More stories

  • in

    Generating opportunities with generative AI

    Talking with retail executives back in 2010, Rama Ramakrishnan came to two realizations. First, although retail systems that offered customers personalized recommendations were getting a great deal of attention, these systems often provided little payoff for retailers. Second, for many of the firms, most customers shopped only once or twice a year, so companies didn’t really know much about them.

    “But by being very diligent about noting down the interactions a customer has with a retailer or an e-commerce site, we can create a very nice and detailed composite picture of what that person does and what they care about,” says Ramakrishnan, professor of the practice at the MIT Sloan School of Management. “Once you have that, then you can apply proven algorithms from machine learning.”

    These realizations led Ramakrishnan to found CQuotient, a startup whose software has now become the foundation for Salesforce’s widely adopted AI e-commerce platform. “On Black Friday alone, CQuotient technology probably sees and interacts with over a billion shoppers on a single day,” he says.

    After a highly successful entrepreneurial career, in 2019 Ramakrishnan returned to MIT Sloan, where he had earned master’s and PhD degrees in operations research in the 1990s. He teaches students “not just how these amazing technologies work, but also how do you take these technologies and actually put them to use pragmatically in the real world,” he says.

    Additionally, Ramakrishnan enjoys participating in MIT executive education. “This is a great opportunity for me to convey the things that I have learned, but also as importantly, to learn what’s on the minds of these senior executives, and to guide them and nudge them in the right direction,” he says.

    For example, executives are understandably concerned about the need for massive amounts of data to train machine learning systems. He can now guide them to a wealth of models that are pre-trained for specific tasks. “The ability to use these pre-trained AI models, and very quickly adapt them to your particular business problem, is an incredible advance,” says Ramakrishnan.

    Rama Ramakrishnan – Utilizing AI in Real World Applications for Intelligent WorkVideo: MIT Industrial Liaison Program

    Understanding AI categories

    “AI is the quest to imbue computers with the ability to do cognitive tasks that typically only humans can do,” he says. Understanding the history of this complex, supercharged landscape aids in exploiting the technologies.

    The traditional approach to AI, which basically solved problems by applying if/then rules learned from humans, proved useful for relatively few tasks. “One reason is that we can do lots of things effortlessly, but if asked to explain how we do them, we can’t actually articulate how we do them,” Ramakrishnan comments. Also, those systems may be baffled by new situations that don’t match up to the rules enshrined in the software.

    Machine learning takes a dramatically different approach, with the software fundamentally learning by example. “You give it lots of examples of inputs and outputs, questions and answers, tasks and responses, and get the computer to automatically learn how to go from the input to the output,” he says. Credit scoring, loan decision-making, disease prediction, and demand forecasting are among the many tasks conquered by machine learning.

    But machine learning only worked well when the input data was structured, for instance in a spreadsheet. “If the input data was unstructured, such as images, video, audio, ECGs, or X-rays, it wasn’t very good at going from that to a predicted output,” Ramakrishnan says. That means humans had to manually structure the unstructured data to train the system.

    Around 2010 deep learning began to overcome that limitation, delivering the ability to directly work with unstructured input data, he says. Based on a longstanding AI strategy known as neural networks, deep learning became practical due to the global flood tide of data, the availability of extraordinarily powerful parallel processing hardware called graphics processing units (originally invented for video games) and advances in algorithms and math.

    Finally, within deep learning, the generative AI software packages appearing last year can create unstructured outputs, such as human-sounding text, images of dogs, and three-dimensional models. Large language models (LLMs) such as OpenAI’s ChatGPT go from text inputs to text outputs, while text-to-image models such as OpenAI’s DALL-E can churn out realistic-appearing images.

    Rama Ramakrishnan – Making Note of Little Data to Improve Customer ServiceVideo: MIT Industrial Liaison Program

    What generative AI can (and can’t) do

    Trained on the unimaginably vast text resources of the internet, a LLM’s “fundamental capability is to predict the next most likely, most plausible word,” Ramakrishnan says. “Then it attaches the word to the original sentence, predicts the next word again, and keeps on doing it.”

    “To the surprise of many, including a lot of researchers, an LLM can do some very complicated things,” he says. “It can compose beautifully coherent poetry, write Seinfeld episodes, and solve some kinds of reasoning problems. It’s really quite remarkable how next-word prediction can lead to these amazing capabilities.”

    “But you have to always keep in mind that what it is doing is not so much finding the correct answer to your question as finding a plausible answer your question,” Ramakrishnan emphasizes. Its content may be factually inaccurate, irrelevant, toxic, biased, or offensive.

    That puts the burden on users to make sure that the output is correct, relevant, and useful for the task at hand. “You have to make sure there is some way for you to check its output for errors and fix them before it goes out,” he says.

    Intense research is underway to find techniques to address these shortcomings, adds Ramakrishnan, who expects many innovative tools to do so.

    Finding the right corporate roles for LLMs

    Given the astonishing progress in LLMs, how should industry think about applying the software to tasks such as generating content?

    First, Ramakrishnan advises, consider costs: “Is it a much less expensive effort to have a draft that you correct, versus you creating the whole thing?” Second, if the LLM makes a mistake that slips by, and the mistaken content is released to the outside world, can you live with the consequences?

