically feasible and valuable in a business sense,” says Sean Mann, a junior at MIT studying computer science.

    Mann and his team applied geolocation data to inform machine learning predictions on a passenger’s journey once they enter the airside area. Coupled with biometric technology, passengers can receive personalized recommendations with improved accuracy via the airport’s bespoke passenger app, powered by data collected through thousands of iBeacons dispersed across the vicinity. Armed with these insights, the aim is to enhance the user experience by driving meaningful footfall to retail shops, restaurants, and other airport amenities.

    The support of industry partners inspired his team “with their deep understanding of the aviation industry,” he added. “In a short period of two weeks, we built a proof-of-concept and a rudimentary business plan — the latter of which was very new to me.”

    Collaborating across time zones, Rumen Dangovski, a PhD candidate in electrical engineering and computer science at MIT, joined MEMSI from his home in Bulgaria. For him, learning “how to continually revisit ideas to discover important problems and meaningful solutions for a large and complex real-world system” was a key takeaway. The iterative process helped his team overcome the obstacle of narrowing down the scope of their proposal, with the help of industry mentors and advisors. 

    “Without the feedback from industry partners, we would not have been able to formulate a concrete solution that is actually helpful to the airport,” says Dangovski.  

    Beyond valuable mentorship, he adds, “there was incredible energy in our team, consisting of diverse talent, grit, discipline and organization. I was positively surprised how MEMSI can form quickly and give continual support to our team. The overall experience was very fun.“

    A sustainable future

    Mrigi Munjal, a PhD candidate studying materials science and engineering at MIT, had just taken a long-haul flight from Boston to Delhi prior to the program, and “was beginning to fully appreciate the scale of carbon emissions from aviation.” For her, “that one journey basically overshadowed all of my conscious pro-sustainability lifestyle changes,” she says.

    Knowing that international flights constitute the largest part of an individual’s carbon footprint, Munjal and her team wanted “to make flying more sustainable with an idea that is economically viable for all of the stakeholders involved.” 

    They proposed a carbon offset API that integrates into an airline’s ticket payment system, empowering individuals to take action to offset their carbon footprint, track their personal carbon history, and pick and monitor green projects. The advocacy extends to a digital display of interactive art featured in physical installations across the airport city. The intent is to raise community awareness about one’s impact on the environment and making carbon offsetting accessible. 

    Shaping the travel narrative

    Six teams of students created innovative solutions for the Hong Kong airport which they presented in hybrid format to a panel of judges on Showcase Day. The diverse ideas included an app-based airport retail recommendations supported by iBeacons; a platform that empowers customers to offset their carbon footprint; an app that connects fellow travelers for social and incentive-driven retail experiences; a travel membership exchange platform offering added flexibility to earn and redeem loyalty rewards; an interactive and gamified location-based retail experience using augmented reality; and a digital companion avatar to increase adoption of the airport’s Flight Token and improve airside passenger experience.

    Among the judges was Julian Lee ’97, former president of the MIT Club of Hong Kong and current executive director of finance at the Airport Authority of Hong Kong, who commended the students for demonstrably having “worked very thoroughly and thinking through the specific challenges,” addressing the real pain points that the airport is experiencing.

    “The ideas were very thoughtful and very unique to us. Some of you defined transit passengers as a sub-segment of the market that works. It only happens at the airport and you’ve been able to leverage this transit time in between,” remarked Lee. 

    Strong solutions include an implementation plan to see a path for execution and a viable future. Among the solutions proposed, Au Young was impressed by teams for “paying a lot of attention to the business model … a very important aspect in all the ideas generated.”  

    Addressing the students, Au Young says, “What we love is the way you reinvent the airport business and partnerships, presenting a new way of attracting people to engage more in new services and experiences — not just returning for a flight or just shopping with us, but innovating beyond the airport and using emerging technologies, using location data, using the retailer’s capability and adding some social activities in your solutions.”

    Despite today’s rapidly evolving travel industry, what remains unchanged is a focus on the customer. In the end, “it’s still about the passengers,” added Au Young.  More

  • in

    Computational modeling guides development of new materials

    Metal-organic frameworks, a class of materials with porous molecular structures, have a variety of possible applications, such as capturing harmful gases and catalyzing chemical reactions. Made of metal atoms linked by organic molecules, they can be configured in hundreds of thousands of different ways.

