More stories

  • in

    A simpler method for learning to control a robot

    Researchers from MIT and Stanford University have devised a new machine-learning approach that could be used to control a robot, such as a drone or autonomous vehicle, more effectively and efficiently in dynamic environments where conditions can change rapidly.

    This technique could help an autonomous vehicle learn to compensate for slippery road conditions to avoid going into a skid, allow a robotic free-flyer to tow different objects in space, or enable a drone to closely follow a downhill skier despite being buffeted by strong winds.

    The researchers’ approach incorporates certain structure from control theory into the process for learning a model in such a way that leads to an effective method of controlling complex dynamics, such as those caused by impacts of wind on the trajectory of a flying vehicle. One way to think about this structure is as a hint that can help guide how to control a system.

    “The focus of our work is to learn intrinsic structure in the dynamics of the system that can be leveraged to design more effective, stabilizing controllers,” says Navid Azizan, the Esther and Harold E. Edgerton Assistant Professor in the MIT Department of Mechanical Engineering and the Institute for Data, Systems, and Society (IDSS), and a member of the Laboratory for Information and Decision Systems (LIDS). “By jointly learning the system’s dynamics and these unique control-oriented structures from data, we’re able to naturally create controllers that function much more effectively in the real world.”

    Using this structure in a learned model, the researchers’ technique immediately extracts an effective controller from the model, as opposed to other machine-learning methods that require a controller to be derived or learned separately with additional steps. With this structure, their approach is also able to learn an effective controller using fewer data than other approaches. This could help their learning-based control system achieve better performance faster in rapidly changing environments.

    “This work tries to strike a balance between identifying structure in your system and just learning a model from data,” says lead author Spencer M. Richards, a graduate student at Stanford University. “Our approach is inspired by how roboticists use physics to derive simpler models for robots. Physical analysis of these models often yields a useful structure for the purposes of control — one that you might miss if you just tried to naively fit a model to data. Instead, we try to identify similarly useful structure from data that indicates how to implement your control logic.”

    Additional authors of the paper are Jean-Jacques Slotine, professor of mechanical engineering and of brain and cognitive sciences at MIT, and Marco Pavone, associate professor of aeronautics and astronautics at Stanford. The research will be presented at the International Conference on Machine Learning (ICML).

    Learning a controller

    Determining the best way to control a robot to accomplish a given task can be a difficult problem, even when researchers know how to model everything about the system.

    A controller is the logic that enables a drone to follow a desired trajectory, for example. This controller would tell the drone how to adjust its rotor forces to compensate for the effect of winds that can knock it off a stable path to reach its goal.

    This drone is a dynamical system — a physical system that evolves over time. In this case, its position and velocity change as it flies through the environment. If such a system is simple enough, engineers can derive a controller by hand. 

    Modeling a system by hand intrinsically captures a certain structure based on the physics of the system. For instance, if a robot were modeled manually using differential equations, these would capture the relationship between velocity, acceleration, and force. Acceleration is the rate of change in velocity over time, which is determined by the mass of and forces applied to the robot.

    But often the system is too complex to be exactly modeled by hand. Aerodynamic effects, like the way swirling wind pushes a flying vehicle, are notoriously difficult to derive manually, Richards explains. Researchers would instead take measurements of the drone’s position, velocity, and rotor speeds over time, and use machine learning to fit a model of this dynamical system to the data. But these approaches typically don’t learn a control-based structure. This structure is useful in determining how to best set the rotor speeds to direct the motion of the drone over time.

    Once they have modeled the dynamical system, many existing approaches also use data to learn a separate controller for the system.

    “Other approaches that try to learn dynamics and a controller from data as separate entities are a bit detached philosophically from the way we normally do it for simpler systems. Our approach is more reminiscent of deriving models by hand from physics and linking that to control,” Richards says.

    Identifying structure

    The team from MIT and Stanford developed a technique that uses machine learning to learn the dynamics model, but in such a way that the model has some prescribed structure that is useful for controlling the system.

    With this structure, they can extract a controller directly from the dynamics model, rather than using data to learn an entirely separate model for the controller.

    “We found that beyond learning the dynamics, it’s also essential to learn the control-oriented structure that supports effective controller design. Our approach of learning state-dependent coefficient factorizations of the dynamics has outperformed the baselines in terms of data efficiency and tracking capability, proving to be successful in efficiently and effectively controlling the system’s trajectory,” Azizan says. 

    When they tested this approach, their controller closely followed desired trajectories, outpacing all the baseline methods. The controller extracted from their learned model nearly matched the performance of a ground-truth controller, which is built using the exact dynamics of the system.

    “By making simpler assumptions, we got something that actually worked better than other complicated baseline approaches,” Richards adds.

    The researchers also found that their method was data-efficient, which means it achieved high performance even with few data. For instance, it could effectively model a highly dynamic rotor-driven vehicle using only 100 data points. Methods that used multiple learned components saw their performance drop much faster with smaller datasets.

    This efficiency could make their technique especially useful in situations where a drone or robot needs to learn quickly in rapidly changing conditions.

    Plus, their approach is general and could be applied to many types of dynamical systems, from robotic arms to free-flying spacecraft operating in low-gravity environments.