    “If you have an application which satisfies both considerations, then it’s good to do a pilot project to see whether these technologies can actually help you with that particular task,” says Ramakrishnan. He stresses the need to treat the pilot as an experiment rather than as a normal IT project.

    Right now, software development is the most mature corporate LLM application. “ChatGPT and other LLMs are text-in, text-out, and a software program is just text-out,” he says. “Programmers can go from English text-in to Python text-out, as well as you can go from English-to-English or English-to-German. There are lots of tools which help you write code using these technologies.”

    Of course, programmers must make sure the result does the job properly. Fortunately, software development already offers infrastructure for testing and verifying code. “This is a beautiful sweet spot,” he says, “where it’s much cheaper to have the technology write code for you, because you can very quickly check and verify it.”

    Another major LLM use is content generation, such as writing marketing copy or e-commerce product descriptions. “Again, it may be much cheaper to fix ChatGPT’s draft than for you to write the whole thing,” Ramakrishnan says. “However, companies must be very careful to make sure there is a human in the loop.”

    LLMs also are spreading quickly as in-house tools to search enterprise documents. Unlike conventional search algorithms, an LLM chatbot can offer a conversational search experience, because it remembers each question you ask. “But again, it will occasionally make things up,” he says. “In terms of chatbots for external customers, these are very early days, because of the risk of saying something wrong to the customer.”

    Overall, Ramakrishnan notes, we’re living in a remarkable time to grapple with AI’s rapidly evolving potentials and pitfalls. “I help companies figure out how to take these very transformative technologies and put them to work, to make products and services much more intelligent, employees much more productive, and processes much more efficient,” he says. More

  • in

    Learner in Afghanistan reaches beyond barriers to pursue career in data science

    Tahmina S. was a junior studying computer engineering at a top university in Afghanistan when a new government policy banned women from pursuing education. In August 2021, the Taliban prohibited girls from attending school beyond the sixth grade. While women were initially allowed to continue to attend universities, by October 2021, an order from the Ministry of Higher Education declared that all women in Afghanistan were suspended from attending public and private centers of higher education.

    Determined to continue her studies and pursue her ambitions, Tahmina found the MIT Refugee Action Hub (ReACT) and was accepted to its Certificate in Computer Science and Data Science program in 2022.

    “ReACT helped me realize that I can do big things and be a part of big things,” she says.

    MIT ReACT provides education and professional opportunities to learners from refugee and forcibly displaced communities worldwide. ReACT’s core pillars include academic development, human skills development, employment pathways, and network building. Since 2017, ReACT has offered its Certificate in Computer and Data Science (CDS) program free-of-cost to learners wherever they live. In 2022, ReACT welcomed its largest and most diverse cohort to date — 136 learners from 29 countries — including 25 learners from Afghanistan, more than half of whom are women.

    Tahmina was able to select her classes in the program, and especially valued learning Python — which has led to her studying other programming languages and gaining more skills in data science. She’s continuing to take online courses in hopes of completing her undergraduate degree, and someday pursuing a masters degree in computer science and becoming a data scientist.

    “It’s an important and fun career. I really love data,” she says. “If this is my only time for this experience, I will bring to the table what I have, and do my best.”

    In addition to the education ban, Tahmina also faced the challenge of accessing an internet connection, which is expensive where she lives. But she regularly studies between 12 and 14 hours a day to achieve her dreams.

    The ReACT program offers a blend of asynchronous and synchronous learning. Learners complete a curated series of online, rigorous MIT coursework through MITx with the support of teaching assistants and collaborators, and also participate in a series of interactive online workshops in interpersonal skills that are critical to success in education and careers.

    ReACT learners engage with MIT’s global network of experts including MIT staff, faculty, and alumni — as well as collaborators across technology, humanitarian, and government sectors.

    “I loved that experience a lot, it was a huge achievement. I’m grateful ReACT gave me a chance to be a part of that team of amazing people. I’m amazed I completed that program, because it was really challenging.”

    Theory into practice

    Tahmina was one of 10 students from the ReACT cohort accepted to the highly competitive MIT Innovation Leadership Bootcamp program. She worked on a team of five people who initiated a business proposal and took the project through each phase of the development process. Her team’s project was creating an app for finance management for users aged 23-51 — including all the graphic elements and a final presentation. One valuable aspect of the boot camp, Tahmina says, was presenting their project to real investors who then provided business insights and actionable feedback.

    As part of this ReACT cohort, Tahmina also participated in the Global Apprenticeship Program (GAP) pilot, an initiative led by Talanta and with the participation of MIT Open Learning as curriculum provider. The GAP initiative focuses on improving diverse emerging talent job preparedness and exploring how companies can successfully recruit, onboard, and retain this talent through remote, paid internships. Through the GAP pilot, Tahmina received training in professional skills, resume and interview preparation, and was matched with a financial sector firm for a four-month remote internship in data science.

    To prepare Tahmina and other learners for these professional experiences, ReACT trains its cohorts to work with people who have diverse backgrounds, experiences, and challenges. The nonprofit Na’amal offered workshops covering areas such as problem-solving, innovation and ideation, goal-setting, communication, teamwork, and infrastructure and info security. Tahmina was able to access English classes and learn valuable career skills, such as writing a resume.“This was an amazing part for me. There’s a huge difference going from theoretical to practical,” she says. “Not only do you have to have the theoretical experience, you have to have soft skills. You have to communicate everything you learn to other people, because other people in the business might not have that knowledge, so you have to tell the story in a way that they can understand.”

