More stories

  • in

    Bringing the social and ethical responsibilities of computing to the forefront

    There has been a remarkable surge in the use of algorithms and artificial intelligence to address a wide range of problems and challenges. While their adoption, particularly with the rise of AI, is reshaping nearly every industry sector, discipline, and area of research, such innovations often expose unexpected consequences that involve new norms, new expectations, and new rules and laws.

    To facilitate deeper understanding, the Social and Ethical Responsibilities of Computing (SERC), a cross-cutting initiative in the MIT Schwarzman College of Computing, recently brought together social scientists and humanists with computer scientists, engineers, and other computing faculty for an exploration of the ways in which the broad applicability of algorithms and AI has presented both opportunities and challenges in many aspects of society.

    “The very nature of our reality is changing. AI has the ability to do things that until recently were solely the realm of human intelligence — things that can challenge our understanding of what it means to be human,” remarked Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing, in his opening address at the inaugural SERC Symposium. “This poses philosophical, conceptual, and practical questions on a scale not experienced since the start of the Enlightenment. In the face of such profound change, we need new conceptual maps for navigating the change.”

    The symposium offered a glimpse into the vision and activities of SERC in both research and education. “We believe our responsibility with SERC is to educate and equip our students and enable our faculty to contribute to responsible technology development and deployment,” said Georgia Perakis, the William F. Pounds Professor of Management in the MIT Sloan School of Management, co-associate dean of SERC, and the lead organizer of the symposium. “We’re drawing from the many strengths and diversity of disciplines across MIT and beyond and bringing them together to gain multiple viewpoints.”

    Through a succession of panels and sessions, the symposium delved into a variety of topics related to the societal and ethical dimensions of computing. In addition, 37 undergraduate and graduate students from a range of majors, including urban studies and planning, political science, mathematics, biology, electrical engineering and computer science, and brain and cognitive sciences, participated in a poster session to exhibit their research in this space, covering such topics as quantum ethics, AI collusion in storage markets, computing waste, and empowering users on social platforms for better content credibility.

    Showcasing a diversity of work

    In three sessions devoted to themes of beneficent and fair computing, equitable and personalized health, and algorithms and humans, the SERC Symposium showcased work by 12 faculty members across these domains.

    One such project from a multidisciplinary team of archaeologists, architects, digital artists, and computational social scientists aimed to preserve endangered heritage sites in Afghanistan with digital twins. The project team produced highly detailed interrogable 3D models of the heritage sites, in addition to extended reality and virtual reality experiences, as learning resources for audiences that cannot access these sites.

    In a project for the United Network for Organ Sharing, researchers showed how they used applied analytics to optimize various facets of an organ allocation system in the United States that is currently undergoing a major overhaul in order to make it more efficient, equitable, and inclusive for different racial, age, and gender groups, among others.

    Another talk discussed an area that has not yet received adequate public attention: the broader implications for equity that biased sensor data holds for the next generation of models in computing and health care.

    A talk on bias in algorithms considered both human bias and algorithmic bias, and the potential for improving results by taking into account differences in the nature of the two kinds of bias.

    Other highlighted research included the interaction between online platforms and human psychology; a study on whether decision-makers make systemic prediction mistakes on the available information; and an illustration of how advanced analytics and computation can be leveraged to inform supply chain management, operations, and regulatory work in the food and pharmaceutical industries.

    Improving the algorithms of tomorrow

    “Algorithms are, without question, impacting every aspect of our lives,” said Asu Ozdaglar, deputy dean of academics for the MIT Schwarzman College of Computing and head of the Department of Electrical Engineering and Computer Science, in kicking off a panel she moderated on the implications of data and algorithms.

    “Whether it’s in the context of social media, online commerce, automated tasks, and now a much wider range of creative interactions with the advent of generative AI tools and large language models, there’s little doubt that much more is to come,” Ozdaglar said. “While the promise is evident to all of us, there’s a lot to be concerned as well. This is very much time for imaginative thinking and careful deliberation to improve the algorithms of tomorrow.”

    Turning to the panel, Ozdaglar asked experts from computing, social science, and data science for insights on how to understand what is to come and shape it to enrich outcomes for the majority of humanity.

    Sarah Williams, associate professor of technology and urban planning at MIT, emphasized the critical importance of comprehending the process of how datasets are assembled, as data are the foundation for all models. She also stressed the need for research to address the potential implication of biases in algorithms that often find their way in through their creators and the data used in their development. “It’s up to us to think about our own ethical solutions to these problems,” she said. “Just as it’s important to progress with the technology, we need to start the field of looking at these questions of what biases are in the algorithms? What biases are in the data, or in that data’s journey?”

    Shifting focus to generative models and whether the development and use of these technologies should be regulated, the panelists — which also included MIT’s Srini Devadas, professor of electrical engineering and computer science, John Horton, professor of information technology, and Simon Johnson, professor of entrepreneurship — all concurred that regulating open-source algorithms, which are publicly accessible, would be difficult given that regulators are still catching up and struggling to even set guardrails for technology that is now 20 years old.

    Returning to the question of how to effectively regulate the use of these technologies, Johnson proposed a progressive corporate tax system as a potential solution. He recommends basing companies’ tax payments on their profits, especially for large corporations whose massive earnings go largely untaxed due to offshore banking. By doing so, Johnson said that this approach can serve as a regulatory mechanism that discourages companies from trying to “own the entire world” by imposing disincentives.

    The role of ethics in computing education

    As computing continues to advance with no signs of slowing down, it is critical to educate students to be intentional in the social impact of the technologies they will be developing and deploying into the world. But can one actually be taught such things? If so, how?

    Caspar Hare, professor of philosophy at MIT and co-associate dean of SERC, posed this looming question to faculty on a panel he moderated on the role of ethics in computing education. All experienced in teaching ethics and thinking about the social implications of computing, each panelist shared their perspective and approach.

    A strong advocate for the importance of learning from history, Eden Medina, associate professor of science, technology, and society at MIT, said that “often the way we frame computing is that everything is new. One of the things that I do in my teaching is look at how people have confronted these issues in the past and try to draw from them as a way to think about possible ways forward.” Medina regularly uses case studies in her classes and referred to a paper written by Yale University science historian Joanna Radin on the Pima Indian Diabetes Dataset that raised ethical issues on the history of that particular collection of data that many don’t consider as an example of how decisions around technology and data can grow out of very specific contexts.

