More stories

  • in

    MIT to launch new Office of Research Computing and Data

    As the computing and data needs of MIT’s research community continue to grow — both in their quantity and complexity — the Institute is launching a new effort to ensure that researchers have access to the advanced computing resources and data management services they need to do their best work. 

    At the core of this effort is the creation of the new Office of Research Computing and Data (ORCD), to be led by Professor Peter Fisher, who will step down as head of the Department of Physics to serve as the office’s inaugural director. The office, which formally opens in September, will build on and replace the MIT Research Computing Project, an initiative supported by the Office of the Vice President for Research, which contributed in recent years to improving the computing resources available to MIT researchers.

    “Almost every scientific field makes use of research computing to carry out our mission at MIT — and computing needs vary between different research groups. In my world, high-energy physics experiments need large amounts of storage and many identical general-purpose CPUs, while astrophysical theorists simulating the formation of galaxy clusters need relatively little storage, but many CPUs with high-speed connections between them,” says Fisher, the Thomas A. Frank (1977) Professor of Physics, who will take up the mantle of ORCD director on Sept. 1.

    “I envision ORCD to be, at a minimum, a centralized system with a spectrum of different capabilities to allow our MIT researchers to start their projects and understand the computational resources needed to execute them,” Fisher adds.

    The Office of Research Computing and Data will provide services spanning hardware, software, and cloud solutions, including data storage and retrieval, and offer advice, training, documentation, and data curation for MIT’s research community. It will also work to develop innovative solutions that address emerging or highly specialized needs, and it will advance strategic collaborations with industry.

    The exceptional performance of MIT’s endowment last year has provided a unique opportunity for MIT to distribute endowment funds to accelerate progress on an array of Institute priorities in fiscal year 2023, beginning July 1, 2022. On the basis of community input and visiting committee feedback, MIT’s leadership identified research computing as one such priority, enabling the expanded effort that the Institute commenced today. Future operation of ORCD will incorporate a cost-recovery model.

    In his new role, Fisher will report to Maria Zuber, MIT’s vice president for research, and coordinate closely with MIT Information Systems and Technology (IS&T), MIT Libraries, and the deans of the five schools and the MIT Schwarzman College of Computing, among others. He will also work closely with Provost Cindy Barnhart.

    “I am thrilled that Peter has agreed to take on this important role,” says Zuber. “Under his leadership, I am confident that we’ll be able to build on the important progress of recent years to deliver to MIT researchers best-in-class infrastructure, services, and expertise so they can maximize the performance of their research.”

    MIT’s research computing capabilities have grown significantly in recent years. Ten years ago, the Institute joined with a number of other Massachusetts universities to establish the Massachusetts Green High-Performance Computing Center (MGHPCC) in Holyoke to provide the high-performance, low-carbon computing power necessary to carry out cutting-edge research while reducing its environmental impact. MIT’s capacity at the MGHPCC is now almost fully utilized, however, and an expansion is underway.

    The need for more advanced computing capacity is not the only issue to be addressed. Over the last decade, there have been considerable advances in cloud computing, which is increasingly used in research computing, requiring the Institute to take a new look at how it works with cloud services providers and then allocates cloud resources to departments, labs, and centers. And MIT’s longstanding model for research computing — which has been mostly decentralized — can lead to inefficiencies and inequities among departments, even as it offers flexibility.

    The Institute has been carefully assessing how to address these issues for several years, including in connection with the establishment of the MIT Schwarzman College of Computing. In August 2019, a college task force on computing infrastructure found a “campus-wide preference for an overarching organizational model of computing infrastructure that transcends a college or school and most logically falls under senior leadership.” The task force’s report also addressed the need for a better balance between centralized and decentralized research computing resources.

    “The needs for computing infrastructure and support vary considerably across disciplines,” says Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing and the Henry Ellis Warren Professor of Electrical Engineering and Computer Science. “With the new Office of Research Computing and Data, the Institute is seizing the opportunity to transform its approach to supporting research computing and data, including not only hardware and cloud computing but also expertise. This move is a critical step forward in supporting MIT’s research and scholarship.”

    Over time, ORCD (pronounced “orchid”) aims to recruit a staff of professionals, including data scientists and engineers and system and hardware administrators, who will enhance, support, and maintain MIT’s research computing infrastructure, and ensure that all researchers on campus have access to a minimum level of advanced computing and data management.

    The new research computing and data effort is part of a broader push to modernize MIT’s information technology infrastructure and systems. “We are at an inflection point, where we have a significant opportunity to invest in core needs, replace or upgrade aging systems, and respond fully to the changing needs of our faculty, students, and staff,” says Mark Silis, MIT’s vice president for information systems and technology. “We are thrilled to have a new partner in the Office of Research Computing and Data as we embark on this important work.” More

  • in

    Looking forward to forecast the risks of a changing climate

    On April 11, MIT announced five multiyear flagship projects in the first-ever Climate Grand Challenges, a new initiative to tackle complex climate problems and deliver breakthrough solutions to the world as quickly as possible. This article is the third in a five-part series highlighting the most promising concepts to emerge from the competition, and the interdisciplinary research teams behind them.

