More stories

  • in

    Inclusive research for social change

    Pair a decades-old program dedicated to creating research opportunities for underrepresented minorities and populations with a growing initiative committed to tackling the very issues at the heart of such disparities, and you’ll get a transformative partnership that only MIT can deliver. 

    Since 1986, the MIT Summer Research Program (MSRP) has led an institutional effort to prepare underrepresented students (minorities, women in STEM, or students with low socioeconomic status) for doctoral education by pairing them with MIT labs and research groups. For the past three years, the Initiative on Combatting Systemic Racism (ICSR), a cross-disciplinary research collaboration led by MIT’s Institute for Data, Systems, and Society (IDSS), has joined them in their mission, helping bring the issue full circle by providing MSRP students with the opportunity to use big data and computational tools to create impactful changes toward racial equity.

    “ICSR has further enabled our direct engagement with undergrads, both within and outside of MIT,” says Fotini Christia, the Ford International Professor of the Social Sciences, associate director of IDSS, and co-organizer for the initiative. “We’ve found that this line of research has attracted students interested in examining these topics with the most rigorous methods.”

    The initiative fits well under the IDSS banner, as IDSS research seeks solutions to complex societal issues through a multidisciplinary approach that includes statistics, computation, modeling, social science methodologies, human behavior, and an understanding of complex systems. With the support of faculty and researchers from all five schools and the MIT Schwarzman College of Computing, the objective of ICSR is to work on an array of different societal aspects of systemic racism through a set of verticals including policing, housing, health care, and social media.

    Where passion meets impact

    Grinnell senior Mia Hines has always dreamed of using her love for computer science to support social justice. She has experience working with unhoused people and labor unions, and advocating for Indigenous peoples’ rights. When applying to college, she focused her essay on using technology to help Syrian refugees.

    “As a Black woman, it’s very important to me that we focus on these areas, especially on how we can use technology to help marginalized communities,” Hines says. “And also, how do we stop technology or improve technology that is already hurting marginalized communities?”   

    Through MSRP, Hines was paired with research advisor Ufuoma Ovienmhada, a fourth-year doctoral student in the Department of Aeronautics and Astronautics at MIT. A member of Professor Danielle Wood’s Space Enabled research group at MIT’s Media Lab, Ovienmhada received funding from an ICSR Seed Grant and NASA’s Applied Sciences Program to support her ongoing research measuring environmental injustice and socioeconomic disparities in prison landscapes. 

    “I had been doing satellite remote sensing for environmental challenges and sustainability, starting out looking at coastal ecosystems, when I learned about an issue called ‘prison ecology,’” Ovienmhada explains. “This refers to the intersection of mass incarceration and environmental justice.”

    Ovienmhada’s research uses satellite remote sensing and environmental data to characterize exposures to different environmental hazards such as air pollution, extreme heat, and flooding. “This allows others to use these datasets for real-time advocacy, in addition to creating public awareness,” she says.

    Focused especially on extreme heat, Hines used satellite remote sensing to monitor the fluctuation of temperature to assess the risk being imposed on prisoners, including death, especially in states like Texas, where 75 percent of prisons either don’t have full air conditioning or have none at all.

    “Before this project I had done little to no work with geospatial data, and as a budding data scientist, getting to work with and understanding different types of data and resources is really helpful,” Hines says. “I was also funded and afforded the flexibility to take advantage of IDSS’s Data Science and Machine Learning online course. It was really great to be able to do that and learn even more.”

    Filling the gap

    Much like Hines, Harvey Mudd senior Megan Li was specifically interested in the IDSS-supported MSRP projects. She was drawn to the interdisciplinary approach, and she seeks in her own work to apply computational methods to societal issues and to make computer science more inclusive, considerate, and ethical. 

    Working with Aurora Zhang, a grad student in IDSS’s Social and Engineering Systems PhD program, Li used county-level data on income and housing prices to quantify and visualize how affordability based on income alone varies across the United States. She then expanded the analysis to include assets and debt to determine the most common barriers to home ownership.