    Milo Phillips-Brown, associate professor of philosophy at Oxford University, talked about the Ethical Computing Protocol that he co-created while he was a SERC postdoc at MIT. The protocol, a four-step approach to building technology responsibly, is designed to train computer science students to think in a better and more accurate way about the social implications of technology by breaking the process down into more manageable steps. “The basic approach that we take very much draws on the fields of value-sensitive design, responsible research and innovation, participatory design as guiding insights, and then is also fundamentally interdisciplinary,” he said.

    Fields such as biomedicine and law have an ethics ecosystem that distributes the function of ethical reasoning in these areas. Oversight and regulation are provided to guide front-line stakeholders and decision-makers when issues arise, as are training programs and access to interdisciplinary expertise that they can draw from. “In this space, we have none of that,” said John Basl, associate professor of philosophy at Northeastern University. “For current generations of computer scientists and other decision-makers, we’re actually making them do the ethical reasoning on their own.” Basl commented further that teaching core ethical reasoning skills across the curriculum, not just in philosophy classes, is essential, and that the goal shouldn’t be for every computer scientist be a professional ethicist, but for them to know enough of the landscape to be able to ask the right questions and seek out the relevant expertise and resources that exists.

    After the final session, interdisciplinary groups of faculty, students, and researchers engaged in animated discussions related to the issues covered throughout the day during a reception that marked the conclusion of the symposium. More

  • in

    Architectural heritage like you haven’t seen it before

    The shrine of Khwaja Abu Nasr Parsa is a spectacular mosque in Balkh, Afghanistan. Also known as the “Green Mosque” due to the brilliant color of its tiled and painted dome, the intricately decorated building dates to the 16th century.

    If it were more accessible, the Green Mosque would attract many visitors. But Balkh is located in northern Afghanistan, roughly 50 miles from the border with Uzbekistan, and few outsiders will ever reach it. Still, anyone can now get a vivid sense of the mosque thanks to MIT’s new “Ways of Seeing” project, an innovative form of historic preservation.

    Play video

    PHD student Nikolaos Vlavianos created the following Extended Reality sequences for the “Ways of Seeing” project.

    “Ways of Seeing” uses multiple modes of imagery to produce a rich visual record of four historic building sites in Afghanistan — including colorful 3D still images, virtual reality imagery that takes viewers around and in some cases inside the structures, and exquisite hand-drawn architectural renderings of the buildings. The project’s imagery will be made available for viewing through the MIT Libraries by the end of June, with open access for the public. A subset of curated project materials will also be available through Archnet, an open access resource on the built environment of Muslim societies, which is a collaboration between the Aga Khan Documentation Center of the MIT Libraries and the Aga Khan Trust for Culture.

    “After the U.S. withdrawal from Afghanistan in August 2021, Associate Provost Richard Lester convened a set of MIT faculty in a working group to think of what we as a community of scholars could be doing that would be meaningful to people in Afghanistan at this point in time,” says Fotini Christia, an MIT political science professor who led the project. “‘Ways of Seeing’ is a project that I conceived after discussions with that group of colleagues and which is truly in the MIT tradition: It combines field data, technology, and art to protect heritage and serve the world.”

    Christia, the Ford International Professor of the Social Sciences and director of the Sociotechnical Systems Research Center at the MIT Schwarzman College of Computing, has worked extensively in Afghanistan conducting field research about civil society. She viewed this project as a unique opportunity to construct a detailed, accessible record of remarkable heritage sites — through sophisticated digital elements as well as finely wrought ink drawings.

    “The idea is these drawings would inspire interest and pride in this heritage, a kind of amazement and motivation to preserve this for as long as humanly possible,” says Jelena Pejkovic MArch ’06, a practicing architect who made the large-scale renderings by hand over a period of months.

    Pejkovic adds: “These drawings are extremely time-consuming, and for me this is part of the motivation. They ask you to slow down and pay attention. What can you take in from all this material that we have collected? How do you take time to look, to interpret, to understand what is in front of you?”

    The project’s “digital transformation strategy” was led by Nikolaos Vlavianos, a PhD candidate in the Department of Architecture’s Design and Computation group. The group uses cutting-edge technologies and drones to make three-dimensional digital reconstructions of large-scale architectural sites and create immersive experiences in extended reality (XR). Vlavianos also conducts studies of the psychological and physiological responses of humans experiencing such spaces in XR and in person. 

    “I regard this project as an effort toward a broader architectural metaverse consisting of immersive experiences in XR of physical spaces around the world that are difficult or impossible to access due to political, social, and even cultural constraints,” says Vlavianos. “These spaces in the metaverse are information hubs promoting an embodied experiential approach of living, sensing, seeing, hearing, and touching.”

    Nasser Rabbat, the Aga Khan Professor and director of the Aga Khan Program for Islamic Architecture at MIT, also offered advice and guidance on the early stages of the project.

    The project — formally titled “Ways of Seeing: Documenting Endangered Built Heritage in Afghanistan” — encompasses imaging of four quite varied historical sites in Afghanistan.

    These are the Green Mosque in Balkh; the Parwan Stupa, a Buddhist dome south of Kabul; the tomb of Gawhar Saad, in Herat, in honor of the queen of the emperor of the Timurid, who was herself a highly influential figure in the 14th and 15th centuries; and the Minaret of Jam, a remarkable 200-foot tall tower dating to the 12th century, next to the Hari River in a distant spot in western Afghanistan.

    The sites thus encompass multiple religions and a diversity of building types. Many are in remote locations within Afghanistan that cannot readily be accessed by visitors — including scholars.

    “Ways of Seeing” is supported by a Mellon Faculty Grant from the MIT Center for Art, Science, and Technology (CAST), and by faculty funding from the MIT School of Humanities, Arts, and Social Sciences (SHASS). It is co-presented with the Institute for Data, Systems, and Society (IDSS), the Sociotechnical Systems Research Center (SSRC) at the MIT Schwarzman College of Computing, the MIT Department of Political Science, and SHASS.