    ReACT wanted the women in the program to be mentored by women who were not only leaders in the tech field, but working in the same geographic region as learners. At the start of the internship, Na’amal connected Tahmina with a mentor, Maha Gad, who is head of talent development at Talabat and lives in Dubai. Tahmina met with Gad at the beginning and end of each month, giving her the opportunity to ask expansive questions. Tahmina says Gad encouraged her to research and plan first, and then worked with her to explore new tools, like Trello.

    Wanting to put her skills to use locally, Tahmina volunteered at the nonprofit Rumie, a community for Afghan women and girls, working as a learning designer, translator, team leader, and social media manager. She currently volunteers at Correspondents of the World as a story ambassador, helping Afghan people share stories, community, and culture — especially telling the stories of Afghan women and the changes they’ve made in the world.

    “It’s been the most beautiful journey of my life that I will never forget,” says Tahmina. “I found ReACT at a time when I had nothing, and I found the most valuable thing.” More

  • in

    Research, education, and connection in the face of war

    When Russian forces invaded Ukraine in February 2022, Tetiana Herasymova had several decisions to make: What should she do, where should she live, and should she take her MITx MicroMasters capstone exams? She had registered for the Statistics and Data Science Program’s final exams just days prior to moving out of her apartment and into a bomb shelter. Although it was difficult to focus on studying and preparations with air horns sounding overhead and uncertainty lingering around her, she was determined to try. “I wouldn’t let the aggressor in the war squash my dreams,” she says.

    A love of research and the desire to improve teaching 

    An early love of solving puzzles and problems for fun piqued Herasymova’s initial interest in mathematics. When she later pursued her PhD in mathematics at Kiev National Taras Shevchenko University, Herasymova’s love of math evolved into a love of research. Throughout Herasymova’s career, she’s worked to close the gap between scientific researchers and educators. Starting as a math tutor at MBA Strategy, a company that prepares Ukrainian leaders for qualifying standardized tests for MBA programs, she was later promoted as the head of their test preparation department. Afterward, she moved on to an equivalent position at ZNOUA, a new project that prepared high school students for Ukraine’s standardized test, and she eventually became ZNOUA’s CEO.

    In 2018, she founded Prosteer, a “self-learning community” of educators who share research, pedagogy, and experience to learn from one another. “It’s really interesting to have a community of teachers from different domains,” she says, speaking of educators and researchers whose specialties range across language, mathematics, physics, music, and more.

    Implementing new pedagogical research in the classroom is often up to educators who seek out studies on an individual basis, Herasymova has found. “Lots of scientists are not practitioners,” she says, and the reverse is also true. She only became more determined to build these connections once she was promoted to head of test preparation at MBA Strategy because she wanted to share more effective pedagogy with the tutors she was mentoring.

    First, Herasymova knew she needed a way to measure the teachers’ effectiveness. She was able to determine whether students who received the company’s tutoring services improved their scores. Moreover, Ukraine keeps an open-access database of national standardized test scores, so anyone could analyze the data in hopes of improving the level of education in the country. She says, “I could do some analytics because I am a mathematician, but I knew I could do much more with this data if I knew data science and machine learning knowledge.”

    That’s why Herasymova sought out the MITx MicroMasters Program in Statistics and Data Science offered by the MIT Institute for Data, Systems, and Society (IDSS). “I wanted to learn the fundamentals so I could join the Learning Analytics domain,” she says. She was looking for a comprehensive program that covered the foundations without being overly basic. “I had some knowledge from the ground, so I could see the deepness of that course,” she says. Because of her background as an instructional designer, she thought the MicroMasters curriculum was well-constructed, calling the variety of videos, practice problems, and homework assignments that encouraged learners to approach the course material in different ways, “a perfect experience.”

    Another benefit of the MicroMasters program was its online format. “I had my usual work, so it was impossible to study in a stationary way,” she says. She found the structure to be more flexible than other programs. “It’s really great that you can construct your course schedule your own way, especially with your own adult life,” she says.

    Determination and support in the midst of war

    When the war first forced Herasymova to flee her apartment, she had already registered to take the exams for her four courses. “It was quite hard to prepare for exams when you could hear explosions outside of the bomb shelter,” she says. She and other Ukranians were invited to postpone their exams until the following session, but the next available testing period wouldn’t be held until October. “It was a hard decision, but I had to allow myself to try,” she says. “For all people in Ukraine, when you don’t know if you’re going to live or die, you try to live in the now. You have to appreciate every moment and what life brings to you. You don’t say, ‘Someday’ — you do it today or tomorrow.”

    In addition to emotional support from her boyfriend, Herasymova had a group of friends who had also enrolled in the program, and they supported each other through study sessions and an ongoing chat. Herasymova’s personal support network helped her accomplish what she set out to do with her MicroMasters program, and in turn, she was able to support her professional network. While Prosteer halted its regular work during the early stages of the war, Herasymova was determined to support the community of educators and scientists that she had built. They continued meeting weekly to exchange ideas as usual. “It’s intrinsic motivation,” she says. They managed to restore all of their activities by October.