    “I spent my day-to-day looking at census data and writing Python scripts that could work with it,” reports Li. “I also reached out to the Census Bureau directly to learn a little bit more about how they did their data collection, and discussed questions related to some of their previous studies and working papers that I had reviewed.” 

    Outside of actual day-to-day research, Li says she learned a lot in conversations with fellow researchers, particularly changing her “skeptical view” of whether or not mortgage lending algorithms would help or hurt home buyers in the approval process. “I think I have a little bit more faith now, which is a good thing.”

    “Harvey Mudd is undergraduate-only, and while professors do run labs here, my specific research areas are not well represented,” Li says. “This opportunity was enormous in that I got the experience I need to see if this research area is actually something that I want to do long term, and I got more mirrors into what I would be doing in grad school from talking to students and getting to know faculty.”

    Closing the loop

    While participating in MSRP offered crucial research experience to Hines, the ICSR projects enabled her to engage in topics she’s passionate about and work that could drive tangible societal change.

    “The experience felt much more concrete because we were working on these very sophisticated projects, in a supportive environment where people were very excited to work with us,” she says.

    A significant benefit for Li was the chance to steer her research in alignment with her own interests. “I was actually given the opportunity to propose my own research idea, versus supporting a graduate student’s work in progress,” she explains. 

    For Ovienmhada, the pairing of the two initiatives solidifies the efforts of MSRP and closes a crucial loop in diversity, equity, and inclusion advocacy. 

    “I’ve participated in a lot of different DEI-related efforts and advocacy and one thing that always comes up is the fact that it’s not just about bringing people in, it’s also about creating an environment and opportunities that align with people’s values,” Ovienmhada says. “Programs like MSRP and ICSR create opportunities for people who want to do work that’s aligned with certain values by providing the needed mentoring and financial support.” More

  • in

    Simulating discrimination in virtual reality

    Have you ever been advised to “walk a mile in someone else’s shoes?” Considering another person’s perspective can be a challenging endeavor — but recognizing our errors and biases is key to building understanding across communities. By challenging our preconceptions, we confront prejudice, such as racism and xenophobia, and potentially develop a more inclusive perspective about others.

    To assist with perspective-taking, MIT researchers have developed “On the Plane,” a virtual reality role-playing game (VR RPG) that simulates discrimination. In this case, the game portrays xenophobia directed against a Malaysian America woman, but the approach can be generalized. Situated on an airplane, players can take on the role of characters from different backgrounds, engaging in dialogue with others while making in-game choices to a series of prompts. In turn, players’ decisions control the outcome of a tense conversation between the characters about cultural differences.

    As a VR RPG, “On the Plane” encourages players to take on new roles that may be outside of their personal experiences in the first person, allowing them to confront in-group/out-group bias by incorporating new perspectives into their understanding of different cultures. Players engage with three characters: Sarah, a first-generation Muslim American of Malaysian ancestry who wears a hijab; Marianne, a white woman from the Midwest with little exposure to other cultures and customs; or a flight attendant. Sarah represents the out group, Marianne is a member of the in group, and the flight staffer is a bystander witnessing an exchange between the two passengers.“This project is part of our efforts to harness the power of virtual reality and artificial intelligence to address social ills, such as discrimination and xenophobia,” says Caglar Yildirim, an MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) research scientist who is a co-author and co-game designer on the project. “Through the exchange between the two passengers, players experience how one passenger’s xenophobia manifests itself and how it affects the other passenger. The simulation engages players in critical reflection and seeks to foster empathy for the passenger who was ‘othered’ due to her outfit being not so ‘prototypical’ of what an American should look like.”