    Two students from Wellesley College participating in MIT’s Undergraduate Research Opportunities Program (UROP), juniors Meng Lu and Muzi Fang, also worked on the project under the guidance of Vlavianos to create a video game for children involving the Gawhar Saad heritage site. 

    To generate the imagery, the MIT team worked with an Afghan digital production team that was on the ground in the country; they went to the four sites and took thousands of pictures, having been trained remotely by Vlavianos to perform a 3D scanning aerial operation. They were led by Shafic Gawhari, the managing director for Afghanistan at the Moby Group, an international media enterprise; others involved were Mohammad Jan Kamal, Nazifullah Benaam, Warekzai Ghayoor, Rahm Ali Mohebzada, Mohammad Harif Ghobar, and Abdul Musawer Anwari.

    The journalists documented the sites by collecting 15,000 to 30,000 images, while Vlavianos computationally generated point clouds and mesh geometry with detailed texture mapping. The outcome of those models consisted of still images,  immersive experiences in XR, and data for Pejkovic.  

    “‘Ways of Seeing’ proposes a hybrid model of remote data collection,” says Vlavianos, who in his time at MIT has also led similar projects at Machu Picchu in Peru, and the Simonos Petra monastery at Mount Athos, Greece. To produce similar imagery even more easily, he says, “The next step — which I am working on — is to utilize autonomous drones deployed simultaneously in various locations on the world for rapid production and advanced neural network algorithms to generate models from lower number of images.”  

    In the future, Vlavianos envisions documenting and reconstructing other sites around the world using crowdsourcing data, historical images, satellite imagery, or even by having local communities learn XR techniques. 

    Pejkovic produced her drawings based on the digital models assembled by Vlavianos, carefully using a traditional rendering technique in which she would first outline the measurements of each structure, at scale, and then gradually ink in the drawings to give the buildings texture. The inking technique she used is based on VERNADOC, a method of documenting vernacular architecture developed by the Finnish architect Markku Mattila.

    “I wanted to rediscover the most traditional possible kind of documentation — measuring directly by hand, and drawing by hand,” says Pejkovic. She has been active in conservation of cultural heritage for over 10 years.

    The first time Pejkovic ever saw this type of hand-drawn renderings in person, she recalls thinking, “This is not possible, a human being cannot make drawings like this.” However, she wryly adds, “You know the motto at MIT is ‘mens et manus,’ mind and hand.” And so she embarked on hand drawing these renderings herself, at a large scale — her image of the Minaret of Jam has been printed in a crisp 8-foot version by the MIT team.

    “The ultimate intent of this project has been to make all these outputs, which are co-owned with the Afghans who carried out the data collection on the ground, available to Afghan refugees displaced around the world but also accessible to anyone keen to witness them,” Christia says. “The digital twins [representations] of these sites are also meant to work as repositories of information for any future preservation efforts. This model can be replicated and scaled for other heritage sites at risk from wars, environmental disaster, or cultural appropriation.” More

  • in

    Illuminating the money trail

    You may not know this, but the U.S. imposes a 12.5 percent import tariff on imported flashlights. However, for a product category the federal government describes as “portable electric lamps designed to function by their own source of energy, other than flashlights,” the import tariff is just 3.5 percent.

    At a glance, this seems inexplicable. Why is one kind of self-powered portable light taxed more heavily than another? According to MIT political science professor In Song Kim, a policy discrepancy like this often stems from the difference in firms’ political power, as well as the extent to which firms are empowered by global production networks. This is a subject Kim has spent years examining in detail, producing original scholarly results while opening up a wealth of big data about politics to the public.

    “We all understand companies as being important economic agents,” Kim says. “But companies are political agents, too. They are very important political actors.”

    In particular, Kim’s work has illuminated the effects of lobbying upon U.S. trade policy. International trade is often presented as an unalloyed good, opening up markets and fueling growth. Beyond that, trade issues are usually described at the industry level; we hear about what the agriculture lobby or auto industry wants. But in reality, different firms want different things, even within the same industry.

    As Kim’s work shows, most firms lobby for policies pertaining to specific components of their products, and trade policy consists heavily of carve-outs for companies, not industry-wide standards. Firms making non-flashlight portable lights, it would seem, are good at lobbying, but the benefits clearly do not carry over to all portable light makers, as long as products are not perfect substitutes for each other. Meanwhile, as Kim’s research also shows, lobbying helps firms grow faster in size, even as lobbying-influenced policies may slow down the economy as a whole.

    “All our existing theories suggest that trade policy is a public good, in the sense that the benefits of open trade, the gains from trade, will be enjoyed by the public and will benefit the country as a whole,” Kim says. “But what I’ve learned is that trade policies are very, very granular. It’s become obvious to me that trade is no longer a public good. It’s actually a private good for individual companies.”

    Kim’s work includes over a dozen published journal articles over the last several years, several other forthcoming research papers, and a book he is currently writing. At the same time, Kim has created a public database, LobbyView, which tracks money in U.S. politics extending back to 1999. LobbyView, as an important collection of political information, has research, educational, and public-interest applications, enabling others, in academia or outside it, to further delve into the topic.

    “I want to contribute to the scholarly community, and I also want to create a public [resource] for our MIT community [and beyond], so we can all study politics through it,” Kim says.

    Keeping the public good in sight

    Kim grew up in South Korea, in a setting where politics was central to daily life. Kim’s grandfather, Kim jae-soon, was the Speaker of the National Assembly in South Korea from 1988 through 1990 and an important figure in the country’s government.

    “I’ve always been fascinated by politics,” says Kim, who remembers prominent political figures dropping by the family home when he was young. One of the principal lessons Kim learned about politics from his grandfather, however, was not about proximity to power, but the importance of public service. The enduring lesson of his family’s engagement with politics, Kim says, is that “I truly believe in contributing to the public good.”

    Kim’s found his own way of contributing to the public good not as a politician but as a scholar of politics. Kim received his BA in political science from Yonsei University in Seoul but decided he wanted to pursue graduate studies in the U.S. He earned an MA in law and diplomacy from the Fletcher School of Tufts University, then an MA in political science at George Washington University. By this time, Kim had become focused on the quantitative analysis of trade policy; for his PhD work, he attended Princeton University and was awarded his doctorate in 2014, joining the MIT faculty that year.

