More stories

  • in

    MIT welcomes nine MLK Visiting Professors and Scholars for 2023-24

    Established in 1990, the MLK Visiting Professors and Scholars Program at MIT welcomes outstanding scholars to the Institute for visiting appointments. MIT aspires to attract candidates who are, in the words of Martin Luther King Jr., “trailblazers in human, academic, scientific and religious freedom.” The program honors King’s life and legacy by expanding and extending the reach of our community. 

    The MLK Scholars Program has welcomed more than 140 professors, practitioners, and professionals at the forefront of their respective fields to MIT. They contribute to the growth and enrichment of the community through their interactions with students, staff, and faculty. They pay tribute to Martin Luther King Jr.’s life and legacy of service and social justice, and they embody MIT’s values: excellence and curiosity, openness and respect, and belonging and community.  

    Each new cohort of scholars actively participates in community engagement and supports MIT’s mission of “advancing knowledge and educating students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.” 

    The 2023-2024 MLK Scholars:

    Tawanna Dillahunt is an associate professor at the University of Michigan’s School of Information with a joint appointment in their electrical engineering and computer science department. She is joining MIT at the end of a one-year visiting appointment as a Harvard Radcliffe Fellow. Her faculty hosts at the Institute are Catherine D’Ignazio in the Department of Urban Studies and Planning and Fotini Christia in the Institute for Data, Systems, and Society (IDSS). Dillahunt’s research focuses on equitable and inclusive computing. During her appointment, she will host a podcast to explore ethical and socially responsible ways to engage with communities, with a special emphasis on technology. 

    Kwabena Donkor is an assistant professor of marketing at Stanford Graduate School of Business; he is hosted by Dean Eckles, an associate professor of marketing at MIT Sloan School of Management. Donkor’s work bridges economics, psychology, and marketing. His scholarship combines insights from behavioral economics with data and field experiments to study social norms, identity, and how these constructs interact with policy in the marketplace.

    Denise Frazier joins MIT from Tulane University, where she is an assistant director in the New Orleans Center for the Gulf South. She is a researcher and performer and brings a unique interdisciplinary approach to her work at the intersection of cultural studies, environmental justice, and music. Frazier is hosted by Christine Ortiz, the Morris Cohen Professor in the Department of Materials Science and Engineering. 

    Wasalu Jaco, an accomplished performer and artist, is renewing his appointment at MIT for a second year; he is hosted jointly by Nick Montfort, a professor of digital media in the Comparative Media Studies Program/Writing, and Mary Fuller, a professor in the Literature Section and the current chair of the MIT faculty. In his second year, Jaco will work on Cyber/Cypher Rapper, a research project to develop a computational system that participates in responsive and improvisational rap.

    Morgane Konig first joined the Center for Theoretical Physics at MIT in December 2021 as a postdoc. Now a member of the 2023–24 MLK Visiting Scholars Program cohort, she will deepen her ties with scholars and research groups working in cosmology, primarily on early-universe inflation and late-universe signatures that could enable the scientific community to learn more about the mysterious nature of dark matter and dark energy. Her faculty hosts are David Kaiser, the Germeshausen Professor of the History of Science and professor of physics, and Alan Guth, the Victor F. Weisskopf Professor of Physics, both from the Department of Physics.

    The former minister of culture for Colombia and a transformational leader dedicated to environmental protection, Angelica Mayolo-Obregon joins MIT from Buenaventura, Colombia. During her time at MIT, she will serve as an advisor and guest speaker, and help MIT facilitate gatherings of environmental leaders committed to addressing climate action and conserving biodiversity across the Americas, with a special emphasis on Afro-descendant communities. Mayolo-Obregon is hosted by John Fernandez, a professor of building technology in the Department of Architecture and director of MIT’s Environmental Solutions Initiative, and by J. Phillip Thompson, an associate professor in the Department of Urban Studies and Planning (and a former MLK Scholar).