    Yildirim worked alongside the project’s principal investigator, D. Fox Harrell, MIT professor of digital media and AI at CSAIL, the Program in Comparative Media Studies/Writing (CMS), and the Institute for Data, Systems, and Society (IDSS) and founding director of the MIT Center for Advanced Virtuality. “It is not possible for a simulation to give someone the life experiences of another person, but while you cannot ‘walk in someone else’s shoes’ in that sense, a system like this can help people recognize and understand the social patterns at work when it comes to issue like bias,” says Harrell, who is also co-author and designer on this project. “An engaging, immersive, interactive narrative can also impact people emotionally, opening the door for users’ perspectives to be transformed and broadened.” This simulation also utilizes an interactive narrative engine that creates several options for responses to in-game interactions based on a model of how people are categorized socially. The tool grants players a chance to alter their standing in the simulation through their reply choices to each prompt, affecting their affinity toward the other two characters. For example, if you play as the flight attendant, you can react to Marianne’s xenophobic expressions and attitudes toward Sarah, changing your affinities. The engine will then provide you with a different set of narrative events based on your changes in standing with others.

    To animate each avatar, “On the Plane” incorporates artificial intelligence knowledge representation techniques controlled by probabilistic finite state machines, a tool commonly used in machine learning systems for pattern recognition. With the help of these machines, characters’ body language and gestures are customizable: if you play as Marianne, the game will customize her mannerisms toward Sarah based on user inputs, impacting how comfortable she appears in front of a member of a perceived out group. Similarly, players can do the same from Sarah or the flight attendant’s point of view.In a 2018 paper based on work done in a collaboration between MIT CSAIL and the Qatar Computing Research Institute, Harrell and co-author Sercan Şengün advocated for virtual system designers to be more inclusive of Middle Eastern identities and customs. They claimed that if designers allowed users to customize virtual avatars more representative of their background, it might empower players to engage in a more supportive experience. Four years later, “On the Plane” accomplishes a similar goal, incorporating a Muslim’s perspective into an immersive environment.

    “Many virtual identity systems, such as avatars, accounts, profiles, and player characters, are not designed to serve the needs of people across diverse cultures. We have used statistical and AI methods in conjunction with qualitative approaches to learn where the gaps are,” they note. “Our project helps engender perspective transformation so that people will treat each other with respect and enhanced understanding across diverse cultural avatar representations.”

    Harrell and Yildirim’s work is part of the MIT IDSS’s Initiative on Combatting Systemic Racism (ICSR). Harrell is on the initiative’s steering committee and is the leader of the newly forming Antiracism, Games, and Immersive Media vertical, who study behavior, cognition, social phenomena, and computational systems related to race and racism in video games and immersive experiences.

    The researchers’ latest project is part of the ICSR’s broader goal to launch and coordinate cross-disciplinary research that addresses racially discriminatory processes across American institutions. Using big data, members of the research initiative develop and employ computing tools that drive racial equity. Yildirim and Harrell accomplish this goal by depicting a frequent, problematic scenario that illustrates how bias creeps into our everyday lives.“In a post-9/11 world, Muslims often experience ethnic profiling in American airports. ‘On the Plane’ builds off of that type of in-group favoritism, a well-established finding in psychology,” says MIT Professor Fotini Christia, director of the Sociotechnical Systems Research Center (SSRC) and associate director or IDSS. “This game also takes a novel approach to analyzing hardwired bias by utilizing VR instead of field experiments to simulate prejudice. Excitingly, this research demonstrates that VR can be used as a tool to help us better measure bias, combating systemic racism and other forms of discrimination.”“On the Plane” was developed on the Unity game engine using the XR Interaction Toolkit and Harrell’s Chimeria platform for authoring interactive narratives that involve social categorization. The game will be deployed for research studies later this year on both desktop computers and the standalone, wireless Meta Quest headsets. A paper on the work was presented in December at the 2022 IEEE International Conference on Artificial Intelligence and Virtual Reality. More

  • in

    How artificial intelligence can help combat systemic racism

    In 2020, Detroit police arrested a Black man for shoplifting almost $4,000 worth of watches from an upscale boutique. He was handcuffed in front of his family and spent a night in lockup. After some questioning, however, it became clear that they had the wrong man. So why did they arrest him in the first place?