    To help researchers sift through all of the possible metal-organic framework (MOF) structures and help identify the ones that would be most practical for a particular application, a team of MIT computational chemists has developed a model that can analyze the features of a MOF structure and predict if it will be stable enough to be useful.

    The researchers hope that these computational predictions will help cut the development time of new MOFs.

    “This will allow researchers to test the promise of specific materials before they go through the trouble of synthesizing them,” says Heather Kulik, an associate professor of chemical engineering at MIT.

    The MIT team is now working to develop MOFs that could be used to capture methane gas and convert it to useful compounds such as fuels.

    The researchers described their new model in two papers, one in the Journal of the American Chemical Society and one in Scientific Data. Graduate students Aditya Nandy and Gianmarco Terrones are the lead authors of the Scientific Data paper, and Nandy is also the lead author of the JACS paper. Kulik is the senior author of both papers.

    Modeling structure

    MOFs consist of metal atoms joined by organic molecules called linkers to create a rigid, cage-like structure. The materials also have many pores, which makes them useful for catalyzing reactions involving gases but can also make them less structurally stable.

    “The limitation in seeing MOFs realized at industrial scale is that although we can control their properties by controlling where each atom is in the structure, they’re not necessarily that stable, as far as materials go,” Kulik says. “They’re very porous and they can degrade under realistic conditions that we need for catalysis.”

    Scientists have been working on designing MOFs for more than 20 years, and thousands of possible structures have been published. A centralized repository contains about 10,000 of these structures but is not linked to any of the published findings on the properties of those structures.

    Kulik, who specializes in using computational modeling to discover structure-property relationships of materials, wanted to take a more systematic approach to analyzing and classifying the properties of MOFs.

    “When people make these now, it’s mostly trial and error. The MOF dataset is really promising because there are so many people excited about MOFs, so there’s so much to learn from what everyone’s been working on, but at the same time, it’s very noisy and it’s not systematic the way it’s reported,” she says.

    Kulik and her colleagues set out to analyze published reports of MOF structures and properties using a natural-language-processing algorithm. Using this algorithm, they scoured nearly 4,000 published papers, extracting information on the temperature at which a given MOF would break down. They also pulled out data on whether particular MOFs can withstand the conditions needed to remove solvents used to synthesize them and make sure they become porous.

    Once the researchers had this information, they used it to train two neural networks to predict MOFs’ thermal stability and stability during solvent removal, based on the molecules’ structure.

    “Before you start working with a material and thinking about scaling it up for different applications, you want to know will it hold up, or is it going to degrade in the conditions I would want to use it in?” Kulik says. “Our goal was to get better at predicting what makes a stable MOF.”

    Better stability

    Using the model, the researchers were able to identify certain features that influence stability. In general, simpler linkers with fewer chemical groups attached to them are more stable. Pore size is also important: Before the researchers did their analysis, it had been thought that MOFs with larger pores might be too unstable. However, the MIT team found that large-pore MOFs can be stable if other aspects of their structure counteract the large pore size.

    “Since MOFs have so many things that can vary at the same time, such as the metal, the linkers, the connectivity, and the pore size, it is difficult to nail down what governs stability across different families of MOFs,” Nandy says. “Our models enable researchers to make predictions on existing or new materials, many of which have yet to be made.”

    The researchers have made their data and models available online. Scientists interested in using the models can get recommendations for strategies to make an existing MOF more stable, and they can also add their own data and feedback on the predictions of the models.

    The MIT team is now using the model to try to identify MOFs that could be used to catalyze the conversion of methane gas to methanol, which could be used as fuel. Kulik also plans to use the model to create a new dataset of hypothetical MOFs that haven’t been built before but are predicted to have high stability. Researchers could then screen this dataset for a variety of properties.

    “People are interested in MOFs for things like quantum sensing and quantum computing, all sorts of different applications where you need metals distributed in this atomically precise way,” Kulik says.

    The research was funded by DARPA, the U.S. Office of Naval Research, the U.S. Department of Energy, a National Science Foundation Graduate Research Fellowship, a Career Award at the Scientific Interface from the Burroughs Wellcome Fund, and an AAAS Marion Milligan Mason Award. More