    Despite the factors stacked against her, Herasymova’s determination paid off — she passed all of her exams in May, the final step to earning her MicroMasters certificate in statistics and data science. “I just couldn’t believe it,” she says. “It was definitely a bifurcation point. The moment when you realize that you have something to rely on, and that life is just beginning to show all its diversity despite the fact that you live in war.” With her newly minted certificate in hand, Herasymova has continued her research on the effectiveness of educational models — analyzing the data herself — with a summer research program at New York University. 

    The student becomes the master

    After moving seven times between February and October, heading west from Kyiv until most recently settling near the border of Poland, Herasymova hopes she’s moved for the last time. Ukrainian Catholic University offered her a position teaching both mathematics and programming. Before enrolling in the MicroMasters Program in Statistics and Data Science, she had some prior knowledge of programming languages and mathematical algorithms, but she didn’t know Python. She took MITx’s Introduction to Computer Science and Programming Using Python to prepare. “It gave me a huge step forward,” she says. “I learned a lot. Now, not only can I work with Python machine learning models in programming language R, I also have knowledge of the big picture of the purpose and the point to do so.”

    In addition to the skills the MicroMasters Program trained her in, she gained firsthand experience in learning new subjects and exploring topics more deeply. She will be sharing that practice with the community of students and teachers she’s built, plus, she plans on guiding them through this course during the next year. As a continuation of her own educational growth, says she’s looking forward to her next MITx course this year, Data Analysis.

    Herasymova advises that the best way to keep progressing is investing a lot of time. “Adults don’t want to hear this, but you need one or two years,” she says. “Allow yourself to be stupid. If you’re an expert in one domain and want to switch to another, or if you want to understand something new, a lot of people don’t ask questions or don’t ask for help. But from this point, if I don’t know something, I know I should ask for help because that’s the start of learning. With a fixed mindset, you won’t grow.”

    July 2022 MicroMasters Program Joint Completion Celebration. Ukrainian student Tetiana Herasymova, who completed her program amid war in her home country, speaks at 43:55. More

  • in

    Empowering Cambridge youth through data activism

    For over 40 years, the Mayor’s Summer Youth Employment Program (MSYEP, or the Mayor’s Program) in Cambridge, Massachusetts, has been providing teenagers with their first work experience, but 2022 brought a new offering. Collaborating with MIT’s Personal Robots research group (PRG) and Responsible AI for Social Empowerment and Education (RAISE) this summer, MSYEP created a STEAM-focused learning site at the Institute. Eleven students joined the program to learn coding and programming skills through the lens of “Data Activism.”

    MSYEP’s partnership with MIT provides an opportunity for Cambridge high schoolers to gain exposure to more pathways for their future careers and education. The Mayor’s Program aims to respect students’ time and show the value of their work, so participants are compensated with an hourly wage as they learn workforce skills at MSYEP worksites. In conjunction with two ongoing research studies at MIT, PRG and RAISE developed the six-week Data Activism curriculum to equip students with critical-thinking skills so they feel prepared to utilize data science to challenge social injustice and empower their community.

    Rohan Kundargi, K-12 Community Outreach Administrator for MIT Office of Government and Community Relations (OGCR), says, “I see this as a model for a new type of partnership between MIT and Cambridge MSYEP. Specifically, an MIT research project that involves students from Cambridge getting paid to learn, research, and develop their own skills!”

    Cross-Cambridge collaboration

    Cambridge’s Office of Workforce Development initially contacted MIT OGCR about hosting a potential MSYEP worksite that taught Cambridge teens how to code. When Kundargi reached out to MIT pK-12 collaborators, MIT PRG’s graduate research assistant Raechel Walker proposed the Data Activism curriculum. Walker defines “data activism” as utilizing data, computing, and art to analyze how power operates in the world, challenge power, and empathize with people who are oppressed.

    Walker says, “I wanted students to feel empowered to incorporate their own expertise, talents, and interests into every activity. In order for students to fully embrace their academic abilities, they must remain comfortable with bringing their full selves into data activism.”

    As Kundargi and Walker recruited students for the Data Activism learning site, they wanted to make sure the cohort of students — the majority of whom are individuals of color — felt represented at MIT and felt they had the agency for their voice to be heard. “The pioneers in this field are people who look like them,” Walker says, speaking of well-known data activists Timnit Gebru, Rediet Abebe, and Joy Buolamwini.

    When the program began this summer, some of the students were not aware of the ways data science and artificial intelligence exacerbate systemic oppression in society, or some of the tools currently being used to mitigate those societal harms. As a result, Walker says, the students wanted to learn more about discriminatory design in every aspect of life. They were also interested in creating responsible machine learning algorithms and AI fairness metrics.

    A different side of STEAM

    The development and execution of the Data Activism curriculum contributed to Walker’s and postdoc Xiaoxue Du’s respective research at PRG. Walker is studying AI education, specifically creating and teaching data activism curricula for minoritized communities. Du’s research explores processes, assessments, and curriculum design that prepares educators to use, adapt, and integrate AI literacy curricula. Additionally, her research targets how to leverage more opportunities for students with diverse learning needs.