    In the future, the researchers are interested in developing models that are more physically interpretable, and that would be able to identify very specific information about a dynamical system, Richards says. This could lead to better-performing controllers.

    “Despite its ubiquity and importance, nonlinear feedback control remains an art, making it especially suitable for data-driven and learning-based methods. This paper makes a significant contribution to this area by proposing a method that jointly learns system dynamics, a controller, and control-oriented structure,” says Nikolai Matni, an assistant professor in the Department of Electrical and Systems Engineering at the University of Pennsylvania, who was not involved with this work. “What I found particularly exciting and compelling was the integration of these components into a joint learning algorithm, such that control-oriented structure acts as an inductive bias in the learning process. The result is a data-efficient learning process that outputs dynamic models that enjoy intrinsic structure that enables effective, stable, and robust control. While the technical contributions of the paper are excellent themselves, it is this conceptual contribution that I view as most exciting and significant.”

    This research is supported, in part, by the NASA University Leadership Initiative and the Natural Sciences and Engineering Research Council of Canada. More

  • in

    A faster way to teach a robot

    Imagine purchasing a robot to perform household tasks. This robot was built and trained in a factory on a certain set of tasks and has never seen the items in your home. When you ask it to pick up a mug from your kitchen table, it might not recognize your mug (perhaps because this mug is painted with an unusual image, say, of MIT’s mascot, Tim the Beaver). So, the robot fails.

    “Right now, the way we train these robots, when they fail, we don’t really know why. So you would just throw up your hands and say, ‘OK, I guess we have to start over.’ A critical component that is missing from this system is enabling the robot to demonstrate why it is failing so the user can give it feedback,” says Andi Peng, an electrical engineering and computer science (EECS) graduate student at MIT.

    Peng and her collaborators at MIT, New York University, and the University of California at Berkeley created a framework that enables humans to quickly teach a robot what they want it to do, with a minimal amount of effort.

    When a robot fails, the system uses an algorithm to generate counterfactual explanations that describe what needed to change for the robot to succeed. For instance, maybe the robot would have been able to pick up the mug if the mug were a certain color. It shows these counterfactuals to the human and asks for feedback on why the robot failed. Then the system utilizes this feedback and the counterfactual explanations to generate new data it uses to fine-tune the robot.

    Fine-tuning involves tweaking a machine-learning model that has already been trained to perform one task, so it can perform a second, similar task.

    The researchers tested this technique in simulations and found that it could teach a robot more efficiently than other methods. The robots trained with this framework performed better, while the training process consumed less of a human’s time.

    This framework could help robots learn faster in new environments without requiring a user to have technical knowledge. In the long run, this could be a step toward enabling general-purpose robots to efficiently perform daily tasks for the elderly or individuals with disabilities in a variety of settings.

    Peng, the lead author, is joined by co-authors Aviv Netanyahu, an EECS graduate student; Mark Ho, an assistant professor at the Stevens Institute of Technology; Tianmin Shu, an MIT postdoc; Andreea Bobu, a graduate student at UC Berkeley; and senior authors Julie Shah, an MIT professor of aeronautics and astronautics and the director of the Interactive Robotics Group in the Computer Science and Artificial Intelligence Laboratory (CSAIL), and Pulkit Agrawal, a professor in CSAIL. The research will be presented at the International Conference on Machine Learning.

    On-the-job training

    Robots often fail due to distribution shift — the robot is presented with objects and spaces it did not see during training, and it doesn’t understand what to do in this new environment.

    One way to retrain a robot for a specific task is imitation learning. The user could demonstrate the correct task to teach the robot what to do. If a user tries to teach a robot to pick up a mug, but demonstrates with a white mug, the robot could learn that all mugs are white. It may then fail to pick up a red, blue, or “Tim-the-Beaver-brown” mug.

    Training a robot to recognize that a mug is a mug, regardless of its color, could take thousands of demonstrations.

    “I don’t want to have to demonstrate with 30,000 mugs. I want to demonstrate with just one mug. But then I need to teach the robot so it recognizes that it can pick up a mug of any color,” Peng says.

    To accomplish this, the researchers’ system determines what specific object the user cares about (a mug) and what elements aren’t important for the task (perhaps the color of the mug doesn’t matter). It uses this information to generate new, synthetic data by changing these “unimportant” visual concepts. This process is known as data augmentation.

    The framework has three steps. First, it shows the task that caused the robot to fail. Then it collects a demonstration from the user of the desired actions and generates counterfactuals by searching over all features in the space that show what needed to change for the robot to succeed.

    The system shows these counterfactuals to the user and asks for feedback to determine which visual concepts do not impact the desired action. Then it uses this human feedback to generate many new augmented demonstrations.

    In this way, the user could demonstrate picking up one mug, but the system would produce demonstrations showing the desired action with thousands of different mugs by altering the color. It uses these data to fine-tune the robot.

    Creating counterfactual explanations and soliciting feedback from the user are critical for the technique to succeed, Peng says.

    From human reasoning to robot reasoning

    Because their work seeks to put the human in the training loop, the researchers tested their technique with human users. They first conducted a study in which they asked people if counterfactual explanations helped them identify elements that could be changed without affecting the task.

    “It was so clear right off the bat. Humans are so good at this type of counterfactual reasoning. And this counterfactual step is what allows human reasoning to be translated into robot reasoning in a way that makes sense,” she says.