    Extreme weather events that were once considered rare have become noticeably less so, from intensifying hurricane activity in the North Atlantic to wildfires generating massive clouds of ozone-damaging smoke. But current climate models are unprepared when it comes to estimating the risk that these increasingly extreme events pose — and without adequate modeling, governments are left unable to take necessary precautions to protect their communities.

    MIT Department of Earth, Atmospheric and Planetary Science (EAPS) Professor Paul O’Gorman researches this trend by studying how climate affects the atmosphere and incorporating what he learns into climate models to improve their accuracy. One particular focus for O’Gorman has been changes in extreme precipitation and midlatitude storms that hit areas like New England.

    “These extreme events are having a lot of impact, but they’re also difficult to model or study,” he says. Seeing the pressing need for better climate models that can be used to develop preparedness plans and climate change mitigation strategies, O’Gorman and collaborators Kerry Emanuel, the Cecil and Ida Green Professor of Atmospheric Science in EAPS, and Miho Mazereeuw, associate professor in MIT’s Department of Architecture, are leading an interdisciplinary group of scientists, engineers, and designers to tackle this problem with their MIT Climate Grand Challenges flagship project, “Preparing for a new world of weather and climate extremes.”

    “We know already from observations and from climate model predictions that weather and climate extremes are changing and will change more,” O’Gorman says. “The grand challenge is preparing for those changing extremes.”

    Their proposal is one of five flagship projects recently announced by the MIT Climate Grand Challenges initiative — an Institute-wide effort catalyzing novel research and engineering innovations to address the climate crisis. Selected from a field of almost 100 submissions, the team will receive additional funding and exposure to help accelerate and scale their project goals. Other MIT collaborators on the proposal include researchers from the School of Engineering, the School of Architecture and Planning, the Office of Sustainability, the Center for Global Change Science, and the Institute for Data, Systems and Society.

    Weather risk modeling

    Fifteen years ago, Kerry Emanuel developed a simple hurricane model. It was based on physics equations, rather than statistics, and could run in real time, making it useful for modeling risk assessment. Emanuel wondered if similar models could be used for long-term risk assessment of other things, such as changes in extreme weather because of climate change.

    “I discovered, somewhat to my surprise and dismay, that almost all extant estimates of long-term weather risks in the United States are based not on physical models, but on historical statistics of the hazards,” says Emanuel. “The problem with relying on historical records is that they’re too short; while they can help estimate common events, they don’t contain enough information to make predictions for more rare events.”

    Another limitation of weather risk models which rely heavily on statistics: They have a built-in assumption that the climate is static.

    “Historical records rely on the climate at the time they were recorded; they can’t say anything about how hurricanes grow in a warmer climate,” says Emanuel. The models rely on fixed relationships between events; they assume that hurricane activity will stay the same, even while science is showing that warmer temperatures will most likely push typical hurricane activity beyond the tropics and into a much wider band of latitudes.

    As a flagship project, the goal is to eliminate this reliance on the historical record by emphasizing physical principles (e.g., the laws of thermodynamics and fluid mechanics) in next-generation models. The downside to this is that there are many variables that have to be included. Not only are there planetary-scale systems to consider, such as the global circulation of the atmosphere, but there are also small-scale, extremely localized events, like thunderstorms, that influence predictive outcomes.

    Trying to compute all of these at once is costly and time-consuming — and the results often can’t tell you the risk in a specific location. But there is a way to correct for this: “What’s done is to use a global model, and then use a method called downscaling, which tries to infer what would happen on very small scales that aren’t properly resolved by the global model,” explains O’Gorman. The team hopes to improve downscaling techniques so that they can be used to calculate the risk of very rare but impactful weather events.

    Global climate models, or general circulation models (GCMs), Emanuel explains, are constructed a bit like a jungle gym. Like the playground bars, the Earth is sectioned in an interconnected three-dimensional framework — only it’s divided 100 to 200 square kilometers at a time. Each node comprises a set of computations for characteristics like wind, rainfall, atmospheric pressure, and temperature within its bounds; the outputs of each node are connected to its neighbor. This framework is useful for creating a big picture idea of Earth’s climate system, but if you tried to zoom in on a specific location — like, say, to see what’s happening in Miami or Mumbai — the connecting nodes are too far apart to make predictions on anything specific to those areas.

    Scientists work around this problem by using downscaling. They use the same blueprint of the jungle gym, but within the nodes they weave a mesh of smaller features, incorporating equations for things like topography and vegetation or regional meteorological models to fill in the blanks. By creating a finer mesh over smaller areas they can predict local effects without needing to run the entire global model.

    Of course, even this finer-resolution solution has its trade-offs. While we might be able to gain a clearer picture of what’s happening in a specific region by nesting models within models, it can still make for a computing challenge to crunch all that data at once, with the trade-off being expense and time, or predictions that are limited to shorter windows of duration — where GCMs can be run considering decades or centuries, a particularly complex local model may be restricted to predictions on timescales of just a few years at a time.

    “I’m afraid that most of the downscaling at present is brute force, but I think there’s room to do it in better ways,” says Emanuel, who sees the problem of finding new and novel methods of achieving this goal as an intellectual challenge. “I hope that through the Grand Challenges project we might be able to get students, postdocs, and others interested in doing this in a very creative way.”

    Adapting to weather extremes for cities and renewable energy

    Improving climate modeling is more than a scientific exercise in creativity, however. There’s a very real application for models that can accurately forecast risk in localized regions.