    The Data Activism curriculum utilizes a “libertatory computing” framework, a term Walker coined in her position paper with Professor Cynthia Breazeal, director of MIT RAISE, dean for digital learning, and head of PRG, and Eman Sherif, a then-undergraduate researcher from University of California at San Diego, titled “Liberty Computing for African American Students.” This framework ensures that students, especially minoritized students, acquire a sound racial identity, critical consciousness, collective obligation, liberation centered academic/achievement identity, as well as the activism skills to use computing to transform a multi-layered system of barriers in which racism persists. Walker says, “We encouraged students to demonstrate competency in every pillar because all of the pillars are interconnected and build upon each other.”

    Walker developed a series of interactive coding and project-based activities that focused on understanding systemic racism, utilizing data science to analyze systemic oppression, data drawing, responsible machine learning, how racism can be embedded into AI, and different AI fairness metrics.

    This was the students’ first time learning how to create data visualizations using the programming language Python and the data analysis tool Pandas. In one project meant to examine how different systems of oppression can affect different aspects of students’ own identities, students created datasets with data from their respective intersectional identities. Another activity highlighted African American achievements, where students analyzed two datasets about African American scientists, activists, artists, scholars, and athletes. Using the data visualizations, students then created zines about the African Americans who inspired them.

    RAISE hired Olivia Dias, Sophia Brady, Lina Henriquez, and Zeynep Yalcin through the MIT Undergraduate Research Opportunity Program (UROP) and PRG hired freelancer Matt Taylor to work with Walker on developing the curriculum and designing interdisciplinary experience projects. Walker and the four undergraduate researchers constructed an intersectional data analysis activity about different examples of systemic oppression. PRG also hired three high school students to test activities and offer insights about making the curriculum engaging for program participants. Throughout the program, the Data Activism team taught students in small groups, continually asked students how to improve each activity, and structured each lesson based on the students’ interests. Walker says Dias, Brady, Henriquez, and Yalcin were invaluable to cultivating a supportive classroom environment and helping students complete their projects.

    Cambridge Rindge and Latin School senior Nina works on her rubber block stamp that depicts the importance of representation in media and greater representation in the tech industry.

    Photo: Katherine Ouellette

    Previous item
    Next item

    Student Nina says, “It’s opened my eyes to a different side of STEM. I didn’t know what ‘data’ meant before this program, or how intersectionality can affect AI and data.” Before MSYEP, Nina took Intro to Computer Science and AP Computer Science, but she has been coding since Girls Who Code first sparked her interest in middle school. “The community was really nice. I could talk with other girls. I saw there needs to be more women in STEM, especially in coding.” Now she’s interested in applying to colleges with strong computer science programs so she can pursue a coding-related career.

    From MSYEP to the mayor’s office

    Mayor Sumbul Siddiqui visited the Data Activism learning site on Aug. 9, accompanied by Breazeal. A graduate of MSYEP herself, Siddiqui says, “Through hands-on learning through computer programming, Cambridge high school students have the unique opportunity to see themselves as data scientists. Students were able learn ways to combat discrimination that occurs through artificial intelligence.” In an Instagram post, Siddiqui also said, “I had a blast visiting the students and learning about their projects.”

    Students worked on an activity that asked them to envision how data science might be used to support marginalized communities. They transformed their answers into block-printed T-shirt designs, carving pictures of their hopes into rubber block stamps. Some students focused on the importance of data privacy, like Jacob T., who drew a birdcage to represent data stored and locked away by third party apps. He says, “I want to open that cage and restore my data to myself and see what can be done with it.”

    The subject of Cambridge Community Charter School student Jacob T.’s project was the importance of data privacy. For his T-shirt design, he drew a birdcage to represent data stored and locked away by third party apps. (From right to left:) Breazeal, Jacob T. Kiki, Raechel Walker, and Zeynep Yalcin.

    Photo: Katherine Ouellette

    Previous item
    Next item

    Many students wanted to see more representation in both the media they consume and across various professional fields. Nina talked about the importance of representation in media and how that could contribute to greater representation in the tech industry, while Kiki talked about encouraging more women to pursue STEM fields. Jesmin said, “I wanted to show that data science is accessible to everyone, no matter their origin or language you speak. I wrote ‘hello’ in Bangla, Arabic, and English, because I speak all three languages and they all resonate with me.”

    Student Jesmin (left) explains the concept of her T-shirt design to Mayor Siddiqui. She wants data science to be accessible to everyone, no matter their origin or language, so she drew a globe and wrote ‘hello’ in the three languages she speaks: Bangla, Arabic, and English.

    Photo: Katherine Ouellette

    Previous item
    Next item

    “Overall, I hope the students continue to use their data activism skills to re-envision a society that supports marginalized groups,” says Walker. “Moreover, I hope they are empowered to become data scientists and understand how their race can be a positive part of their identity.” More

  • in

    Computing our climate future

    On Monday, MIT announced five multiyear flagship projects in the first-ever Climate Grand Challenges, a new initiative to tackle complex climate problems and deliver breakthrough solutions to the world as quickly as possible. This article is the first in a five-part series highlighting the most promising concepts to emerge from the competition, and the interdisciplinary research teams behind them.