    Then they applied their framework to three simulations where robots were tasked with: navigating to a goal object, picking up a key and unlocking a door, and picking up a desired object then placing it on a tabletop. In each instance, their method enabled the robot to learn faster than with other techniques, while requiring fewer demonstrations from users.

    Moving forward, the researchers hope to test this framework on real robots. They also want to focus on reducing the time it takes the system to create new data using generative machine-learning models.

    “We want robots to do what humans do, and we want them to do it in a semantically meaningful way. Humans tend to operate in this abstract space, where they don’t think about every single property in an image. At the end of the day, this is really about enabling a robot to learn a good, human-like representation at an abstract level,” Peng says.

    This research is supported, in part, by a National Science Foundation Graduate Research Fellowship, Open Philanthropy, an Apple AI/ML Fellowship, Hyundai Motor Corporation, the MIT-IBM Watson AI Lab, and the National Science Foundation Institute for Artificial Intelligence and Fundamental Interactions. More

  • in

    Robots play with play dough

    The inner child in many of us feels an overwhelming sense of joy when stumbling across a pile of the fluorescent, rubbery mixture of water, salt, and flour that put goo on the map: play dough. (Even if this happens rarely in adulthood.)

    While manipulating play dough is fun and easy for 2-year-olds, the shapeless sludge is hard for robots to handle. Machines have become increasingly reliable with rigid objects, but manipulating soft, deformable objects comes with a laundry list of technical challenges, and most importantly, as with most flexible structures, if you move one part, you’re likely affecting everything else. 

    Scientists from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and Stanford University recently let robots take their hand at playing with the modeling compound, but not for nostalgia’s sake. Their new system learns directly from visual inputs to let a robot with a two-fingered gripper see, simulate, and shape doughy objects. “RoboCraft” could reliably plan a robot’s behavior to pinch and release play dough to make various letters, including ones it had never seen. With just 10 minutes of data, the two-finger gripper rivaled human counterparts that teleoperated the machine — performing on-par, and at times even better, on the tested tasks. 

    “Modeling and manipulating objects with high degrees of freedom are essential capabilities for robots to learn how to enable complex industrial and household interaction tasks, like stuffing dumplings, rolling sushi, and making pottery,” says Yunzhu Li, CSAIL PhD student and author on a new paper about RoboCraft. “While there’s been recent advances in manipulating clothes and ropes, we found that objects with high plasticity, like dough or plasticine — despite ubiquity in those household and industrial settings — was a largely underexplored territory. With RoboCraft, we learn the dynamics models directly from high-dimensional sensory data, which offers a promising data-driven avenue for us to perform effective planning.” 

    Play video

    With undefined, smooth material, the whole structure needs to be accounted for before you can do any type of efficient and effective modeling and planning. By turning the images into graphs of little particles, coupled with algorithms, RoboCraft, using a graph neural network as the dynamics model, makes more accurate predictions about the material’s change of shapes. 

    Typically, researchers have used complex physics simulators to model and understand force and dynamics being applied to objects, but RoboCraft simply uses visual data. The inner-workings of the system relies on three parts to shape soft material into, say, an “R.” 

    The first part — perception — is all about learning to “see.” It uses cameras to collect raw, visual sensor data from the environment, which are then turned into little clouds of particles to represent the shapes. A graph-based neural network then uses said particle data to learn to “simulate” the object’s dynamics, or how it moves. Then, algorithms help plan the robot’s behavior so it learns to “shape” a blob of dough, armed with the training data from the many pinches. While the letters are a bit loose, they’re indubitably representative. 

    Besides cutesy shapes, the team is (actually) working on making dumplings from dough and a prepared filling. Right now, with just a two finger gripper, it’s a big ask. RoboCraft would need additional tools (a baker needs multiple tools to cook; so do robots) — a rolling pin, a stamp, and a mold. 

    A more far in the future domain the scientists envision is using RoboCraft for assistance with household tasks and chores, which could be of particular help to the elderly or those with limited mobility. To accomplish this, given the many obstructions that could take place, a much more adaptive representation of the dough or item would be needed, and as well as exploration into what class of models might be suitable to capture the underlying structural systems. 

    “RoboCraft essentially demonstrates that this predictive model can be learned in very data-efficient ways to plan motion. In the long run, we are thinking about using various tools to manipulate materials,” says Li. “If you think about dumpling or dough making, just one gripper wouldn’t be able to solve it. Helping the model understand and accomplish longer-horizon planning tasks, such as, how the dough will deform given the current tool, movements and actions, is a next step for future work.” 

    Li wrote the paper alongside Haochen Shi, Stanford master’s student; Huazhe Xu, Stanford postdoc; Zhiao Huang, PhD student at the University of California at San Diego; and Jiajun Wu, assistant professor at Stanford. They will present the research at the Robotics: Science and Systems conference in New York City. The work is in part supported by the Stanford Institute for Human-Centered AI (HAI), the Samsung Global Research Outreach (GRO) Program, the Toyota Research Institute (TRI), and Amazon, Autodesk, Salesforce, and Bosch. More

  • in

    Q&A: Cathy Wu on developing algorithms to safely integrate robots into our world

    Cathy Wu is the Gilbert W. Winslow Assistant Professor of Civil and Environmental Engineering and a member of the MIT Institute for Data, Systems, and Society. As an undergraduate, Wu won MIT’s toughest robotics competition, and as a graduate student took the University of California at Berkeley’s first-ever course on deep reinforcement learning. Now back at MIT, she’s working to improve the flow of robots in Amazon warehouses under the Science Hub, a new collaboration between the tech giant and the MIT Schwarzman College of Computing. Outside of the lab and classroom, Wu can be found running, drawing, pouring lattes at home, and watching YouTube videos on math and infrastructure via 3Blue1Brown and Practical Engineering. She recently took a break from all of that to talk about her work.