    Another problem is that progress in climate modeling has not kept up with the need for climate mitigation plans, especially in some of the most vulnerable communities around the globe.

    “It is critical for stakeholders to have access to this data for their own decision-making process. Every community is composed of a diverse population with diverse needs, and each locality is affected by extreme weather events in unique ways,” says Mazereeuw, the director of the MIT Urban Risk Lab. 

    A key piece of the team’s project is building on partnerships the Urban Risk Lab has developed with several cities to test their models once they have a usable product up and running. The cities were selected based on their vulnerability to increasing extreme weather events, such as tropical cyclones in Broward County, Florida, and Toa Baja, Puerto Rico, and extratropical storms in Boston, Massachusetts, and Cape Town, South Africa.

    In their proposal, the team outlines a variety of deliverables that the cities can ultimately use in their climate change preparations, with ideas such as online interactive platforms and workshops with stakeholders — such as local governments, developers, nonprofits, and residents — to learn directly what specific tools they need for their local communities. By doing so, they can craft plans addressing different scenarios in their region, involving events such as sea-level rise or heat waves, while also providing information and means of developing adaptation strategies for infrastructure under these conditions that will be the most effective and efficient for them.

    “We are acutely aware of the inequity of resources both in mitigating impacts and recovering from disasters. Working with diverse communities through workshops allows us to engage a lot of people, listen, discuss, and collaboratively design solutions,” says Mazereeuw.

    By the end of five years, the team is hoping that they’ll have better risk assessment and preparedness tool kits, not just for the cities that they’re partnering with, but for others as well.

    “MIT is well-positioned to make progress in this area,” says O’Gorman, “and I think it’s an important problem where we can make a difference.” More

  • in

    MIT announces five flagship projects in first-ever Climate Grand Challenges competition

    MIT today announced the five flagship projects selected in its first-ever Climate Grand Challenges competition. These multiyear projects will define a dynamic research agenda focused on unraveling some of the toughest unsolved climate problems and bringing high-impact, science-based solutions to the world on an accelerated basis.

    Representing the most promising concepts to emerge from the two-year competition, the five flagship projects will receive additional funding and resources from MIT and others to develop their ideas and swiftly transform them into practical solutions at scale.

    “Climate Grand Challenges represents a whole-of-MIT drive to develop game-changing advances to confront the escalating climate crisis, in time to make a difference,” says MIT President L. Rafael Reif. “We are inspired by the creativity and boldness of the flagship ideas and by their potential to make a significant contribution to the global climate response. But given the planet-wide scale of the challenge, success depends on partnership. We are eager to work with visionary leaders in every sector to accelerate this impact-oriented research, implement serious solutions at scale, and inspire others to join us in confronting this urgent challenge for humankind.”

    Brief descriptions of the five Climate Grand Challenges flagship projects are provided below.

    Bringing Computation to the Climate Challenge

    This project leverages advances in artificial intelligence, machine learning, and data sciences to improve the accuracy of climate models and make them more useful to a variety of stakeholders — from communities to industry. The team is developing a digital twin of the Earth that harnesses more data than ever before to reduce and quantify uncertainties in climate projections.

    Research leads: Raffaele Ferrari, the Cecil and Ida Green Professor of Oceanography in the Department of Earth, Atmospheric and Planetary Sciences, and director of the Program in Atmospheres, Oceans, and Climate; and Noelle Eckley Selin, director of the Technology and Policy Program and professor with a joint appointment in the Institute for Data, Systems, and Society and the Department of Earth, Atmospheric and Planetary Sciences

    Center for Electrification and Decarbonization of Industry

    This project seeks to reinvent and electrify the processes and materials behind hard-to-decarbonize industries like steel, cement, ammonia, and ethylene production. A new innovation hub will perform targeted fundamental research and engineering with urgency, pushing the technological envelope on electricity-driven chemical transformations.

    Research leads: Yet-Ming Chiang, the Kyocera Professor of Materials Science and Engineering, and Bilge Yıldız, the Breene M. Kerr Professor in the Department of Nuclear Science and Engineering and professor in the Department of Materials Science and Engineering

    Preparing for a new world of weather and climate extremes

    This project addresses key gaps in knowledge about intensifying extreme events such as floods, hurricanes, and heat waves, and quantifies their long-term risk in a changing climate. The team is developing a scalable climate-change adaptation toolkit to help vulnerable communities and low-carbon energy providers prepare for these extreme weather events.

    Research leads: Kerry Emanuel, the Cecil and Ida Green Professor of Atmospheric Science in the Department of Earth, Atmospheric and Planetary Sciences and co-director of the MIT Lorenz Center; Miho Mazereeuw, associate professor of architecture and urbanism in the Department of Architecture and director of the Urban Risk Lab; and Paul O’Gorman, professor in the Program in Atmospheres, Oceans, and Climate in the Department of Earth, Atmospheric and Planetary Sciences

    The Climate Resilience Early Warning System

    The CREWSnet project seeks to reinvent climate change adaptation with a novel forecasting system that empowers underserved communities to interpret local climate risk, proactively plan for their futures incorporating resilience strategies, and minimize losses. CREWSnet will initially be demonstrated in southwestern Bangladesh, serving as a model for similarly threatened regions around the world.