    Among the key pieces of research Kim has published, one paper, “Political Cleavages within Industry: Firm-level Lobbying for Trade Liberalization,” published in the American Political Science Review and growing out of his dissertation research, helped show how remarkably specialized many trade policies are. As of 2017, the U.S. had almost 17,000 types of products it made tariff decisions about. Many of these are the component parts of a product; about two-thirds of international trade consists of manufactured components that get shipped around during the production process, rather than raw goods or finished products. That paper won the 2018 Michael Wallerstein Award for the best published article in political economy in the previous year.

    Another 2017 paper Kim co-authored, “The Charmed Life of Superstar Exporters,” from the Journal of Politics, provides more empirical evidence of the differences among firms within an industry. The “superstar” firms that are the largest exporters tend to lobby the most about trade politics; a firm’s characteristics reveal more about its preferences for open trade than the possibility that its industry as a whole will gain a comparative advantage internationally.

    Kim often uses large-scale data and computational methods to study international trade and trade politics. Still another paper he has co-authored, “Measuring Trade Profile with Granular Product-level Trade Data,” published in the American Journal of Political Science in 2020, traces trade relationships in highly specific terms. Looking at over 2 billion observations of international trade data, Kim developed an algorithm to group countries based on which products they import and export. The methodology helps researchers to learn about the highly different developmental paths that countries follow, and about the deepening international competition between countries such as the U.S. and China.

    At other times, Kim has analyzed who is influencing trade policy. His paper “Mapping Political Communities,” from the journal Political Analysis in 2021, looks at the U.S. Congress and uses mandatory reports filed by lobbyists to build a picture of which interests groups are most closely connected to which politicians.

    Kim has published all his papers while balancing both his scholarly research and the public launch of LobbyView, which occurred in 2018. He was awarded tenure by MIT in the spring of 2022. Currently he is an associate professor in the Department of Political Science and a faculty affiliate of the Institute for Data, Systems, and Society.

    By the book

    Kim has continued to explore firm-level lobbying dynamics, although his recent research runs in a few directions. In a 2021 working paper, Kim and co-author Federico Huneeus of the Central Bank of Chile built a model estimating that eliminating lobbying in the U.S. could increase productivity by as much as 6 percent.

    “Political rents [favorable policies] given to particular companies might introduce inefficiencies or a misallocation of resources in the economy,” Kim says. “You could allocate those resources to more productive although politically inactive firms, but now they’re given to less productive and yet politically active big companies, increasing market concentration and monopolies.”

    Kim is on sabbatical during the 2022-23 academic year, working on a book about the importance of firms’ political activities in trade policymaking. The book will have an expansive timeframe, dating back to ancient times, which underscores the salience of trade policy across eras. At the same time, the book will analyze the distinctive features of modern trade politics with deepening global production networks.

    “I’m trying to allow people to learn about the history of trade politics, to show how the politics have changed over time,” Kim says. “In doing that, I’m also highlighting the importance of firm-to-firm trade and the emergence of new trade coalitions among firms in different countries and industries that are linked through the global production chain.”

    While continuing his own scholarly research, Kim still leads LobbyView, which he views both as a big data resource for any scholars interested in money in politics and an excellent teaching resource for his MIT classes, as students can tap into it for projects and papers. LobbyView contains so much data, in fact, that part of the challenge is finding ways to mine it effectively.

    “It really offers me an opportunity to work with MIT students,” Kim says of LobbyView. “What I think I can contribute is to bring those technologies to our understanding of politics. Having this unique data set can really allow students here to use technology to learn about politics, and I believe that fits the MIT identity.” More

  • in

    Celebrating open data

    The inaugural MIT Prize for Open Data, which included a $2,500 cash prize, was recently awarded to 10 individual and group research projects. Presented jointly by the School of Science and the MIT Libraries, the prize recognizes MIT-affiliated researchers who make their data openly accessible and reusable by others. The prize winners and 16 honorable mention recipients were honored at the Open Data @ MIT event held Oct. 28 at Hayden Library. 

    “By making data open, researchers create opportunities for novel uses of their data and for new insights to be gleaned,” says Chris Bourg, director of MIT Libraries. “Open data accelerates scholarly progress and discovery, advances equity in scholarly participation, and increases transparency, replicability, and trust in science.” 

    Recognizing shared values

    Spearheaded by Bourg and Rebecca Saxe, associate dean of the School of Science and John W. Jarve (1978) Professor of Brain and Cognitive Sciences, the MIT Prize for Open Data was launched to highlight the value of open data at MIT and to encourage the next generation of researchers. Nominations were solicited from across the Institute, with a focus on trainees: research technicians, undergraduate or graduate students, or postdocs.

    “By launching an MIT-wide prize and event, we aimed to create visibility for the scholars who create, use, and advocate for open data,” says Saxe. “Highlighting this research and creating opportunities for networking would also help open-data advocates across campus find each other.” 

    Recognizing researchers who share data was also one of the recommendations of the Ad Hoc Task Force on Open Access to MIT’s Research, which Bourg co-chaired with Hal Abelson, Class of 1922 Professor, Department of Electrical Engineering and Computer Science. An annual award was one of the strategies put forth by the task force to further the Institute’s mission to disseminate the fruits of its research and scholarship as widely as possible.