    Q: What put you on the path to robotics and self-driving cars?

    A: My parents always wanted a doctor in the family. However, I’m bad at following instructions and became the wrong kind of doctor! Inspired by my physics and computer science classes in high school, I decided to study engineering. I wanted to help as many people as a medical doctor could.

    At MIT, I looked for applications in energy, education, and agriculture, but the self-driving car was the first to grab me. It has yet to let go! Ninety-four percent of serious car crashes are caused by human error and could potentially be prevented by self-driving cars. Autonomous vehicles could also ease traffic congestion, save energy, and improve mobility.

    I first learned about self-driving cars from Seth Teller during his guest lecture for the course Mobile Autonomous Systems Lab (MASLAB), in which MIT undergraduates compete to build the best full-functioning robot from scratch. Our ball-fetching bot, Putzputz, won first place. From there, I took more classes in machine learning, computer vision, and transportation, and joined Teller’s lab. I also competed in several mobility-related hackathons, including one sponsored by Hubway, now known as Blue Bike.

    Q: You’ve explored ways to help humans and autonomous vehicles interact more smoothly. What makes this problem so hard?

    A: Both systems are highly complex, and our classical modeling tools are woefully insufficient. Integrating autonomous vehicles into our existing mobility systems is a huge undertaking. For example, we don’t know whether autonomous vehicles will cut energy use by 40 percent, or double it. We need more powerful tools to cut through the uncertainty. My PhD thesis at Berkeley tried to do this. I developed scalable optimization methods in the areas of robot control, state estimation, and system design. These methods could help decision-makers anticipate future scenarios and design better systems to accommodate both humans and robots.

    Q: How is deep reinforcement learning, combining deep and reinforcement learning algorithms, changing robotics?

    A: I took John Schulman and Pieter Abbeel’s reinforcement learning class at Berkeley in 2015 shortly after Deepmind published their breakthrough paper in Nature. They had trained an agent via deep learning and reinforcement learning to play “Space Invaders” and a suite of Atari games at superhuman levels. That created quite some buzz. A year later, I started to incorporate reinforcement learning into problems involving mixed traffic systems, in which only some cars are automated. I realized that classical control techniques couldn’t handle the complex nonlinear control problems I was formulating.

    Deep RL is now mainstream but it’s by no means pervasive in robotics, which still relies heavily on classical model-based control and planning methods. Deep learning continues to be important for processing raw sensor data like camera images and radio waves, and reinforcement learning is gradually being incorporated. I see traffic systems as gigantic multi-robot systems. I’m excited for an upcoming collaboration with Utah’s Department of Transportation to apply reinforcement learning to coordinate cars with traffic signals, reducing congestion and thus carbon emissions.

    Q: You’ve talked about the MIT course, 6.007 (Signals and Systems), and its impact on you. What about it spoke to you?

    A: The mindset. That problems that look messy can be analyzed with common, and sometimes simple, tools. Signals are transformed by systems in various ways, but what do these abstract terms mean, anyway? A mechanical system can take a signal like gears turning at some speed and transform it into a lever turning at another speed. A digital system can take binary digits and turn them into other binary digits or a string of letters or an image. Financial systems can take news and transform it via millions of trading decisions into stock prices. People take in signals every day through advertisements, job offers, gossip, and so on, and translate them into actions that in turn influence society and other people. This humble class on signals and systems linked mechanical, digital, and societal systems and showed me how foundational tools can cut through the noise.

    Q: In your project with Amazon you’re training warehouse robots to pick up, sort, and deliver goods. What are the technical challenges?

    A: This project involves assigning robots to a given task and routing them there. [Professor] Cynthia Barnhart’s team is focused on task assignment, and mine, on path planning. Both problems are considered combinatorial optimization problems because the solution involves a combination of choices. As the number of tasks and robots increases, the number of possible solutions grows exponentially. It’s called the curse of dimensionality. Both problems are what we call NP Hard; there may not be an efficient algorithm to solve them. Our goal is to devise a shortcut.

    Routing a single robot for a single task isn’t difficult. It’s like using Google Maps to find the shortest path home. It can be solved efficiently with several algorithms, including Dijkstra’s. But warehouses resemble small cities with hundreds of robots. When traffic jams occur, customers can’t get their packages as quickly. Our goal is to develop algorithms that find the most efficient paths for all of the robots.

    Q: Are there other applications?

    A: Yes. The algorithms we test in Amazon warehouses might one day help to ease congestion in real cities. Other potential applications include controlling planes on runways, swarms of drones in the air, and even characters in video games. These algorithms could also be used for other robotic planning tasks like scheduling and routing.