    The reason: a facial recognition algorithm had matched the photo on his driver’s license to grainy security camera footage.

    Facial recognition algorithms — which have repeatedly been demonstrated to be less accurate for people with darker skin — are just one example of how racial bias gets replicated within and perpetuated by emerging technologies.

    “There’s an urgency as AI is used to make really high-stakes decisions,” says MLK Visiting Professor S. Craig Watkins, whose academic home for his time at MIT is the Institute for Data, Systems, and Society (IDSS). “The stakes are higher because new systems can replicate historical biases at scale.”

    Watkins, a professor at the University of Texas at Austin and the founding director of the Institute for Media Innovation​, researches the impacts of media and data-based systems on human behavior, with a specific concentration on issues related to systemic racism. “One of the fundamental questions of the work is: how do we build AI models that deal with systemic inequality more effectively?”

    Play video

    Artificial Intelligence and the Future of Racial Justice | S. Craig Watkins | TEDxMIT

    Ethical AI

    Inequality is perpetuated by technology in many ways across many sectors. One broad domain is health care, where Watkins says inequity shows up in both quality of and access to care. The demand for mental health care, for example, far outstrips the capacity for services in the United States. That demand has been exacerbated by the pandemic, and access to care is harder for communities of color.

    For Watkins, taking the bias out of the algorithm is just one component of building more ethical AI. He works also to develop tools and platforms that can address inequality outside of tech head-on. In the case of mental health access, this entails developing a tool to help mental health providers deliver care more efficiently.

    “We are building a real-time data collection platform that looks at activities and behaviors and tries to identify patterns and contexts in which certain mental states emerge,” says Watkins. “The goal is to provide data-informed insights to care providers in order to deliver higher-impact services.”

    Watkins is no stranger to the privacy concerns such an app would raise. He takes a user-centered approach to the development that is grounded in data ethics. “Data rights are a significant component,” he argues. “You have to give the user complete control over how their data is shared and used and what data a care provider sees. No one else has access.”

    Combating systemic racism

    Here at MIT, Watkins has joined the newly launched Initiative on Combatting Systemic Racism (ICSR), an IDSS research collaboration that brings together faculty and researchers from the MIT Stephen A. Schwarzman College of Computing and beyond. The aim of the ICSR is to develop and harness computational tools that can help effect structural and normative change toward racial equity.

    The ICSR collaboration has separate project teams researching systemic racism in different sectors of society, including health care. Each of these “verticals” addresses different but interconnected issues, from sustainability to employment to gaming. Watkins is a part of two ICSR groups, policing and housing, that aim to better understand the processes that lead to discriminatory practices in both sectors. “Discrimination in housing contributes significantly to the racial wealth gap in the U.S.,” says Watkins.

    The policing team examines patterns in how different populations get policed. “There is obviously a significant and charged history to policing and race in America,” says Watkins. “This is an attempt to understand, to identify patterns, and note regional differences.”

    Watkins and the policing team are building models using data that details police interventions, responses, and race, among other variables. The ICSR is a good fit for this kind of research, says Watkins, who notes the interdisciplinary focus of both IDSS and the SCC. 

    “Systemic change requires a collaborative model and different expertise,” says Watkins. “We are trying to maximize influence and potential on the computational side, but we won’t get there with computation alone.”

    Opportunities for change

    Models can also predict outcomes, but Watkins is careful to point out that no algorithm alone will solve racial challenges.

    “Models in my view can inform policy and strategy that we as humans have to create. Computational models can inform and generate knowledge, but that doesn’t equate with change.” It takes additional work — and additional expertise in policy and advocacy — to use knowledge and insights to strive toward progress.

    One important lever of change, he argues, will be building a more AI-literate society through access to information and opportunities to understand AI and its impact in a more dynamic way. He hopes to see greater data rights and greater understanding of how societal systems impact our lives.