    Strong competition

    Winners and honorable mentions were chosen from more than 70 nominees, representing all five schools, the MIT Schwarzman College of Computing, and several research centers across MIT. A committee composed of faculty, staff, and a graduate student made the selections:

    Yunsie Chung, graduate student in the Department of Chemical Engineering, won for SolProp, the largest open-source dataset with temperature-dependent solubility values of organic compounds. 
    Matthew Groh, graduate student, MIT Media Lab, accepted on behalf of the team behind the Fitzpatrick 17k dataset, an open dataset consisting of nearly 17,000 images of skin disease alongside skin disease and skin tone annotations. 
    Tom Pollard, research scientist at the Institute for Medical Engineering and Science, accepted on behalf of the PhysioNet team. This data-sharing platform enables thousands of clinical and machine-learning research studies each year and allows researchers to share sensitive resources that would not be possible through typical data sharing platforms. 
    Joseph Replogle, graduate student with the Whitehead Institute for Biomedical Research, was recognized for the Genome-wide Perturb-seq dataset, the largest publicly available, single-cell transcriptional dataset collected to date. 
    Pedro Reynolds-Cuéllar, graduate student with the MIT Media Lab/Art, Culture, and Technology, and Diana Duarte, co-founder at Diversa, won for Retos, an open-data platform for detailed documentation and sharing of local innovations from under-resourced settings. 
    Maanas Sharma, an undergraduate student, led States of Emergency, a nationwide project analyzing and grading the responses of prison systems to Covid-19 using data scraped from public databases and manually collected data. 
    Djuna von Maydell, graduate student in the Department of Brain and Cognitive Sciences, created the first publicly available dataset of single-cell gene expression from postmortem human brain tissue of patients who are carriers of APOE4, the major Alzheimer’s disease risk gene. 
    Raechel Walker, graduate researcher in the MIT Media Lab, and her collaborators created a Data Activism Curriculum for high school students through the Mayor’s Summer Youth Employment Program in Cambridge, Massachusetts. Students learned how to use data science to recognize, mitigate, and advocate for people who are disproportionately impacted by systemic inequality. 
    Suyeol Yun, graduate student in the Department of Political Science, was recognized for DeepWTO, a project creating open data for use in legal natural language processing research using cases from the World Trade Organization. 
    Jonathan Zheng, graduate student in the Department of Chemical Engineering, won for an open IUPAC dataset for acid dissociation constants, or “pKas,” physicochemical properties that govern how acidic a chemical is in a solution.
    A full list of winners and honorable mentions is available on the Open Data @ MIT website.

    A campus-wide celebration

    Awards were presented at a celebratory event held in the Nexus in Hayden Library during International Open Access Week. School of Science Dean Nergis Mavalvala kicked off the program by describing the long and proud history of open scholarship at MIT, citing the Institute-wide faculty open access policy and the launch of the open-source digital repository DSpace. “When I was a graduate student, we were trying to figure out how to share our theses during the days of the nascent internet,” she said, “With DSpace, MIT was figuring it out for us.” 

    The centerpiece of the program was a series of five-minute presentations from the prize winners on their research. Presenters detailed the ways they created, used, or advocated for open data, and the value that openness brings to their respective fields. Winner Djuna von Maydell, a graduate student in Professor Li-Huei Tsai’s lab who studies the genetic causes of neurodegeneration, underscored why it is important to share data, particularly data obtained from postmortem human brains. 

    “This is data generated from human brains, so every data point stems from a living, breathing human being, who presumably made this donation in the hope that we would use it to advance knowledge and uncover truth,” von Maydell said. “To maximize the probability of that happening, we have to make it available to the scientific community.” 

    MIT community members who would like to learn more about making their research data open can consult MIT Libraries’ Data Services team.  More

  • in

    Urbanization: No fast lane to transformation

    Accra, Ghana, “is a city I’ve come to know as well as any place in the U.S,” says Associate Professor Noah Nathan, who has conducted research there over the past 15 years. The booming capital of 4 million is an ideal laboratory for investigating the rapid urbanization of nations in Africa and beyond, believes Nathan, who joined the MIT Department of Political Science in July.

    “Accra is vibrant and exciting, with gleaming glass office buildings, shopping centers, and an emerging middle class,” he says. “But at the same time there is enormous poverty, with slums and a mixing pot of ethnic groups.” Cities like Accra that have emerged in developing countries around the world are “hybrid spaces” that provoke a multitude of questions for Nathan.

    “Rich and poor are in incredibly close proximity and I want to know how this dramatic inequality can be sustainable, and what politics looks like with such ethnic and class diversity living side-by-side,” he says.

    With his singular approach to data collection and deep understanding of Accra, its neighborhoods, and increasingly, its built environment, Nathan is generating a body of scholarship on the political impacts of urbanization throughout the global South.

    A trap in the urban transition

    Nathan’s early studies of Accra challenged common expectations about how urbanization shifts political behavior.

    “Modernization theory states that as people become more ‘modern’ and move to cities, ethnicity fades and class becomes the dominant dynamic in political behavior,” explains Nathan. “It predicts that the process of urbanization transforms the relationship between politicians and voters, and elections become more ideologically and policy oriented,” says Nathan.  

    But in Accra, the heart of one of the fastest-growing economies in the developing world, Nathan found “a type of politics stuck in an old equilibrium, hard to dislodge, and not updated by newly wealthy voters,” he says. Using census data revealing the demographic composition of every neighborhood in Accra, Nathan determined that there were many enclaves in which forms of patronage politics and ethnic competition persist. He conducted sample surveys and collected polling-station level results on residents’ voting across the city. “I was able to merge spatial data on where people lived and their answers to survey questions, and determine how different neighborhoods voted,” says Nathan.

    Among his findings: Ethnic politics were thriving in many parts of Accra, and many middle-class voters were withdrawing from politics entirely in reaction to the well-established practice of patronage rather than pressuring politicians to change their approach. “They decided it was better to look out for themselves,” he explains.

    In Nathan’s 2019 book, “Electoral Politics and Africa’s Urban Transition: Class and Ethnicity in Ghana,” he described this situation as a trap. “As the wealthy exit from the state, politicians double down on patronage politics with poor voters, which the middle class views as further evidence of corruption,” he explains. The wealthier citizens “want more public goods, and big policy reforms, such as changes in the health-care and tax systems, while poor voters focus on immediate needs such as jobs, homes, better schools in their communities.”

    In Ghana and other developing countries where the state’s capacity is limited, politicians can’t deliver on the broad-scale changes desired by the middle class. Motivated by their own political survival, they continue dealing with poor voters as clients, trading services for votes. “I connect urban politics in Ghana to the early 20th-century urban machines in the United States, run by party bosses,” says Nathan.

    This may prove sobering news for many engaged with the developing world. “There’s enormous enthusiasm among foreign aid organizations, in the popular press and policy circles, for the idea that urbanization will usher in big, radical political change,” notes Nathan. “But these kinds of transformations will only come about with structural change such as civil service reforms and nonpartisan welfare programs that can push politicians beyond just delivering targeted services to poor voters.”