    Research leads: John Aldridge, assistant leader of the Humanitarian Assistance and Disaster Relief Systems Group at MIT Lincoln Laboratory, and Elfatih Eltahir, the H.M. King Bhumibol Professor of Hydrology and Climate in the Department of Civil and Environmental Engineering

    Revolutionizing agriculture with low-emissions, resilient crops

    This project works to revolutionize the agricultural sector with climate-resilient crops and fertilizers that have the ability to dramatically reduce greenhouse gas emissions from food production.

    Research lead: Christopher Voigt, the Daniel I.C. Wang Professor in the Department of Biological Engineering

    “As one of the world’s leading institutions of research and innovation, it is incumbent upon MIT to draw on our depth of knowledge, ingenuity, and ambition to tackle the hard climate problems now confronting the world,” says Richard Lester, MIT associate provost for international activities. “Together with collaborators across industry, finance, community, and government, the Climate Grand Challenges teams are looking to develop and implement high-impact, path-breaking climate solutions rapidly and at a grand scale.”

    The initial call for ideas in 2020 yielded nearly 100 letters of interest from almost 400 faculty members and senior researchers, representing 90 percent of MIT departments. After an extensive evaluation, 27 finalist teams received a total of $2.7 million to develop comprehensive research and innovation plans. The projects address four broad research themes:

    To select the winning projects, research plans were reviewed by panels of international experts representing relevant scientific and technical domains as well as experts in processes and policies for innovation and scalability.

    “In response to climate change, the world really needs to do two things quickly: deploy the solutions we already have much more widely, and develop new solutions that are urgently needed to tackle this intensifying threat,” says Maria Zuber, MIT vice president for research. “These five flagship projects exemplify MIT’s strong determination to bring its knowledge and expertise to bear in generating new ideas and solutions that will help solve the climate problem.”

    “The Climate Grand Challenges flagship projects set a new standard for inclusive climate solutions that can be adapted and implemented across the globe,” says MIT Chancellor Melissa Nobles. “This competition propels the entire MIT research community — faculty, students, postdocs, and staff — to act with urgency around a worsening climate crisis, and I look forward to seeing the difference these projects can make.”

    “MIT’s efforts on climate research amid the climate crisis was a primary reason that I chose to attend MIT, and remains a reason that I view the Institute favorably. MIT has a clear opportunity to be a thought leader in the climate space in our own MIT way, which is why CGC fits in so well,” says senior Megan Xu, who served on the Climate Grand Challenges student committee and is studying ways to make the food system more sustainable.

    The Climate Grand Challenges competition is a key initiative of “Fast Forward: MIT’s Climate Action Plan for the Decade,” which the Institute published in May 2021. Fast Forward outlines MIT’s comprehensive plan for helping the world address the climate crisis. It consists of five broad areas of action: sparking innovation, educating future generations, informing and leveraging government action, reducing MIT’s own climate impact, and uniting and coordinating all of MIT’s climate efforts. More

  • in

    Ocean vital signs

    Without the ocean, the climate crisis would be even worse than it is. Each year, the ocean absorbs billions of tons of carbon from the atmosphere, preventing warming that greenhouse gas would otherwise cause. Scientists estimate about 25 to 30 percent of all carbon released into the atmosphere by both human and natural sources is absorbed by the ocean.

    “But there’s a lot of uncertainty in that number,” says Ryan Woosley, a marine chemist and a principal research scientist in the Department of Earth, Atmospheric and Planetary Sciences (EAPS) at MIT. Different parts of the ocean take in different amounts of carbon depending on many factors, such as the season and the amount of mixing from storms. Current models of the carbon cycle don’t adequately capture this variation.

    To close the gap, Woosley and a team of other MIT scientists developed a research proposal for the MIT Climate Grand Challenges competition — an Institute-wide campaign to catalyze and fund innovative research addressing the climate crisis. The team’s proposal, “Ocean Vital Signs,” involves sending a fleet of sailing drones to cruise the oceans taking detailed measurements of how much carbon the ocean is really absorbing. Those data would be used to improve the precision of global carbon cycle models and improve researchers’ ability to verify emissions reductions claimed by countries.

    “If we start to enact mitigation strategies—either through removing CO2 from the atmosphere or reducing emissions — we need to know where CO2 is going in order to know how effective they are,” says Woosley. Without more precise models there’s no way to confirm whether observed carbon reductions were thanks to policy and people, or thanks to the ocean.

    “So that’s the trillion-dollar question,” says Woosley. “If countries are spending all this money to reduce emissions, is it enough to matter?”

    In February, the team’s Climate Grand Challenges proposal was named one of 27 finalists out of the almost 100 entries submitted. From among this list of finalists, MIT will announce in April the selection of five flagship projects to receive further funding and support.

    Woosley is leading the team along with Christopher Hill, a principal research engineer in EAPS. The team includes physical and chemical oceanographers, marine microbiologists, biogeochemists, and experts in computational modeling from across the department, in addition to collaborators from the Media Lab and the departments of Mathematics, Aeronautics and Astronautics, and Electrical Engineering and Computer Science.