    Jean-Luc Pierite is a member of the Tunica-Biloxi Tribe of Louisiana and the president of the board of directors of North American Indian Center of Boston. While at MIT, Pierite will build connections between MIT and the local Indigenous communities. His research focuses on enhancing climate resilience planning by infusing Indigenous knowledge and ecological practices into scientific and other disciplines. His faculty host is Janelle Knox-Hayes, the Lister Brothers Professor of Economic Geography and Planning in the Department of Urban Studies and Planning.

    Christine Taylor-Butler ’81 is a children’s book author who has written over 90 books; she is hosted by Graham Jones, an associate professor of anthropology. An advocate for literacy and STEAM education in underserved urban and rural schools, Taylor-Butler will partner with community organizations in the Boston area. She is also completing the fourth installment of her middle-grade series, “The Lost Tribe.” These books follow a team of five kids as they use science and technology to crack codes and solve mysteries.

    Angelino Viceisza, a professor of economics at Spelman College, joins MIT Sloan as an MLK Visiting Professor and the Phyllis Wallace Visiting Professor; he is hosted by Robert Gibbons, Sloan Distinguished Professor of Management, and Ray Reagans, Alfred P. Sloan Professor of Management, professor of organization studies, and associate dean for diversity, equity, and inclusion at MIT Sloan. Viceisza has strong, ongoing connections with MIT. His research focuses on remittances, retirement, and household finance in low-income countries and is relevant to public finance and financial economics, as well as the development and organizational economics communities at MIT. 

    Javit Drake, Moriba Jah, and Louis Massiah, members of last year’s cohort of MLK Scholars, will remain at MIT through the end of 2023.

    There are multiple opportunities throughout the year to meet our MLK Visiting Scholars and learn more about their research projects and their social impact. 

    For more information about the MLK Visiting Professors and Scholars Program and upcoming events, visit the website. More

  • in

    From physics to generative AI: An AI model for advanced pattern generation

    Generative AI, which is currently riding a crest of popular discourse, promises a world where the simple transforms into the complex — where a simple distribution evolves into intricate patterns of images, sounds, or text, rendering the artificial startlingly real. 

    The realms of imagination no longer remain as mere abstractions, as researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have brought an innovative AI model to life. Their new technology integrates two seemingly unrelated physical laws that underpin the best-performing generative models to date: diffusion, which typically illustrates the random motion of elements, like heat permeating a room or a gas expanding into space, and Poisson Flow, which draws on the principles governing the activity of electric charges.

    This harmonious blend has resulted in superior performance in generating new images, outpacing existing state-of-the-art models. Since its inception, the “Poisson Flow Generative Model ++” (PFGM++) has found potential applications in various fields, from antibody and RNA sequence generation to audio production and graph generation.

    The model can generate complex patterns, like creating realistic images or mimicking real-world processes. PFGM++ builds off of PFGM, the team’s work from the prior year. PFGM takes inspiration from the means behind the mathematical equation known as the “Poisson” equation, and then applies it to the data the model tries to learn from. To do this, the team used a clever trick: They added an extra dimension to their model’s “space,” kind of like going from a 2D sketch to a 3D model. This extra dimension gives more room for maneuvering, places the data in a larger context, and helps one approach the data from all directions when generating new samples. 

    “PFGM++ is an example of the kinds of AI advances that can be driven through interdisciplinary collaborations between physicists and computer scientists,” says Jesse Thaler, theoretical particle physicist in MIT’s Laboratory for Nuclear Science’s Center for Theoretical Physics and director of the National Science Foundation’s AI Institute for Artificial Intelligence and Fundamental Interactions (NSF AI IAIFI), who was not involved in the work. “In recent years, AI-based generative models have yielded numerous eye-popping results, from photorealistic images to lucid streams of text. Remarkably, some of the most powerful generative models are grounded in time-tested concepts from physics, such as symmetries and thermodynamics. PFGM++ takes a century-old idea from fundamental physics — that there might be extra dimensions of space-time — and turns it into a powerful and robust tool to generate synthetic but realistic datasets. I’m thrilled to see the myriad of ways ‘physics intelligence’ is transforming the field of artificial intelligence.”