    Falling in love with Ghana

    For most of his youth, Nathan was a committed jazz saxophonist, toying with going professional. But he had long cultivated another fascination as well. “I was a huge fan of ‘The West Wing’ in middle school” and got into American politics through that,” he says. He volunteered in Hillary Clinton’s 2008 primary campaign during college, but soon realized work in politics was “both more boring and not as idealistic” as he’d hoped.

    As an undergraduate at Harvard University, where he concentrated in government, he “signed up for African history on a lark — because American high schools didn’t teach anything on the subject — and I loved it,” Nathan says. He took another African history course, and then found his way to classes taught by Harvard political scientist Robert H. Bates PhD ’69 that focused on the political economy of development, ethnic conflict, and state failure in Africa. In the summer before his senior year, he served as a research assistant for one of his professors in Ghana, and then stayed longer, hoping to map out a senior thesis on ethnic conflict.

    “Once I got to Ghana, I was fascinated by the place — the dynamism of this rapidly transforming society,” he recalls. “Growing up in the U.S., there are a lot of stereotypes about the developing world, and I quickly realized how much more complicated everything is.”

    These initial experiences living in Ghana shaped Nathan’s ideas for what became his doctoral dissertation at Harvard and first book on the ethnic and class dynamics driving the nation’s politics. His frequent return visits to that country sparked a wealth of research that built on and branched out from this work.

    One set of studies examines the historical development of Ghana’s rural north in its colonial and post-colonial periods, the center of ethnic conflict in the 1990s. These are communities “where the state delivers few resources, doesn’t seem to do much, yet figures as a central actor in people’s lives,” he says.

    Part of this region had been a German colony, and the other part was originally under British rule, and Nathan compared the political trajectories of these two areas, focusing on differences in early state efforts to impose new forms of local political leadership and gradually build a formal education system.

    “The colonial legacy in the British areas was elite families who came to dominate, entrenching themselves and creating political dynasties and economic inequality,” says Nathan. But similar ethnic groups exposed to different state policies in the original German colony were not riven with the same class inequalities, and enjoy better access to government services today. “This research is changing how we think about state weakness in the developing world, how we tend to see the emergence of inequality where societal elites come into power,” he says. The results of Nathan’s research will be published in a forthcoming book, “The Scarce State: Inequality and Political Power in the Hinterland.”

    Politics of built spaces

    At MIT, Nathan is pivoting to a fresh new framing for questions on urbanization. Wielding a public source map of cities around the world, he is scrutinizing the geometry of street grids in 1,000 of sub-Saharan Africa’s largest cities “to think about urban order,” he says. Digitizing historical street maps of African cities from the Library of Congress’s map collection, he can look at how these cities were built and evolved physically. “When cities emerge based on grids, rather than tangles, they are more legible to governments,” he says. “This means that it’s easier to find people, easier to govern, tax, repress, and politically mobilize them.”  

    Nathan has begun to demonstrate that in the post-colonial period, “cities that were built under authoritarian regimes tend to be most legible, with even low-capacity regimes trying to impose control and make them gridded.” Democratic governments, he says, “lead to more tangled and chaotic built environments, with people doing what they want.” He also draws comparisons to how state policies shaped urban growth in the United States, with local and federal governments exerting control over neighborhood development, leading to redlining and segregation in many cities.

    Nathan’s interests naturally pull him toward the MIT Governance Lab and Global Diversity Lab. “I’m hoping to dive into both,” he says. “One big attraction of the department is the really interesting research that’s being done on developing countries.”  He also plans to use the stature he has built over many years of research in Africa to help “open doors” to African researchers and students, who may not always get the same kind of access to institutions and data that he has had. “I’m hoping to build connections to researchers in the global South,” he says. More

  • in

    Making each vote count

    Graduate student Jacob Jaffe wants to improve the administration of American elections. To do that, he is posing “questions in political science that we haven’t been asking enough,” he says, “and solving them with methods we haven’t been using enough.”

    Considerable research has been devoted to understanding “who votes, and what makes people vote or not vote,” says Jaffe. He is training his attention on questions of a different nature: Does providing practical information to voters about how to cast their ballots change how they will vote? Is it possible to increase the accuracy of vote-counting, on a state-by-state and even precinct-by-precinct basis? How do voters experience polling places? These problems form the core of his dissertation.

    Taking advantage of the resources at the MIT Election Data and Science Lab, where he serves as a researcher, Jaffe conducts novel field experiments to gather highly detailed information on local, state, and federal elections, and analyzes this trove with advanced statistical techniques. Whether investigating the probability of miscounts in voting, or the possibility of changing a voter’s mode of voting, Jaffe intends to strengthen the scaffolding that supports representative government. “Elections are both theoretically and normatively important; they’re the basis of our belief in the moral rightness of the state to do the things the state does,” he says.

    Click this link

    For one of his keystone projects, Jaffe seized a unique opportunity to run a big field experiment. In summer 2020, at the height of the Covid-19 pandemic, he emailed 80,000 Floridians instructions on how to vote in an upcoming primary by mail. His email contained a link enabling recipients to fill out two simple questions to receive a ballot. “I wanted to learn if this was an effective method for getting people to vote by mail, and I proved it is, statistically,” he says. “This is important to know because if elections are held in times when we might need people to vote nonlocally or vote using one method over another — if they’re displaced by a hurricane or another emergency, for instance — I learned that we can effect a new vote mode practically and quickly.”

    One of Jaffe’s insights from this experiment is that “people do read their voting-related emails, but the content of the email has to be something they can act on proximately,” he says. “A message reminding them to vote two weeks from now is not so helpful.” The lower the burden on an individual to participate in voting, whether due to proximity to a polling site or instructions on how to receive and cast a ballot, the greater the likelihood of that person engaging in the election.

    “If we want people to vote by mail, we need to reduce the informational cost so it’s easier for voters to understand how the system works,” he says.

    Another significant research thrust for Jaffe involves scrutinizing accuracy in vote counting, using instances of recounts in presidential elections. Ensuring each vote counts, he says, “is one of the most fundamental questions in democracy,” he says.