    Today, data on the flux of carbon dioxide between the air and the oceans are collected in a piecemeal way. Research ships intermittently cruise out to gather data. Some commercial ships are also fitted with sensors. But these present a limited view of the entire ocean, and include biases. For instance, commercial ships usually avoid storms, which can increase the turnover of water exposed to the atmosphere and cause a substantial increase in the amount of carbon absorbed by the ocean.

    “It’s very difficult for us to get to it and measure that,” says Woosley. “But these drones can.”

    If funded, the team’s project would begin by deploying a few drones in a small area to test the technology. The wind-powered drones — made by a California-based company called Saildrone — would autonomously navigate through an area, collecting data on air-sea carbon dioxide flux continuously with solar-powered sensors. This would then scale up to more than 5,000 drone-days’ worth of observations, spread over five years, and in all five ocean basins.

    Those data would be used to feed neural networks to create more precise maps of how much carbon is absorbed by the oceans, shrinking the uncertainties involved in the models. These models would continue to be verified and improved by new data. “The better the models are, the more we can rely on them,” says Woosley. “But we will always need measurements to verify the models.”

    Improved carbon cycle models are relevant beyond climate warming as well. “CO2 is involved in so much of how the world works,” says Woosley. “We’re made of carbon, and all the other organisms and ecosystems are as well. What does the perturbation to the carbon cycle do to these ecosystems?”

    One of the best understood impacts is ocean acidification. Carbon absorbed by the ocean reacts to form an acid. A more acidic ocean can have dire impacts on marine organisms like coral and oysters, whose calcium carbonate shells and skeletons can dissolve in the lower pH. Since the Industrial Revolution, the ocean has become about 30 percent more acidic on average.

    “So while it’s great for us that the oceans have been taking up the CO2, it’s not great for the oceans,” says Woosley. “Knowing how this uptake affects the health of the ocean is important as well.” More

  • in

    Improving predictions of sea level rise for the next century

    When we think of climate change, one of the most dramatic images that comes to mind is the loss of glacial ice. As the Earth warms, these enormous rivers of ice become a casualty of the rising temperatures. But, as ice sheets retreat, they also become an important contributor to one the more dangerous outcomes of climate change: sea-level rise. At MIT, an interdisciplinary team of scientists is determined to improve sea level rise predictions for the next century, in part by taking a closer look at the physics of ice sheets.

    Last month, two research proposals on the topic, led by Brent Minchew, the Cecil and Ida Green Career Development Professor in the Department of Earth, Atmospheric and Planetary Sciences (EAPS), were announced as finalists in the MIT Climate Grand Challenges initiative. Launched in July 2020, Climate Grand Challenges fielded almost 100 project proposals from collaborators across the Institute who heeded the bold charge: to develop research and innovations that will deliver game-changing advances in the world’s efforts to address the climate challenge.

    As finalists, Minchew and his collaborators from the departments of Urban Studies and Planning, Economics, Civil and Environmental Engineering, the Haystack Observatory, and external partners, received $100,000 to develop their research plans. A subset of the 27 proposals tapped as finalists will be announced next month, making up a portfolio of multiyear “flagship” projects receiving additional funding and support.

    One goal of both Minchew proposals is to more fully understand the most fundamental processes that govern rapid changes in glacial ice, and to use that understanding to build next-generation models that are more predictive of ice sheet behavior as they respond to, and influence, climate change.

    “We need to develop more accurate and computationally efficient models that provide testable projections of sea-level rise over the coming decades. To do so quickly, we want to make better and more frequent observations and learn the physics of ice sheets from these data,” says Minchew. “For example, how much stress do you have to apply to ice before it breaks?”

    Currently, Minchew’s Glacier Dynamics and Remote Sensing group uses satellites to observe the ice sheets on Greenland and Antarctica primarily with interferometric synthetic aperture radar (InSAR). But the data are often collected over long intervals of time, which only gives them “before and after” snapshots of big events. By taking more frequent measurements on shorter time scales, such as hours or days, they can get a more detailed picture of what is happening in the ice.

    “Many of the key unknowns in our projections of what ice sheets are going to look like in the future, and how they’re going to evolve, involve the dynamics of glaciers, or our understanding of how the flow speed and the resistances to flow are related,” says Minchew.

    At the heart of the two proposals is the creation of SACOS, the Stratospheric Airborne Climate Observatory System. The group envisions developing solar-powered drones that can fly in the stratosphere for months at a time, taking more frequent measurements using a new lightweight, low-power radar and other high-resolution instrumentation. They also propose air-dropping sensors directly onto the ice, equipped with seismometers and GPS trackers to measure high-frequency vibrations in the ice and pinpoint the motions of its flow.

    How glaciers contribute to sea level rise

    Current climate models predict an increase in sea levels over the next century, but by just how much is still unclear. Estimates are anywhere from 20 centimeters to two meters, which is a large difference when it comes to enacting policy or mitigation. Minchew points out that response measures will be different, depending on which end of the scale it falls toward. If it’s closer to 20 centimeters, coastal barriers can be built to protect low-level areas. But with higher surges, such measures become too expensive and inefficient to be viable, as entire portions of cities and millions of people would have to be relocated.

    “If we’re looking at a future where we could get more than a meter of sea level rise by the end of the century, then we need to know about that sooner rather than later so that we can start to plan and to do our best to prepare for that scenario,” he says.