    With improvements to computer processing power and an increased understanding of the physical equations governing the Earth’s climate, scientists are continually working to refine climate models and improve their predictive power. But the tools they’re refining were originally conceived decades ago with only scientists in mind. When it comes to developing tangible climate action plans, these models remain inscrutable to the policymakers, public safety officials, civil engineers, and community organizers who need their predictive insight most.

    “What you end up having is a gap between what’s typically used in practice, and the real cutting-edge science,” says Noelle Selin, a professor in the Institute for Data, Systems and Society and the Department of Earth, Atmospheric and Planetary Sciences (EAPS), and co-lead with Professor Raffaele Ferrari on the MIT Climate Grand Challenges flagship project “Bringing Computation to the Climate Crisis.” “How can we use new computational techniques, new understandings, new ways of thinking about modeling, to really bridge that gap between state-of-the-art scientific advances and modeling, and people who are actually needing to use these models?”

    Using this as a driving question, the team won’t just be trying to refine current climate models, they’re building a new one from the ground up.

    This kind of game-changing advancement is exactly what the MIT Climate Grand Challenges is looking for, which is why the proposal has been named one of the five flagship projects in the ambitious Institute-wide program aimed at tackling the climate crisis. The proposal, which was selected from 100 submissions and was among 27 finalists, will receive additional funding and support to further their goal of reimagining the climate modeling system. It also brings together contributors from across the Institute, including the MIT Schwarzman College of Computing, the School of Engineering, and the Sloan School of Management.

    When it comes to pursuing high-impact climate solutions that communities around the world can use, “it’s great to do it at MIT,” says Ferrari, EAPS Cecil and Ida Green Professor of Oceanography. “You’re not going to find many places in the world where you have the cutting-edge climate science, the cutting-edge computer science, and the cutting-edge policy science experts that we need to work together.”

    The climate model of the future

    The proposal builds on work that Ferrari began three years ago as part of a joint project with Caltech, the Naval Postgraduate School, and NASA’s Jet Propulsion Lab. Called the Climate Modeling Alliance (CliMA), the consortium of scientists, engineers, and applied mathematicians is constructing a climate model capable of more accurately projecting future changes in critical variables, such as clouds in the atmosphere and turbulence in the ocean, with uncertainties at least half the size of those in existing models.

    To do this, however, requires a new approach. For one thing, current models are too coarse in resolution — at the 100-to-200-kilometer scale — to resolve small-scale processes like cloud cover, rainfall, and sea ice extent. But also, explains Ferrari, part of this limitation in resolution is due to the fundamental architecture of the models themselves. The languages most global climate models are coded in were first created back in the 1960s and ’70s, largely by scientists for scientists. Since then, advances in computing driven by the corporate world and computer gaming have given rise to dynamic new computer languages, powerful graphics processing units, and machine learning.

    For climate models to take full advantage of these advancements, there’s only one option: starting over with a modern, more flexible language. Written in Julia, a part of Julialab’s Scientific Machine Learning technology, and spearheaded by Alan Edelman, a professor of applied mathematics in MIT’s Department of Mathematics, CliMA will be able to harness far more data than the current models can handle.

    “It’s been real fun finally working with people in computer science here at MIT,” Ferrari says. “Before it was impossible, because traditional climate models are in a language their students can’t even read.”

    The result is what’s being called the “Earth digital twin,” a climate model that can simulate global conditions on a large scale. This on its own is an impressive feat, but the team wants to take this a step further with their proposal.

    “We want to take this large-scale model and create what we call an ‘emulator’ that is only predicting a set of variables of interest, but it’s been trained on the large-scale model,” Ferrari explains. Emulators are not new technology, but what is new is that these emulators, being referred to as the “Earth digital cousins,” will take advantage of machine learning.

    “Now we know how to train a model if we have enough data to train them on,” says Ferrari. Machine learning for projects like this has only become possible in recent years as more observational data become available, along with improved computer processing power. The goal is to create smaller, more localized models by training them using the Earth digital twin. Doing so will save time and money, which is key if the digital cousins are going to be usable for stakeholders, like local governments and private-sector developers.

    Adaptable predictions for average stakeholders

    When it comes to setting climate-informed policy, stakeholders need to understand the probability of an outcome within their own regions — in the same way that you would prepare for a hike differently if there’s a 10 percent chance of rain versus a 90 percent chance. The smaller Earth digital cousin models will be able to do things the larger model can’t do, like simulate local regions in real time and provide a wider range of probabilistic scenarios.

    “Right now, if you wanted to use output from a global climate model, you usually would have to use output that’s designed for general use,” says Selin, who is also the director of the MIT Technology and Policy Program. With the project, the team can take end-user needs into account from the very beginning while also incorporating their feedback and suggestions into the models, helping to “democratize the idea of running these climate models,” as she puts it. Doing so means building an interactive interface that eventually will give users the ability to change input values and run the new simulations in real time. The team hopes that, eventually, the Earth digital cousins could run on something as ubiquitous as a smartphone, although developments like that are currently beyond the scope of the project.

    The next thing the team will work on is building connections with stakeholders. Through participation of other MIT groups, such as the Joint Program on the Science and Policy of Global Change and the Climate and Sustainability Consortium, they hope to work closely with policymakers, public safety officials, and urban planners to give them predictive tools tailored to their needs that can provide actionable outputs important for planning. Faced with rising sea levels, for example, coastal cities could better visualize the threat and make informed decisions about infrastructure development and disaster preparedness; communities in drought-prone regions could develop long-term civil planning with an emphasis on water conservation and wildfire resistance.