    Q: AI is evolving rapidly. Where do you hope to see the big breakthroughs coming?

    A: I’d like to see deep learning and deep RL used to solve societal problems involving mobility, infrastructure, social media, health care, and education. Deep RL now has a toehold in robotics and industrial applications like chip design, but we still need to be careful in applying it to systems with humans in the loop. Ultimately, we want to design systems for people. Currently, we simply don’t have the right tools.

    Q: What worries you most about AI taking on more and more specialized tasks?

    A: AI has the potential for tremendous good, but it could also help to accelerate the widening gap between the haves and the have-nots. Our political and regulatory systems could help to integrate AI into society and minimize job losses and income inequality, but I worry that they’re not equipped yet to handle the firehose of AI.

    Q: What’s the last great book you read?

    A: “How to Avoid a Climate Disaster,” by Bill Gates. I absolutely loved the way that Gates was able to take an overwhelmingly complex topic and distill it down into words that everyone can understand. His optimism inspires me to keep pushing on applications of AI and robotics to help avoid a climate disaster. More

  • in

    Design’s new frontier

    In the 1960s, the advent of computer-aided design (CAD) sparked a revolution in design. For his PhD thesis in 1963, MIT Professor Ivan Sutherland developed Sketchpad, a game-changing software program that enabled users to draw, move, and resize shapes on a computer. Over the course of the next few decades, CAD software reshaped how everything from consumer products to buildings and airplanes were designed.

    “CAD was part of the first wave in computing in design. The ability of researchers and practitioners to represent and model designs using computers was a major breakthrough and still is one of the biggest outcomes of design research, in my opinion,” says Maria Yang, Gail E. Kendall Professor and director of MIT’s Ideation Lab.

    Innovations in 3D printing during the 1980s and 1990s expanded CAD’s capabilities beyond traditional injection molding and casting methods, providing designers even more flexibility. Designers could sketch, ideate, and develop prototypes or models faster and more efficiently. Meanwhile, with the push of a button, software like that developed by Professor Emeritus David Gossard of MIT’s CAD Lab could solve equations simultaneously to produce a new geometry on the fly.

    In recent years, mechanical engineers have expanded the computing tools they use to ideate, design, and prototype. More sophisticated algorithms and the explosion of machine learning and artificial intelligence technologies have sparked a second revolution in design engineering.

    Researchers and faculty at MIT’s Department of Mechanical Engineering are utilizing these technologies to re-imagine how the products, systems, and infrastructures we use are designed. These researchers are at the forefront of the new frontier in design.

    Computational design

    Faez Ahmed wants to reinvent the wheel, or at least the bicycle wheel. He and his team at MIT’s Design Computation & Digital Engineering Lab (DeCoDE) use an artificial intelligence-driven design method that can generate entirely novel and improved designs for a range of products — including the traditional bicycle. They create advanced computational methods to blend human-driven design with simulation-based design.

    “The focus of our DeCoDE lab is computational design. We are looking at how we can create machine learning and AI algorithms to help us discover new designs that are optimized based on specific performance parameters,” says Ahmed, an assistant professor of mechanical engineering at MIT.

    For their work using AI-driven design for bicycles, Ahmed and his collaborator Professor Daniel Frey wanted to make it easier to design customizable bicycles, and by extension, encourage more people to use bicycles over transportation methods that emit greenhouse gases.

    To start, the group gathered a dataset of 4,500 bicycle designs. Using this massive dataset, they tested the limits of what machine learning could do. First, they developed algorithms to group bicycles that looked similar together and explore the design space. They then created machine learning models that could successfully predict what components are key in identifying a bicycle style, such as a road bike versus a mountain bike.

    Once the algorithms were good enough at identifying bicycle designs and parts, the team proposed novel machine learning tools that could use this data to create a unique and creative design for a bicycle based on certain performance parameters and rider dimensions.

    Ahmed used a generative adversarial network — or GAN — as the basis of this model. GAN models utilize neural networks that can create new designs based on vast amounts of data. However, using GAN models alone would result in homogeneous designs that lack novelty and can’t be assessed in terms of performance. To address these issues in design problems, Ahmed has developed a new method which he calls “PaDGAN,” performance augmented diverse GAN.

    “When we apply this type of model, what we see is that we can get large improvements in the diversity, quality, as well as novelty of the designs,” Ahmed explains.

    Using this approach, Ahmed’s team developed an open-source computational design tool for bicycles freely available on their lab website. They hope to further develop a set of generalizable tools that can be used across industries and products.

    Longer term, Ahmed has his sights set on loftier goals. He hopes the computational design tools he develops could lead to “design democratization,” putting more power in the hands of the end user.

    “With these algorithms, you can have more individualization where the algorithm assists a customer in understanding their needs and helps them create a product that satisfies their exact requirements,” he adds.

    Using algorithms to democratize the design process is a goal shared by Stefanie Mueller, an associate professor in electrical engineering and computer science and mechanical engineering.

    Personal fabrication

    Platforms like Instagram give users the freedom to instantly edit their photographs or videos using filters. In one click, users can alter the palette, tone, and brightness of their content by applying filters that range from bold colors to sepia-toned or black-and-white. Mueller, X-Window Consortium Career Development Professor, wants to bring this concept of the Instagram filter to the physical world.