    There are two ways glaciers and ice sheets contribute to rising sea levels: direct melting of the ice and accelerated transport of ice to the oceans. In Antarctica, warming waters melt the margins of the ice sheets, which tends to reduce the resistive stresses and allow ice to flow more quickly to the ocean. This thinning can also cause the ice shelves to be more prone to fracture, facilitating the calving of icebergs — events which sometimes cause even further acceleration of ice flow.

    Using data collected by SACOS, Minchew and his group can better understand what material properties in the ice allow for fracturing and calving of icebergs, and build a more complete picture of how ice sheets respond to climate forces. 

    “What I want is to reduce and quantify the uncertainties in projections of sea level rise out to the year 2100,” he says.

    From that more complete picture, the team — which also includes economists, engineers, and urban planning specialists — can work on developing predictive models and methods to help communities and governments estimate the costs associated with sea level rise, develop sound infrastructure strategies, and spur engineering innovation.

    Understanding glacier dynamics

    More frequent radar measurements and the collection of higher-resolution seismic and GPS data will allow Minchew and the team to develop a better understanding of the broad category of glacier dynamics — including calving, an important process in setting the rate of sea level rise which is currently not well understood.  

    “Some of what we’re doing is quite similar to what seismologists do,” he says. “They measure seismic waves following an earthquake, or a volcanic eruption, or things of this nature and use those observations to better understand the mechanisms that govern these phenomena.”

    Air-droppable sensors will help them collect information about ice sheet movement, but this method comes with drawbacks — like installation and maintenance, which is difficult to do out on a massive ice sheet that is moving and melting. Also, the instruments can each only take measurements at a single location. Minchew equates it to a bobber in water: All it can tell you is how the bobber moves as the waves disturb it.

    But by also taking continuous radar measurements from the air, Minchew’s team can collect observations both in space and in time. Instead of just watching the bobber in the water, they can effectively make a movie of the waves propagating out, as well as visualize processes like iceberg calving happening in multiple dimensions.

    Once the bobbers are in place and the movies recorded, the next step is developing machine learning algorithms to help analyze all the new data being collected. While this data-driven kind of discovery has been a hot topic in other fields, this is the first time it has been applied to glacier research.

    “We’ve developed this new methodology to ingest this huge amount of data,” he says, “and from that create an entirely new way of analyzing the system to answer these fundamental and critically important questions.”  More

  • in

    MIT Center for Real Estate launches the Asia Real Estate Initiative

    To appreciate the explosive urbanization taking place in Asia, consider this analogy: Every 40 days, a city the equivalent size of Boston is built in Asia. Of the $24.7 trillion real estate investment opportunities predicted by 2030 in emerging cities, $17.8 trillion (72 percent) will be in Asia. While this growth is exciting to the real estate industry, it brings with it the attendant social and environmental issues.

    To promote a sustainable and innovative approach to this growth, leadership at the MIT Center for Real Estate (MIT CRE) recently established the Asia Real Estate Initiative (AREI), which aims to become a platform for industry leaders, entrepreneurs, and the academic community to find solutions to the practical concerns of real estate development across these countries.

    “Behind the creation of this initiative is the understanding that Asia is a living lab for the study of future global urban development,” says Hashim Sarkis, dean of the MIT School of Architecture and Planning.

    An investment in cities of the future

    One of the areas in AREI’s scope of focus is connecting sustainability and technology in real estate.

    “We believe the real estate sector should work cooperatively with the energy, science, and technology sectors to solve the climate challenges,” says Richard Lester, the Institute’s associate provost for international activities. “AREI will engage academics and industry leaders, nongovernment organizations, and civic leaders globally and in Asia, to advance sharing knowledge and research.”

    In its effort to understand how trends and new technologies will impact the future of real estate, AREI has received initial support from a prominent alumnus of MIT CRE who wishes to remain anonymous. The gift will support a cohort of researchers working on innovative technologies applicable to advancing real estate sustainability goals, with a special focus on the global and Asia markets. The call for applications is already under way, with AREI seeking to collaborate with scholars who have backgrounds in economics, finance, urban planning, technology, engineering, and other disciplines.

    “The research on real estate sustainability and technology could transform this industry and help invent global real estate of the future,” says Professor Siqi Zheng, faculty director of MIT CRE and AREI faculty chair. “The pairing of real estate and technology often leads to innovative and differential real estate development strategies such as buildings that are green, smart, and healthy.”

    The initiative arrives at a key time to make a significant impact and cement a leadership role in real estate development across Asia. MIT CRE is positioned to help the industry increase its efficiency and social responsibility, with nearly 40 years of pioneering research in the field. Zheng, an established scholar with expertise on urban growth in fast-urbanizing regions, is the former president of the Asia Real Estate Society and sits on the Board of American Real Estate and Urban Economics Association. Her research has been supported by international institutions including the World Bank, the Asian Development Bank, and the Lincoln Institute of Land Policy.

    “The researchers in AREI are now working on three interrelated themes: the future of real estate and live-work-play dynamics; connecting sustainability and technology in real estate; and innovations in real estate finance and business,” says Zheng.

    The first theme has already yielded a book — “Toward Urban Economic Vibrancy: Patterns and Practices in Asia’s New Cities” — recently published by SA+P Press.