    The underlying mechanism of PFGM isn’t as complex as it might sound. The researchers compared the data points to tiny electric charges placed on a flat plane in a dimensionally expanded world. These charges produce an “electric field,” with the charges looking to move upwards along the field lines into an extra dimension and consequently forming a uniform distribution on a vast imaginary hemisphere. The generation process is like rewinding a videotape: starting with a uniformly distributed set of charges on the hemisphere and tracking their journey back to the flat plane along the electric lines, they align to match the original data distribution. This intriguing process allows the neural model to learn the electric field, and generate new data that mirrors the original. 

    The PFGM++ model extends the electric field in PFGM to an intricate, higher-dimensional framework. When you keep expanding these dimensions, something unexpected happens — the model starts resembling another important class of models, the diffusion models. This work is all about finding the right balance. The PFGM and diffusion models sit at opposite ends of a spectrum: one is robust but complex to handle, the other simpler but less sturdy. The PFGM++ model offers a sweet spot, striking a balance between robustness and ease of use. This innovation paves the way for more efficient image and pattern generation, marking a significant step forward in technology. Along with adjustable dimensions, the researchers proposed a new training method that enables more efficient learning of the electric field. 

    To bring this theory to life, the team resolved a pair of differential equations detailing these charges’ motion within the electric field. They evaluated the performance using the Frechet Inception Distance (FID) score, a widely accepted metric that assesses the quality of images generated by the model in comparison to the real ones. PFGM++ further showcases a higher resistance to errors and robustness toward the step size in the differential equations.

    Looking ahead, they aim to refine certain aspects of the model, particularly in systematic ways to identify the “sweet spot” value of D tailored for specific data, architectures, and tasks by analyzing the behavior of estimation errors of neural networks. They also plan to apply the PFGM++ to the modern large-scale text-to-image/text-to-video generation.

    “Diffusion models have become a critical driving force behind the revolution in generative AI,” says Yang Song, research scientist at OpenAI. “PFGM++ presents a powerful generalization of diffusion models, allowing users to generate higher-quality images by improving the robustness of image generation against perturbations and learning errors. Furthermore, PFGM++ uncovers a surprising connection between electrostatics and diffusion models, providing new theoretical insights into diffusion model research.”

    “Poisson Flow Generative Models do not only rely on an elegant physics-inspired formulation based on electrostatics, but they also offer state-of-the-art generative modeling performance in practice,” says NVIDIA Senior Research Scientist Karsten Kreis, who was not involved in the work. “They even outperform the popular diffusion models, which currently dominate the literature. This makes them a very powerful generative modeling tool, and I envision their application in diverse areas, ranging from digital content creation to generative drug discovery. More generally, I believe that the exploration of further physics-inspired generative modeling frameworks holds great promise for the future and that Poisson Flow Generative Models are only the beginning.”

    Authors on a paper about this work include three MIT graduate students: Yilun Xu of the Department of Electrical Engineering and Computer Science (EECS) and CSAIL, Ziming Liu of the Department of Physics and the NSF AI IAIFI, and Shangyuan Tong of EECS and CSAIL, as well as Google Senior Research Scientist Yonglong Tian PhD ’23. MIT professors Max Tegmark and Tommi Jaakkola advised the research.

    The team was supported by the MIT-DSTA Singapore collaboration, the MIT-IBM Grand Challenge project, National Science Foundation grants, The Casey and Family Foundation, the Foundational Questions Institute, the Rothberg Family Fund for Cognitive Science, and the ML for Pharmaceutical Discovery and Synthesis Consortium. Their work was presented at the International Conference on Machine Learning this summer. More

  • in

    Fast-tracking fusion energy’s arrival with AI and accessibility

    As the impacts of climate change continue to grow, so does interest in fusion’s potential as a clean energy source. While fusion reactions have been studied in laboratories since the 1930s, there are still many critical questions scientists must answer to make fusion power a reality, and time is of the essence. As part of their strategy to accelerate fusion energy’s arrival and reach carbon neutrality by 2050, the U.S. Department of Energy (DoE) has announced new funding for a project led by researchers at MIT’s Plasma Science and Fusion Center (PSFC) and four collaborating institutions.