    “We want to explore how digital capabilities can be applied to tangible objects. Our goal is to bring reprogrammable appearance to the physical world,” explains Mueller, director of the HCI Engineering Group based out of MIT’s Computer Science and Artificial Intelligence Laboratory.

    Mueller’s team utilizes a combination of smart materials, optics, and computation to advance personal fabrication technologies that would allow end users to alter the design and appearance of the products they own. They tested this concept in a project they dubbed “Photo-Chromeleon.”

    First, a mix of photochromic cyan, magenta, and yellow dies are airbrushed onto an object — in this instance, a 3D sculpture of a chameleon. Using software they developed, the team sketches the exact color pattern they want to achieve on the object itself. An ultraviolet light shines on the object to activate the dyes.

    To actually create the physical pattern on the object, Mueller has developed an optimization algorithm to use alongside a normal office projector outfitted with red, green, and blue LED lights. These lights shine on specific pixels on the object for a given period of time to physically change the makeup of the photochromic pigments.

    “This fancy algorithm tells us exactly how long we have to shine the red, green, and blue light on every single pixel of an object to get the exact pattern we’ve programmed in our software,” says Mueller.

    Giving this freedom to the end user enables limitless possibilities. Mueller’s team has applied this technology to iPhone cases, shoes, and even cars. In the case of shoes, Mueller envisions a shoebox embedded with UV and LED light projectors. Users could put their shoes in the box overnight and the next day have a pair of shoes in a completely new pattern.

    Mueller wants to expand her personal fabrication methods to the clothes we wear. Rather than utilize the light projection technique developed in the PhotoChromeleon project, her team is exploring the possibility of weaving LEDs directly into clothing fibers, allowing people to change their shirt’s appearance as they wear it. These personal fabrication technologies could completely alter consumer habits.

    “It’s very interesting for me to think about how these computational techniques will change product design on a high level,” adds Mueller. “In the future, a consumer could buy a blank iPhone case and update the design on a weekly or daily basis.”

    Computational fluid dynamics and participatory design

    Another team of mechanical engineers, including Sili Deng, the Brit (1961) & Alex (1949) d’Arbeloff Career Development Professor, are developing a different kind of design tool that could have a large impact on individuals in low- and middle-income countries across the world.

    As Deng walked down the hallway of Building 1 on MIT’s campus, a monitor playing a video caught her eye. The video featured work done by mechanical engineers and MIT D-Lab on developing cleaner burning briquettes for cookstoves in Uganda. Deng immediately knew she wanted to get involved.

    “As a combustion scientist, I’ve always wanted to work on such a tangible real-world problem, but the field of combustion tends to focus more heavily on the academic side of things,” explains Deng.

    After reaching out to colleagues in MIT D-Lab, Deng joined a collaborative effort to develop a new cookstove design tool for the 3 billion people across the world who burn solid fuels to cook and heat their homes. These stoves often emit soot and carbon monoxide, leading not only to millions of deaths each year, but also worsening the world’s greenhouse gas emission problem.

    The team is taking a three-pronged approach to developing this solution, using a combination of participatory design, physical modeling, and experimental validation to create a tool that will lead to the production of high-performing, low-cost energy products.

    Deng and her team in the Deng Energy and Nanotechnology Group use physics-based modeling for the combustion and emission process in cookstoves.

    “My team is focused on computational fluid dynamics. We use computational and numerical studies to understand the flow field where the fuel is burned and releases heat,” says Deng.

    These flow mechanics are crucial to understanding how to minimize heat loss and make cookstoves more efficient, as well as learning how dangerous pollutants are formed and released in the process.

    Using computational methods, Deng’s team performs three-dimensional simulations of the complex chemistry and transport coupling at play in the combustion and emission processes. They then use these simulations to build a combustion model for how fuel is burned and a pollution model that predicts carbon monoxide emissions.

    Deng’s models are used by a group led by Daniel Sweeney in MIT D-Lab to test the experimental validation in prototypes of stoves. Finally, Professor Maria Yang uses participatory design methods to integrate user feedback, ensuring the design tool can actually be used by people across the world.

    The end goal for this collaborative team is to not only provide local manufacturers with a prototype they could produce themselves, but to also provide them with a tool that can tweak the design based on local needs and available materials.

    Deng sees wide-ranging applications for the computational fluid dynamics her team is developing.

    “We see an opportunity to use physics-based modeling, augmented with a machine learning approach, to come up with chemical models for practical fuels that help us better understand combustion. Therefore, we can design new methods to minimize carbon emissions,” she adds.

    While Deng is utilizing simulations and machine learning at the molecular level to improve designs, others are taking a more macro approach.

    Designing intelligent systems

    When it comes to intelligent design, Navid Azizan thinks big. He hopes to help create future intelligent systems that are capable of making decisions autonomously by using the enormous amounts of data emerging from the physical world. From smart robots and autonomous vehicles to smart power grids and smart cities, Azizan focuses on the analysis, design, and control of intelligent systems.

    Achieving such massive feats takes a truly interdisciplinary approach that draws upon various fields such as machine learning, dynamical systems, control, optimization, statistics, and network science, among others.