    Engaging thought leaders and global stakeholders

    AREI also plans to collaborate with counterparts in Asia to contribute to research, education, and industry dialogue to meet the challenges of sustainable city-making across the continent and identify areas for innovation. Traditionally, real estate has been a very local business with a lengthy value chain, according to Zhengzhen Tan, director of AREI. Most developers focused their career on one particular product type in one particular regional market. AREI is working to change that dynamic.

    “We want to create a cross-border dialogue within Asia and among Asia, North America, and European leaders to exchange knowledge and practices,” says Tan. “The real estate industry’s learning costs are very high compared to other sectors. Collective learning will reduce the cost of failure and have a significant impact on these global issues.”

    The 2021 United Nations Climate Change Conference in Glasgow shed additional light on environmental commitments being made by governments in Asia. With real estate representing 40 percent of global greenhouse gas emissions, the Asian real estate market is undergoing an urgent transformation to deliver on this commitment.

    “One of the most pressing calls is to get to net-zero emissions for real estate development and operation,” says Tan. “Real estate investors and developers are making short- and long-term choices that are locking in environmental footprints for the ‘decisive decade.’ We hope to inspire developers and investors to think differently and get out of their comfort zone.” More

  • in

    Professors Elchanan Mossel and Rosalind Picard named 2021 ACM Fellows

    The Association for Computing Machinery (ACM) has named MIT professors Elchanan Mossel and Rosalind Picard as fellows for outstanding accomplishments in computing and information technology.

    The ACM Fellows program recognizes wide-ranging and fundamental contributions in areas including algorithms, computer science education, cryptography, data security and privacy, medical informatics, and mobile and networked systems, among many other areas. The accomplishments of the 2021 ACM Fellows underpin important innovations that shape the technologies we use every day.

    Elchanan Mossel

    Mossel is a professor of mathematics and a member at the Statistics and Data Science Center of the MIT Institute for Data, Systems and Society. His research in discrete functional inequalities, isoperimetry, and hypercontractivity led to the proof that Majority is Stablest and confirmed the optimality of the Goemans-Williamson MAX-CUT algorithm under the unique games conjecture from computational complexity. His work on the reconstruction problem on trees provides optimal algorithms and bounds for phylogenetic reconstruction in molecular biology and has led to sharp results in the analysis of Gibbs samplers from statistical physics and inference problems on graphs. His research has resolved open problems in computational biology, machine learning, social choice theory, and economics.Mossel received a BS from the Open University in Israel in 1992, and MS (1997) and PhD (2000) degrees in mathematics from the Hebrew University of Jerusalem. He was a postdoc at the Microsoft Research Theory Group and a Miller Fellow at University of California at Berkeley. He joined the UC Berkeley faculty in 2003 as a professor of statistics and computer science, and spent leaves as a professor at the Weizmann Institute and at the Wharton School before joining MIT in 2016 as a full professor.

    In 2020, he received the Vannevar Bush Faculty Fellowship of the U.S. Department of Defense. Other distinctions include being named a Simons Investigator in Mathematics in 2019, being selected as a fellow of the AMS, and receiving a Sloan Research Fellowship, NSF CAREER Award, and the Bergmann Memorial Award from the U.S.-Israel Binational Science Foundation.

    “I am honored by this award,” says Mossel. “It makes me realize how fortunate I’ve been, working with creative and generous colleagues, and mentoring brilliant young minds.”

    Rosalind Picard

    Picard is a scientist, engineer, author, and professor of media arts and sciences at the MIT Media Lab. She is recognized as the founder of the field of affective computing, and has carried this research forward as head of the Media Lab’s Affective Computing research group. She is also a founding faculty chair of MIT’s MindHandHeart Initiative, and a faculty member of the MIT Center for Neurobiological Engineering. Picard is an IEEE fellow, and a member of the National Academy of Engineering. 

    Picard’s inventions are in use by thousands of research teams worldwide as well as in numerous products and services. She has co-founded two companies: Affectiva (now part of Smart Eye), providing emotion AI technologies now used by more than 25 percent of the Global Fortune 500, and Empatica, providing wearable sensors and analytics to improve health. Starting from inventions by Picard and her team, Empatica created the first AI-based smart watch cleared by the FDA (in neurology for monitoring seizures), which is now helping to bring potentially lifesaving help for people with epilepsy. 

    “This award makes me think of how blessed I am to work with so many amazing people here at MIT, especially at the Media Lab,” Picard notes. “Whenever any one of us has our contributions recognized, it is also a recognition of how special a place this is.” More

  • in

    The promise and pitfalls of artificial intelligence explored at TEDxMIT event

    Scientists, students, and community members came together last month to discuss the promise and pitfalls of artificial intelligence at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) for the fourth TEDxMIT event held at MIT. 

    Attendees were entertained and challenged as they explored “the good and bad of computing,” explained CSAIL Director Professor Daniela Rus, who organized the event with John Werner, an MIT fellow and managing director of Link Ventures; MIT sophomore Lucy Zhao; and grad student Jessica Karaguesian. “As you listen to the talks today,” Rus told the audience, “consider how our world is made better by AI, and also our intrinsic responsibilities for ensuring that the technology is deployed for the greater good.”