    “I was inspired by the response of younger people to the murders of George Floyd and Breonna Taylor,” he says. “Their tragic deaths shine a bright light on the real-world implications of structural racism and has forced the broader society to pay more attention to this issue, which creates more opportunities for change.” More

  • in

    3 Questions: Fotini Christia on racial equity and data science

    Fotini Christia is the Ford International Professor in the Social Sciences in the Department of Political Science, associate director of the Institute for Data, Systems, and Society (IDSS), and director of the Sociotechnical Systems Research Center (SSRC). Her research interests include issues of conflict and cooperation in the Muslim world, and she has conducted fieldwork in Afghanistan, Bosnia, Iran, the Palestinian Territories, Syria, and Yemen. She has co-organized the IDSS Research Initiative on Combatting Systemic Racism (ICSR), which works to bridge the social sciences, data science, and computation by bringing researchers from these disciplines together to address systemic racism across housing, health care, policing, education, employment, and other sectors of society.

    Q: What is the IDSS/ICSR approach to systemic racism research?

    A: The Research Initiative on Combatting Systemic Racism (ICSR) aims to seed and coordinate cross-disciplinary research to identify and overcome racially discriminatory processes and outcomes across a range of U.S. institutions and policy domains.

    Building off the extensive social science literature on systemic racism, the focus of this research initiative is to use big data to develop and harness computational tools that can help effect structural and normative change toward racial equity.

    The initiative aims to create a visible presence at MIT for cutting-edge computational research with a racial equity lens, across societal domains that will attract and train students and scholars.

    The steering committee for this research initiative is composed of underrepresented minority faculty members from across MIT’s five schools and the MIT Schwarzman College of Computing. Members will serve as close advisors to the initiative as well as share the findings of our work beyond MIT’s campus. MIT Chancellor Melissa Nobles heads this committee.

    Q: What role can data science play in helping to effect change toward racial equity?

    A: Existing work has shown racial discrimination in the job market, in the criminal justice system, as well as in education, health care, and access to housing, among other places. It has also underlined how algorithms could further entrench such bias — be it in training data or in the people who build them. Data science tools can not only help identify, but also contribute to, proposing fixes on racially inequitable outcomes that result from implicit or explicit biases in governing institutional practices in the public and private sector, and more recently from the use of AI and algorithmic methods in decision-making.

    To that effect, this initiative will produce research that explores and collects the relevant big data across domains, while paying attention to the ways such data are collected, and focus on improving and developing data-driven computational tools to address racial disparities in structures and institutions that have reproduced racially discriminatory outcomes in American society.

    The strong correlation between race, class, educational attainment, and various attitudes and behaviors in the American context can make it extremely difficult to rule out the influence of confounding factors. Thus, a key motivation for our research initiative is to highlight the importance of causal analysis using computational methods, and focus on understanding the opportunities of big data and algorithmic decision-making to address racial inequities and promote racial justice — beyond de-biasing algorithms. The intent is to also codify methodologies on equity-informed research practices and produce tools that are clear on the quantifiable expected social costs and benefits, as well as on the downstream effects on systemic racism more broadly.

    Q: What are some ways that the ICSR might conduct or follow-up on research seeking real-world impact or policy change?

    A: This type of research has ethical and societal considerations at its core, especially as they pertain to historically disadvantaged groups in the U.S., and will be coordinated with and communicated to local stakeholders to drive relevant policy decisions. This initiative intends to establish connections to URM [underrepresented minority] researchers and students at underrepresented universities and to directly collaborate with them on these research efforts. To that effect, we are leveraging existing programs such as the MIT Summer Research Program (MSRP).

    To ensure that our research targets the right problems bringing a racial equity lens with an interest to effect policy change, we will also connect with community organizations in minority neighborhoods who often bear the brunt of the direct and indirect effects of systemic racism, as well as with local government offices that work to address inequity in service provision in these communities. Our intent is to directly engage IDSS students with these organizations to help develop and test algorithmic tools for racial equity. More