    “Developing intelligent systems is a multifaceted problem, and it really requires a confluence of disciplines,” says Azizan, assistant professor of mechanical engineering with a dual appointment in MIT’s Institute for Data, Systems, and Society (IDSS). “To create such systems, we need to go beyond standard approaches to machine learning, such as those commonly used in computer vision, and devise algorithms that can enable safe, efficient, real-time decision-making for physical systems.”

    For robot control to work in the complex dynamic environments that arise in the real world, real-time adaptation is key. If, for example, an autonomous vehicle is going to drive in icy conditions or a drone is operating in windy conditions, they need to be able to adapt to their new environment quickly.

    To address this challenge, Azizan and his collaborators at MIT and Stanford University have developed a new algorithm that combines adaptive control, a powerful methodology from control theory, with meta learning, a new machine learning paradigm.

    “This ‘control-oriented’ learning approach outperforms the existing ‘regression-oriented’ methods, which are mostly focused on just fitting the data, by a wide margin,” says Azizan.

    Another critical aspect of deploying machine learning algorithms in physical systems that Azizan and his team hope to address is safety. Deep neural networks are a crucial part of autonomous systems. They are used for interpreting complex visual inputs and making data-driven predictions of future behavior in real time. However, Azizan urges caution.

    “These deep neural networks are only as good as their training data, and their predictions can often be untrustworthy in scenarios not covered by their training data,” he says. Making decisions based on such untrustworthy predictions could lead to fatal accidents in autonomous vehicles or other safety-critical systems.

    To avoid these potentially catastrophic events, Azizan proposes that it is imperative to equip neural networks with a measure of their uncertainty. When the uncertainty is high, they can then be switched to a “safe policy.”

    In pursuit of this goal, Azizan and his collaborators have developed a new algorithm known as SCOD — Sketching Curvature of Out-of-Distribution Detection. This framework could be embedded within any deep neural network to equip them with a measure of their uncertainty.

    “This algorithm is model-agnostic and can be applied to neural networks used in various kinds of autonomous systems, whether it’s drones, vehicles, or robots,” says Azizan.

    Azizan hopes to continue working on algorithms for even larger-scale systems. He and his team are designing efficient algorithms to better control supply and demand in smart energy grids. According to Azizan, even if we create the most efficient solar panels and batteries, we can never achieve a sustainable grid powered by renewable resources without the right control mechanisms.

    Mechanical engineers like Ahmed, Mueller, Deng, and Azizan serve as the key to realizing the next revolution of computing in design.

    “MechE is in a unique position at the intersection of the computational and physical worlds,” Azizan says. “Mechanical engineers build a bridge between theoretical, algorithmic tools and real, physical world applications.”

    Sophisticated computational tools, coupled with the ground truth mechanical engineers have in the physical world, could unlock limitless possibilities for design engineering, well beyond what could have been imagined in those early days of CAD. More

  • in

    One autonomous taxi, please

    If you don’t get seasick, an autonomous boat might be the right mode of transportation for you. 

    Scientists from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and the Senseable City Laboratory, together with Amsterdam Institute for Advanced Metropolitan Solutions (AMS Institute) in the Netherlands, have now created the final project in their self-navigating trilogy: a full-scale, fully autonomous robotic boat that’s ready to be deployed along the canals of Amsterdam. 

    “Roboat” has come a long way since the team first started prototyping small vessels in the MIT pool in late 2015. Last year, the team released their half-scale, medium model that was 2 meters long and demonstrated promising navigational prowess. 

    This year, two full-scale Roboats were launched, proving more than just proof-of-concept: these craft can comfortably carry up to five people, collect waste, deliver goods, and provide on-demand infrastructure. 

    The boat looks futuristic — it’s a sleek combination of black and gray with two seats that face each other, with orange block letters on the sides that illustrate the makers’ namesakes. It’s a fully electrical boat with a battery that’s the size of a small chest, enabling up to 10 hours of operation and wireless charging capabilities. 

    Play video

    Autonomous Roboats set sea in the Amsterdam canals and can comfortably carry up to five people, collect waste, deliver goods, and provide on-demand infrastructure.

    “We now have higher precision and robustness in the perception, navigation, and control systems, including new functions, such as close-proximity approach mode for latching capabilities, and improved dynamic positioning, so the boat can navigate real-world waters,” says Daniela Rus, MIT professor of electrical engineering and computer science and director of CSAIL. “Roboat’s control system is adaptive to the number of people in the boat.” 

    To swiftly navigate the bustling waters of Amsterdam, Roboat needs a meticulous fusion of proper navigation, perception, and control software. 

    Using GPS, the boat autonomously decides on a safe route from A to B, while continuously scanning the environment to  avoid collisions with objects, such as bridges, pillars, and other boats.

    To autonomously determine a free path and avoid crashing into objects, Roboat uses lidar and a number of cameras to enable a 360-degree view. This bundle of sensors is referred to as the “perception kit” and lets Roboat understand its surroundings. When the perception picks up an unseen object, like a canoe, for example, the algorithm flags the item as “unknown.” When the team later looks at the collected data from the day, the object is manually selected and can be tagged as “canoe.” 

    The control algorithms — similar to ones used for self-driving cars — function a little like a coxswain giving orders to rowers, by translating a given path into instructions toward the “thrusters,” which are the propellers that help the boat move.  