    With access to 20 elections in 2020, Jaffe is comparing original vote totals for each candidate to the recounted, correct tally, on a precinct-level basis. “Using original combinatorial techniques, I can estimate the probability of miscounting ballots,” he says. The ultimate goal is to generate a granular picture of the efficacy of election administration across the country.

    “It varies a lot by state, and most states do a good job,” he says. States that take their time in counting perform better. “There’s a phenomenon where some towns race to get results in as quickly as possible, and this affects their accuracy.”

    In spite of the bright spots, Jaffe sees chronic underfunding of American elections. “We need to give local administrators the resources, the time and money to fund employees to do their jobs,” he says. The worse the situation is, “the more likely that elections will be called wrong, with no one knowing.” Jaffe believes that his analysis can offer states useful information for improving election administration. “Determining how good a place is historically at counting ballots can help determine the likelihood of needing costly recounts in future elections,” he says.

    The ballot box and beyond

    It didn’t take Jaffe long to decide on a life dedicated to studying politics. Part of a Boston-area family who, he says, “liked discussing what was going on in the world,” he had his own subscriptions to Time magazine at age 9, and to The Economist in middle school. During high school, he volunteered for then-Massachusetts Representative Barney Frank and Senator John Kerry, working on constituent services. At Rice University, he interned all four years with political scientist Robert M. Stein, an expert on voting and elections. With Stein’s help, Jaffe landed a position the summer before his senior year with the Department of Justice (DOJ), researching voting rights cases.

    “The experience was fascinating, and the work felt super important,” says Jaffe. His portfolio involved determining whether legal challenges to particular elections met the statistical standard for racial gerrymandering. “I had to answer hard quantitative questions about the relationship between race and voting in an area, and whether minority candidates were systematically prevented from winning,” he says.

    But while Jaffe cared a lot about this work, he didn’t feel adequately challenged. “As a 21-year-old at DOJ, I learned that I could address problems in the world using statistics,” he says. “But I felt I could have a greater impact addressing tougher questions outside of voting rights.”

    Jaffe was drawn to political science at MIT, and specifically to the research of Charles Stewart III, the Kenan Sahin Distinguished Professor of Political Science, director of the MIT Election Lab, and head of Jaffe’s thesis committee. It wasn’t just the opportunity to plumb the lab’s singular repository of voting data that attracted Jaffe, but its commitment to making every vote count. For Jaffe, this was a call to arms to investigate the many, and sometimes quotidian, obstacles, between citizens and ballot boxes.

    To this end, he has been analyzing, with the help of mathematical methods from queuing theory, why some elections involve wait lines of six hours and longer at polling sites. “We know that simpler ballots mean people move don’t get stuck in these lines, where they might potentially give up before voting,” he says. “Looking at the content of ballots and the interval between voter check-in and check-out, I learned that adding races, rather than candidates, to a ballot, means that people take more time completing ballots, leading to interminable lines.”

    A key takeaway from his ensemble of studies is that “while it’s relatively rare that elections are bad, we shouldn’t think that we’re good to go,” he says. “Instead, we need to be asking under what conditions do things get bad, and how can we make them better.” More

  • in

    Frequent encounters build familiarity

    Do better spatial networks make for better neighbors? There is evidence that they do, according to Paige Bollen, a sixth-year political science graduate student at MIT. The networks Bollen works with are not virtual but physical, part of the built environment in which we are all embedded. Her research on urban spaces suggests that the routes bringing people together or keeping them apart factor significantly in whether individuals see each other as friend or foe.

    “We all live in networks of streets, and come across different types of people,” says Bollen. “Just passing by others provides information that informs our political and social views of the world.” In her doctoral research, Bollen is revealing how physical context matters in determining whether such ordinary encounters engender suspicion or even hostility, while others can lead to cooperation and tolerance.

    Through her in-depth studies mapping the movement of people in urban communities in Ghana and South Africa, Bollen is demonstrating that even in diverse communities, “when people repeatedly come into contact, even if that contact is casual, they can build understanding that can lead to cooperation and positive outcomes,” she says. “My argument is that frequent, casual contact, facilitated by street networks, can make people feel more comfortable with those unlike themselves,” she says.

    Mapping urban networks

    Bollen’s case for the benefits of casual contact emerged from her pursuit of several related questions: Why do people in urban areas who regard other ethnic groups with prejudice and economic envy nevertheless manage to collaborate for a collective good? How do you reduce fears that arise from differences? How do the configuration of space and the built environment influence contact patterns among people?

    While other social science research suggests that there are weak ties in ethnically mixed urban communities, with casual contact exacerbating hostility, Bollen noted that there were plenty of examples of “cooperation across ethnic divisions in ethnically mixed communities.” She absorbed the work of psychologist Stanley Milgram, whose 1972 research showed that strangers seen frequently in certain places become familiar — less anonymous or threatening. So she set out to understand precisely how “the built environment of a neighborhood interacts with its demography to create distinct patterns of contact between social groups.”

    With the support of MIT Global Diversity Lab and MIT GOV/LAB, Bollen set out to develop measures of intergroup contact in cities in Ghana and South Africa. She uses street network data to predict contact patterns based on features of the built environment and then combines these measures with mobility data on peoples’ actual movement.

    “I created a huge dataset for every intersection in these cities, to determine the central nodes where many people are passing through,” she says. She combined these datasets with census data to determine which social groups were most likely to use specific intersections based on their position in a particular street network. She mapped these measures of casual contact to outcomes, such as inter-ethnic cooperation in Ghana and voting behavior in South Africa.

    “My analysis [in Ghana] showed that in areas that are more ethnically heterogeneous and where there are more people passing through intersections, we find more interconnections among people and more cooperation within communities in community development efforts,” she says.

    In a related survey experiment conducted on Facebook with 1,200 subjects, Bollen asked Accra residents if they would help an unknown non-co-ethnic in need with a financial gift. She found that the likelihood of offering such help was strongly linked to the frequency of interactions. “Helping behavior occurred when the subjects believed they would see this person again, even when they did not know the person in need well,” says Bollen. “They figured if they helped, they could count on this person’s reciprocity in the future.”

    For Bollen, this was “a powerful gut check” for her hypothesis that “frequency builds familiarity, because frequency provides information and drives expectations, which means it can reduce uncertainty and fear of the other.”