    Rus mentioned some new capabilities that could be enabled by AI: an automated personal assistant that could monitor your sleep phases and wake you at the optimal time, as well as on-body sensors that monitor everything from your posture to your digestive system. “Intelligent assistance can help empower and augment our lives. But these intriguing possibilities should only be pursued if we can simultaneously resolve the challenges that these technologies bring,” said Rus. 

    The next speaker, CSAIL principal investigator and professor of electrical engineering and computer science Manolis Kellis, started off by suggesting what sounded like an unattainable goal — using AI to “put an end to evolution as we know it.” Looking at it from a computer science perspective, he said, what we call evolution is basically a brute force search. “You’re just exploring all of the search space, creating billions of copies of every one of your programs, and just letting them fight against each other. This is just brutal. And it’s also completely slow. It took us billions of years to get here.” Might it be possible, he asked, to speed up evolution and make it less messy?

    The answer, Kellis said, is that we can do better, and that we’re already doing better: “We’re not killing people like Sparta used to, throwing the weaklings off the mountain. We are truly saving diversity.”

    Knowledge, moreover, is now being widely shared, passed on “horizontally” through accessible information sources, he noted, rather than “vertically,” from parent to offspring. “I would like to argue that competition in the human species has been replaced by collaboration. Despite having a fixed cognitive hardware, we have software upgrades that are enabled by culture, by the 20 years that our children spend in school to fill their brains with everything that humanity has learned, regardless of which family came up with it. This is the secret of our great acceleration” — the fact that human advancement in recent centuries has vastly out-clipped evolution’s sluggish pace.

    The next step, Kellis said, is to harness insights about evolution in order to combat an individual’s genetic susceptibility to disease. “Our current approach is simply insufficient,” he added. “We’re treating manifestations of disease, not the causes of disease.” A key element in his lab’s ambitious strategy to transform medicine is to identify “the causal pathways through which genetic predisposition manifests. It’s only by understanding these pathways that we can truly manipulate disease causation and reverse the disease circuitry.” 

    Kellis was followed by Aleksander Madry, MIT professor of electrical engineering and computer science and CSAIL principal investigator, who told the crowd, “progress in AI is happening, and it’s happening fast.” Computer programs can routinely beat humans in games like chess, poker, and Go. So should we be worried about AI surpassing humans? 

    Madry, for one, is not afraid — or at least not yet. And some of that reassurance stems from research that has led him to the following conclusion: Despite its considerable success, AI, especially in the form of machine learning, is lazy. “Think about being lazy as this kind of smart student who doesn’t really want to study for an exam. Instead, what he does is just study all the past years’ exams and just look for patterns. Instead of trying to actually learn, he just tries to pass the test. And this is exactly the same way in which current AI is lazy.”

    A machine-learning model might recognize grazing sheep, for instance, simply by picking out pictures that have green grass in them. If a model is trained to identify fish from photos of anglers proudly displaying their catches, Madry explained, “the model figures out that if there’s a human holding something in the picture, I will just classify it as a fish.” The consequences can be more serious for an AI model intended to pick out malignant tumors. If the model is trained on images containing rulers that indicate the size of tumors, the model may end up selecting only those photos that have rulers in them.

    This leads to Madry’s biggest concerns about AI in its present form. “AI is beating us now,” he noted. “But the way it does it [involves] a little bit of cheating.” He fears that we will apply AI “in some way in which this mismatch between what the model actually does versus what we think it does will have some catastrophic consequences.” People relying on AI, especially in potentially life-or-death situations, need to be much more mindful of its current limitations, Madry cautioned.

    There were 10 speakers altogether, and the last to take the stage was MIT associate professor of electrical engineering and computer science and CSAIL principal investigator Marzyeh Ghassemi, who laid out her vision for how AI could best contribute to general health and well-being. But in order for that to happen, its models must be trained on accurate, diverse, and unbiased medical data.

    It’s important to focus on the data, Ghassemi stressed, because these models are learning from us. “Since our data is human-generated … a neural network is learning how to practice from a doctor. But doctors are human, and humans make mistakes. And if a human makes a mistake, and we train an AI from that, the AI will, too. Garbage in, garbage out. But it’s not like the garbage is distributed equally.”

    She pointed out that many subgroups receive worse care from medical practitioners, and members of these subgroups die from certain conditions at disproportionately high rates. This is an area, Ghassemi said, “where AI can actually help. This is something we can fix.” Her group is developing machine-learning models that are robust, private, and fair. What’s holding them back is neither algorithms nor GPUs. It’s data. Once we collect reliable data from diverse sources, Ghassemi added, we might start reaping the benefits that AI can bring to the realm of health care.

    In addition to CSAIL speakers, there were talks from members across MIT’s Institute for Data, Systems, and Society; the MIT Mobility Initiative; the MIT Media Lab; and the SENSEable City Lab.

    The proceedings concluded on that hopeful note. Rus and Werner then thanked everyone for coming. “Please continue to reflect about the good and bad of computing,” Rus urged. “And we look forward to seeing you back here in May for the next TEDxMIT event.”

    The exact theme of the spring 2022 gathering will have something to do with “superpowers.” But — if December’s mind-bending presentations were any indication — the May offering is almost certain to give its attendees plenty to think about. And maybe provide the inspiration for a startup or two. More