    Cristina Rea, a research scientist and group leader at the PSFC, will serve as the primary investigator for the newly funded three-year collaboration to pilot the integration of fusion data into a system that can be read by AI-powered tools. The PSFC, together with scientists from William & Mary, the University of Wisconsin at Madison, Auburn University, and the nonprofit HDF Group, plan to create a holistic fusion data platform, the elements of which could offer unprecedented access for researchers, especially underrepresented students. The project aims to encourage diverse participation in fusion and data science, both in academia and the workforce, through outreach programs led by the group’s co-investigators, of whom four out of five are women. 

    The DoE’s award, part of a $29 million funding package for seven projects across 19 institutions, will support the group’s efforts to distribute data produced by fusion devices like the PSFC’s Alcator C-Mod, a donut-shaped “tokamak” that utilized powerful magnets to control and confine fusion reactions. Alcator C-Mod operated from 1991 to 2016 and its data are still being studied, thanks in part to the PSFC’s commitment to the free exchange of knowledge.

    Currently, there are nearly 50 public experimental magnetic confinement-type fusion devices; however, both historical and current data from these devices can be difficult to access. Some fusion databases require signing user agreements, and not all data are catalogued and organized the same way. Moreover, it can be difficult to leverage machine learning, a class of AI tools, for data analysis and to enable scientific discovery without time-consuming data reorganization. The result is fewer scientists working on fusion, greater barriers to discovery, and a bottleneck in harnessing AI to accelerate progress.

    The project’s proposed data platform addresses technical barriers by being FAIR — Findable, Interoperable, Accessible, Reusable — and by adhering to UNESCO’s Open Science (OS) recommendations to improve the transparency and inclusivity of science; all of the researchers’ deliverables will adhere to FAIR and OS principles, as required by the DoE. The platform’s databases will be built using MDSplusML, an upgraded version of the MDSplus open-source software developed by PSFC researchers in the 1980s to catalogue the results of Alcator C-Mod’s experiments. Today, nearly 40 fusion research institutes use MDSplus to store and provide external access to their fusion data. The release of MDSplusML aims to continue that legacy of open collaboration.

    The researchers intend to address barriers to participation for women and disadvantaged groups not only by improving general access to fusion data, but also through a subsidized summer school that will focus on topics at the intersection of fusion and machine learning, which will be held at William & Mary for the next three years.

    Of the importance of their research, Rea says, “This project is about responding to the fusion community’s needs and setting ourselves up for success. Scientific advancements in fusion are enabled via multidisciplinary collaboration and cross-pollination, so accessibility is absolutely essential. I think we all understand now that diverse communities have more diverse ideas, and they allow faster problem-solving.”

    The collaboration’s work also aligns with vital areas of research identified in the International Atomic Energy Agency’s “AI for Fusion” Coordinated Research Project (CRP). Rea was selected as the technical coordinator for the IAEA’s CRP emphasizing community engagement and knowledge access to accelerate fusion research and development. In a letter of support written for the group’s proposed project, the IAEA stated that, “the work [the researchers] will carry out […] will be beneficial not only to our CRP but also to the international fusion community in large.”

    PSFC Director and Hitachi America Professor of Engineering Dennis Whyte adds, “I am thrilled to see PSFC and our collaborators be at the forefront of applying new AI tools while simultaneously encouraging and enabling extraction of critical data from our experiments.”

    “Having the opportunity to lead such an important project is extremely meaningful, and I feel a responsibility to show that women are leaders in STEM,” says Rea. “We have an incredible team, strongly motivated to improve our fusion ecosystem and to contribute to making fusion energy a reality.” More

  • in

    Artificial intelligence for augmentation and productivity

    The MIT Stephen A. Schwarzman College of Computing has awarded seed grants to seven projects that are exploring how artificial intelligence and human-computer interaction can be leveraged to enhance modern work spaces to achieve better management and higher productivity.

    Funded by Andrew W. Houston ’05 and Dropbox Inc., the projects are intended to be interdisciplinary and bring together researchers from computing, social sciences, and management.

    The seed grants can enable the project teams to conduct research that leads to bigger endeavors in this rapidly evolving area, as well as build community around questions related to AI-augmented management.