    If you think the boat feels slightly futuristic, its latching mechanism is one of its most impressive feats: small cameras on the boat guide it to the docking station, or other boats, when they detect specific QR codes. “The system allows Roboat to connect to other boats, and to the docking station, to form temporary bridges to alleviate traffic, as well as floating stages and squares, which wasn’t possible with the last iteration,” says Carlo Ratti, professor of the practice in the MIT Department of Urban Studies and Planning (DUSP) and director of the Senseable City Lab. 

    Roboat, by design, is also versatile. The team created a universal “hull” design — that’s the part of the boat that rides both in and on top of the water. While regular boats have unique hulls, designed for specific purposes, Roboat has a universal hull design where the base is the same, but the top decks can be switched out depending on the use case.

    “As Roboat can perform its tasks 24/7, and without a skipper on board, it adds great value for a city. However, for safety reasons it is questionable if reaching level A autonomy is desirable,” says Fabio Duarte, a principal research scientist in DUSP and lead scientist on the project. “Just like a bridge keeper, an onshore operator will monitor Roboat remotely from a control center. One operator can monitor over 50 Roboat units, ensuring smooth operations.”

    The next step for Roboat is to pilot the technology in the public domain. “The historic center of Amsterdam is the perfect place to start, with its capillary network of canals suffering from contemporary challenges, such as mobility and logistics,” says Stephan van Dijk, director of innovation at AMS Institute. 

    Previous iterations of Roboat have been presented at the IEEE International Conference on Robotics and Automation. The boats will be unveiled on Oct. 28 in the waters of Amsterdam. 

    Ratti, Rus, Duarte, and Dijk worked on the project alongside Andrew Whittle, MIT’s Edmund K Turner Professor in civil and environmental engineering; Dennis Frenchman, professor at MIT’s Department of Urban Studies and Planning; and Ynse Deinema of AMS Institute. The full team can be found at Roboat’s website. The project is a joint collaboration with AMS Institute. The City of Amsterdam is a project partner. More

  • in

    Contact-aware robot design

    Adequate biomimicry in robotics necessitates a delicate balance between design and control, an integral part of making our machines more like us. Advanced dexterity in humans is wrapped up in a long evolutionary tale of how our fists of fury evolved to accomplish complex tasks. With machines, designing a new robotic manipulator could mean long, manual iteration cycles of designing, fabricating, and evaluating guided by human intuition. 

    Most robotic hands are designed for general purposes, as it’s very tedious to make task-specific hands. Existing methods battle trade-offs between the complexity of designs critical for contact-rich tasks, and the practical constraints of manufacturing, and contact handling. 

    This led researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) to create a new method to computationally optimize the shape and control of a robotic manipulator for a specific task. Their system uses software to manipulate the design, simulate the robot doing a task, and then provide an optimization score to assess the design and control. 

    Such task-driven manipulator optimization has potential for a wide range of applications in manufacturing and warehouse robot systems, where each task needs to be performed repeatedly, but different manipulators would be suitable for individual tasks. 

    Play video

    A new method to represent robotic manipulators helps optimize complex and organic shapes for future machines.

    Seeking to test the functionality of the system, the team first created a single robotic finger design to flip over a box on the ground. The fingertip structure, which looked something like Captain Hook’s left hand, was automatically optimized by an algorithm to hook onto the box’s back surface and flip it. They also developed a model for an assembly task, where a two-finger design put a small cube into a larger, movable mount. Since the fingers were two different lengths, they could reach two objects of different sizes, and the larger and flatter surfaces of the fingers helped stably push the object. 

    Traditionally, this joint optimization process consists of using simple, more primitive shapes to approximate each component of a robot design. When creating a three-segment robotic finger, for example, it would likely be approximated by three connected cylinders, where the algorithm optimizes the length and radius to achieve the desired design and shape. While this would simplify the optimization problem, oversimplifying the shape would be limiting for more complex designs, and ultimately complex tasks. 

    To create more involved manipulators, the team’s method used a technique called “cage-based deformation,” which essentially lets the user change or deform the geometry of a shape in real-time.

    Using the software, you’d put something that looks like a cage around the robotic finger, for example. The algorithm can automatically change the cage dimensions to make more sophisticated, natural shapes. The different variations of designs still keep their integrity, so they can be easily fabricated.

    A simulator was developed by the team to simulate the manipulator design and control on a task, which then provides a performance score.

    “Using these simulation tools, we don’t need to evaluate the design by manufacturing and testing it in the real world,” says Jie Xu, MIT PhD student and lead author on a new paper about the research. “In contrast to reinforcement learning algorithms that are popular for manipulation, but are data-inefficient, the proposed cage-based representation and the simulator allows for the use of powerful gradient-based methods. We not only find better solutions, but also find them faster. As a result we can quickly score the design, thus significantly shortening the design cycle.”

    In the future, the team plans to extend the software to optimize the manipulators concurrently for multiple tasks.

    Xu wrote the paper alongside MIT PhD student Tao Chen, MIT graduate student Lara Zlokapa, MIT research scientist Michael Foshey, MIT Professor Wojciech Matusik, Texas A&M University Assistant professor Shinjiro Sueda, and MIT Professor Pulkit Agrawal. They presented the paper virtually at the 2021 Robotic Science and Systems conference last week. The work is supported by the Toyota Research Institute. More