    In research underway in South Africa, a nation increasingly dealing with anti-immigrant violence, Bollen is investigating whether frequency of contact reduces prejudice against foreigners. Using her detailed street maps, 1.1 billion unique geolocated cellphone pings, and election data, she finds that frequent contact opportunities with immigrants are associated with lower support for anti-immigrant party voting.    Passion for places and spaces

    Bollen never anticipated becoming a political scientist. The daughter of two academics, she was “bent on becoming a data scientist.” But she was also “always interested in why people behave in certain ways and how this influences macro trends.”

    As an undergraduate at Tufts University, she became interested in international affairs. But it was her 2013 fieldwork studying women-only carriages in Delhi, India’s metro system, that proved formative. “I interviewed women for a month, talking to them about how these cars enabled them to participate in public life,” she recalls. Another project involving informal transportation routes in Cape Town, South Africa, immersed her more deeply in the questions of people’s experience of public space. “I left college thinking about mobility and public space, and I discovered how much I love geographic information systems,” she says.

    A gig with the Commonwealth of Massachusetts to improve the 911 emergency service — updating and cleaning geolocations of addresses using Google Street View — further piqued her interest. “The job was tedious, but I realized you can really understand a place, and how people move around, from these images.” Bollen began thinking about a career in urban planning.

    Then a two-year stint as a researcher at MIT GOV/LAB brought Bollen firmly into the political science fold. Working with Lily Tsai, the Ford Professor of Political Science, on civil society partnerships in the developing world, Bollen realized that “political science wasn’t what I thought it was,” she says. “You could bring psychology, economics, and sociology into thinking about politics.” Her decision to join the doctoral program was simple: “I knew and loved the people I was with at MIT.”

    Bollen has not regretted that decision. “All the things I’ve been interested in are finally coming together in my dissertation,” she says. Due to the pandemic, questions involving space, mobility, and contact became sharper to her. “I shifted my research emphasis from asking people about inter-ethnic differences and inequality through surveys, to using contact and context information to measure these variables.”

    She sees a number of applications for her work, including working with civil society organizations in communities touched by ethnic or other frictions “to rethink what we know about contact, challenging some of the classic things we think we know.”

    As she moves into the final phases of her dissertation, which she hopes to publish as a book, Bollen also relishes teaching comparative politics to undergraduates. “There’s something so fun engaging with them, and making their arguments stronger,” she says. With the long process of earning a PhD, this helps her “enjoy what she is doing every single day.” More

  • in

    3 Questions: Fotini Christia on racial equity and data science

    Fotini Christia is the Ford International Professor in the Social Sciences in the Department of Political Science, associate director of the Institute for Data, Systems, and Society (IDSS), and director of the Sociotechnical Systems Research Center (SSRC). Her research interests include issues of conflict and cooperation in the Muslim world, and she has conducted fieldwork in Afghanistan, Bosnia, Iran, the Palestinian Territories, Syria, and Yemen. She has co-organized the IDSS Research Initiative on Combatting Systemic Racism (ICSR), which works to bridge the social sciences, data science, and computation by bringing researchers from these disciplines together to address systemic racism across housing, health care, policing, education, employment, and other sectors of society.

    Q: What is the IDSS/ICSR approach to systemic racism research?

    A: The Research Initiative on Combatting Systemic Racism (ICSR) aims to seed and coordinate cross-disciplinary research to identify and overcome racially discriminatory processes and outcomes across a range of U.S. institutions and policy domains.

    Building off the extensive social science literature on systemic racism, the focus of this research initiative is to use big data to develop and harness computational tools that can help effect structural and normative change toward racial equity.

    The initiative aims to create a visible presence at MIT for cutting-edge computational research with a racial equity lens, across societal domains that will attract and train students and scholars.

    The steering committee for this research initiative is composed of underrepresented minority faculty members from across MIT’s five schools and the MIT Schwarzman College of Computing. Members will serve as close advisors to the initiative as well as share the findings of our work beyond MIT’s campus. MIT Chancellor Melissa Nobles heads this committee.

    Q: What role can data science play in helping to effect change toward racial equity?

    A: Existing work has shown racial discrimination in the job market, in the criminal justice system, as well as in education, health care, and access to housing, among other places. It has also underlined how algorithms could further entrench such bias — be it in training data or in the people who build them. Data science tools can not only help identify, but also contribute to, proposing fixes on racially inequitable outcomes that result from implicit or explicit biases in governing institutional practices in the public and private sector, and more recently from the use of AI and algorithmic methods in decision-making.

    To that effect, this initiative will produce research that explores and collects the relevant big data across domains, while paying attention to the ways such data are collected, and focus on improving and developing data-driven computational tools to address racial disparities in structures and institutions that have reproduced racially discriminatory outcomes in American society.

    The strong correlation between race, class, educational attainment, and various attitudes and behaviors in the American context can make it extremely difficult to rule out the influence of confounding factors. Thus, a key motivation for our research initiative is to highlight the importance of causal analysis using computational methods, and focus on understanding the opportunities of big data and algorithmic decision-making to address racial inequities and promote racial justice — beyond de-biasing algorithms. The intent is to also codify methodologies on equity-informed research practices and produce tools that are clear on the quantifiable expected social costs and benefits, as well as on the downstream effects on systemic racism more broadly.

    Q: What are some ways that the ICSR might conduct or follow-up on research seeking real-world impact or policy change?

    A: This type of research has ethical and societal considerations at its core, especially as they pertain to historically disadvantaged groups in the U.S., and will be coordinated with and communicated to local stakeholders to drive relevant policy decisions. This initiative intends to establish connections to URM [underrepresented minority] researchers and students at underrepresented universities and to directly collaborate with them on these research efforts. To that effect, we are leveraging existing programs such as the MIT Summer Research Program (MSRP).

    To ensure that our research targets the right problems bringing a racial equity lens with an interest to effect policy change, we will also connect with community organizations in minority neighborhoods who often bear the brunt of the direct and indirect effects of systemic racism, as well as with local government offices that work to address inequity in service provision in these communities. Our intent is to directly engage IDSS students with these organizations to help develop and test algorithmic tools for racial equity. More