    “We want to make the modeling and analysis process faster so people can get more direct and useful feedback for near-term decisions,” she says.

    The final piece of the challenge is to incentivize students now so that they can join the project and make a difference. Ferrari has already had luck garnering student interest after co-teaching a class with Edelman and seeing the enthusiasm students have about computer science and climate solutions.

    “We’re intending in this project to build a climate model of the future,” says Selin. “So it seems really appropriate that we would also train the builders of that climate model.” More

  • in

    MIT ReACT welcomes first Afghan cohort to its largest-yet certificate program

    Through the championing support of the faculty and leadership of the MIT Afghan Working Group convened last September by Provost Martin Schmidt and chaired by Associate Provost for International Activities Richard Lester, MIT has come together to support displaced Afghan learners and scholars in a time of crisis. The MIT Refugee Action Hub (ReACT) has opened opportunities for 25 talented Afghan learners to participate in the hub’s certificate program in computer and data science (CDS), now in its fourth year, welcoming its largest and most diverse cohort to date — 136 learners from 29 countries.

    ”Even in the face of extreme disruption, education and scholarship must continue, and MIT is committed to providing resources and safe forums for displaced scholars,” says Lester. “We greatly appreciate MIT ReACT’s work to create learning opportunities for Afghan students whose lives have been upended by the crisis in their homeland.”

    Currently, more than 3.5 million Afghans are internally displaced, while 2.5 million are registered refugees residing in other parts of the world. With millions in Afghanistan facing famine, poverty, and civil unrest in what has become the world’s largest humanitarian crisis, the United Nations predicts the number of Afghans forced to flee their homes will continue to rise. 

    “Forced displacement is on the rise, fueled not only by constant political, economical, and social turmoil worldwide, but also by the ongoing climate change crisis, which threatens costly disruptions to society and has potential to create unprecedented displacement internationally,” says associate professor of civil and environmental engineering and ReACT’s faculty founder Admir Masic. During the orientation for the new CDS cohort in January, Masic emphasized the great need for educational programs like ReACT’s that address the specific challenges refugees and displaced learners face.

    A former Bosnian refugee, Masic spent his teenage years in Croatia, where educational opportunities were limited for young people with refugee status. His experience motivated him to found ReACT, which launched in 2017. Housed within Open Learning, ReACT is an MIT-wide effort to deliver global education and professional development programs to underserved communities, including refugees and migrants. ReACT’s signature program, CDS is a year-long, online program that combines MITx courses in programming and data science, personal and professional development workshops including MIT Bootcamps, and opportunities for practical experience.

    ReACT’s group of 25 learners from Afghanistan, 52 percent of whom are women, joins the larger CDS cohort in the program. They will receive support from their new colleagues as well as members of ReACT’s mentor and alumni network. While the majority of the group are residing around the world, including in Europe, North America, and neighboring countries, several still remain in Afghanistan. With the support of the Afghan Working Group, ReACT is working to connect with communities from the region to provide safe and inclusive learning environments for the cohort. ​​

    Building community and confidence

    Selected from more than 1,000 applicants, the new CDS cohort reflected on their personal and professional goals during a weeklong orientation.

    “I am here because I want to change my career and learn basics in this field to then obtain networks that I wouldn’t have got if it weren’t for this program,” said Samiullah Ajmal, who is joining the program from Afghanistan.

    Interactive workshops on topics such as leadership development and virtual networking rounded out the week’s events. Members of ReACT’s greater community — which has grown in recent years to include a network of external collaborators including nonprofits, philanthropic supporters, universities, and alumni — helped facilitate these workshops and other orientation activities.

    For instance, Na’amal, a social enterprise that connects refugees to remote work opportunities, introduced the CDS learners to strategies for making career connections remotely. “We build confidence while doing,” says Susan Mulholland, a leadership and development coach with Na’amal who led the networking workshop.

    Along with the CDS program’s cohort-based model, ReACT also uses platforms that encourage regular communication between participants and with the larger ReACT network — making connections a critical component of the program.

    “I not only want to meet new people and make connections for my professional career, but I also want to test my communication and social skills,” says Pablo Andrés Uribe, a learner who lives in Colombia, describing ReACT’s emphasis on community-building. 

    Over the last two years, ReACT has expanded its geographic presence, growing from a hub in Jordan into a robust global community of many hubs, including in Colombia and Uganda. These regional sites connect talented refugees and displaced learners to internships and employment, startup networks and accelerators, and pathways to formal undergraduate and graduate education.

    This expansion is thanks to the generous support internally from the MIT Office of the Provost and Associate Provost Richard Lester and external organizations including the Western Union Foundation. ReACT will build new hubs this year in Greece, Uruguay, and Afghanistan, as a result of gifts from the Hatsopoulos family and the Pfeffer family.

    Holding space to learn from each other

    In addition to establishing new global hubs, ReACT plans to expand its network of internship and experiential learning opportunities, increasing outreach to new collaborators such as nongovernmental organizations (NGOs), companies, and universities. Jointly with Na’amal and Paper Airplanes, a nonprofit that connects conflict-affected individuals with personal language tutors, ReACT will host the first Migration Summit. Scheduled for April 2022, the month-long global convening invites a broad range of participants, including displaced learners, universities, companies, nonprofits and NGOs, social enterprises, foundations, philanthropists, researchers, policymakers, employers, and governments, to address the key challenges and opportunities for refugee and migrant communities. The theme of the summit is “Education and Workforce Development in Displacement.”

    “The MIT Migration Summit offers a platform to discuss how new educational models, such as those employed in ReACT, can help solve emerging challenges in providing quality education and career opportunities to forcibly displaced and marginalized people around the world,” says Masic. 

    A key goal of the convening is to center the voices of those most directly impacted by displacement, such as ReACT’s learners from Afghanistan and elsewhere, in solution-making. More

  • in

    Exact symbolic artificial intelligence for faster, better assessment of AI fairness

    The justice system, banks, and private companies use algorithms to make decisions that have profound impacts on people’s lives. Unfortunately, those algorithms are sometimes biased — disproportionately impacting people of color as well as individuals in lower income classes when they apply for loans or jobs, or even when courts decide what bail should be set while a person awaits trial.

    MIT researchers have developed a new artificial intelligence programming language that can assess the fairness of algorithms more exactly, and more quickly, than available alternatives.

    Their Sum-Product Probabilistic Language (SPPL) is a probabilistic programming system. Probabilistic programming is an emerging field at the intersection of programming languages and artificial intelligence that aims to make AI systems much easier to develop, with early successes in computer vision, common-sense data cleaning, and automated data modeling. Probabilistic programming languages make it much easier for programmers to define probabilistic models and carry out probabilistic inference — that is, work backward to infer probable explanations for observed data.

    “There are previous systems that can solve various fairness questions. Our system is not the first; but because our system is specialized and optimized for a certain class of models, it can deliver solutions thousands of times faster,” says Feras Saad, a PhD student in electrical engineering and computer science (EECS) and first author on a recent paper describing the work. Saad adds that the speedups are not insignificant: The system can be up to 3,000 times faster than previous approaches.

    SPPL gives fast, exact solutions to probabilistic inference questions such as “How likely is the model to recommend a loan to someone over age 40?” or “Generate 1,000 synthetic loan applicants, all under age 30, whose loans will be approved.” These inference results are based on SPPL programs that encode probabilistic models of what kinds of applicants are likely, a priori, and also how to classify them. Fairness questions that SPPL can answer include “Is there a difference between the probability of recommending a loan to an immigrant and nonimmigrant applicant with the same socioeconomic status?” or “What’s the probability of a hire, given that the candidate is qualified for the job and from an underrepresented group?”

    SPPL is different from most probabilistic programming languages, as SPPL only allows users to write probabilistic programs for which it can automatically deliver exact probabilistic inference results. SPPL also makes it possible for users to check how fast inference will be, and therefore avoid writing slow programs. In contrast, other probabilistic programming languages such as Gen and Pyro allow users to write down probabilistic programs where the only known ways to do inference are approximate — that is, the results include errors whose nature and magnitude can be hard to characterize.

    Error from approximate probabilistic inference is tolerable in many AI applications. But it is undesirable to have inference errors corrupting results in socially impactful applications of AI, such as automated decision-making, and especially in fairness analysis.

    Jean-Baptiste Tristan, associate professor at Boston College and former research scientist at Oracle Labs, who was not involved in the new research, says, “I’ve worked on fairness analysis in academia and in real-world, large-scale industry settings. SPPL offers improved flexibility and trustworthiness over other PPLs on this challenging and important class of problems due to the expressiveness of the language, its precise and simple semantics, and the speed and soundness of the exact symbolic inference engine.”

    SPPL avoids errors by restricting to a carefully designed class of models that still includes a broad class of AI algorithms, including the decision tree classifiers that are widely used for algorithmic decision-making. SPPL works by compiling probabilistic programs into a specialized data structure called a “sum-product expression.” SPPL further builds on the emerging theme of using probabilistic circuits as a representation that enables efficient probabilistic inference. This approach extends prior work on sum-product networks to models and queries expressed via a probabilistic programming language. However, Saad notes that this approach comes with limitations: “SPPL is substantially faster for analyzing the fairness of a decision tree, for example, but it can’t analyze models like neural networks. Other systems can analyze both neural networks and decision trees, but they tend to be slower and give inexact answers.”

    “SPPL shows that exact probabilistic inference is practical, not just theoretically possible, for a broad class of probabilistic programs,” says Vikash Mansinghka, an MIT principal research scientist and senior author on the paper. “In my lab, we’ve seen symbolic inference driving speed and accuracy improvements in other inference tasks that we previously approached via approximate Monte Carlo and deep learning algorithms. We’ve also been applying SPPL to probabilistic programs learned from real-world databases, to quantify the probability of rare events, generate synthetic proxy data given constraints, and automatically screen data for probable anomalies.”

    The new SPPL probabilistic programming language was presented in June at the ACM SIGPLAN International Conference on Programming Language Design and Implementation (PLDI), in a paper that Saad co-authored with MIT EECS Professor Martin Rinard and Mansinghka. SPPL is implemented in Python and is available open source. More