    The seven selected projects and research leads include:

    “LLMex: Implementing Vannevar Bush’s Vision of the Memex Using Large Language Models,” led by Patti Maes of the Media Lab and David Karger of the Department of Electrical Engineering and Computer Science (EECS) and the Computer Science and Artificial Intelligence Laboratory (CSAIL). Inspired by Vannevar Bush’s Memex, this project proposes to design, implement, and test the concept of memory prosthetics using large language models (LLMs). The AI-based system will intelligently help an individual keep track of vast amounts of information, accelerate productivity, and reduce errors by automatically recording their work actions and meetings, supporting retrieval based on metadata and vague descriptions, and suggesting relevant, personalized information proactively based on the user’s current focus and context.

    “Using AI Agents to Simulate Social Scenarios,” led by John Horton of the MIT Sloan School of Management and Jacob Andreas of EECS and CSAIL. This project imagines the ability to easily simulate policies, organizational arrangements, and communication tools with AI agents before implementation. Tapping into the capabilities of modern LLMs to serve as a computational model of humans makes this vision of social simulation more realistic, and potentially more predictive.

    “Human Expertise in the Age of AI: Can We Have Our Cake and Eat it Too?” led by Manish Raghavan of MIT Sloan and EECS, and Devavrat Shah of EECS and the Laboratory for Information and Decision Systems. Progress in machine learning, AI, and in algorithmic decision aids has raised the prospect that algorithms may complement human decision-making in a wide variety of settings. Rather than replacing human professionals, this project sees a future where AI and algorithmic decision aids play a role that is complementary to human expertise.

    “Implementing Generative AI in U.S. Hospitals,” led by Julie Shah of the Department of Aeronautics and Astronautics and CSAIL, Retsef Levi of MIT Sloan and the Operations Research Center, Kate Kellog of MIT Sloan, and Ben Armstrong of the Industrial Performance Center. In recent years, studies have linked a rise in burnout from doctors and nurses in the United States with increased administrative burdens associated with electronic health records and other technologies. This project aims to develop a holistic framework to study how generative AI technologies can both increase productivity for organizations and improve job quality for workers in health care settings.

    “Generative AI Augmented Software Tools to Democratize Programming,” led by Harold Abelson of EECS and CSAIL, Cynthia Breazeal of the Media Lab, and Eric Klopfer of the Comparative Media Studies/Writing. Progress in generative AI over the past year is fomenting an upheaval in assumptions about future careers in software and deprecating the role of coding. This project will stimulate a similar transformation in computing education for those who have no prior technical training by creating a software tool that could eliminate much of the need for learners to deal with code when creating applications.

    “Acquiring Expertise and Societal Productivity in a World of Artificial Intelligence,” led by David Atkin and Martin Beraja of the Department of Economics, and Danielle Li of MIT Sloan. Generative AI is thought to augment the capabilities of workers performing cognitive tasks. This project seeks to better understand how the arrival of AI technologies may impact skill acquisition and productivity, and to explore complementary policy interventions that will allow society to maximize the gains from such technologies.

    “AI Augmented Onboarding and Support,” led by Tim Kraska of EECS and CSAIL, and Christoph Paus of the Department of Physics. While LLMs have made enormous leaps forward in recent years and are poised to fundamentally change the way students and professionals learn about new tools and systems, there is often a steep learning curve which people have to climb in order to make full use of the resource. To help mitigate the issue, this project proposes the development of new LLM-powered onboarding and support systems that will positively impact the way support teams operate and improve the user experience. More

  • in

    A simpler method for learning to control a robot

    Researchers from MIT and Stanford University have devised a new machine-learning approach that could be used to control a robot, such as a drone or autonomous vehicle, more effectively and efficiently in dynamic environments where conditions can change rapidly.

    This technique could help an autonomous vehicle learn to compensate for slippery road conditions to avoid going into a skid, allow a robotic free-flyer to tow different objects in space, or enable a drone to closely follow a downhill skier despite being buffeted by strong winds.

    The researchers’ approach incorporates certain structure from control theory into the process for learning a model in such a way that leads to an effective method of controlling complex dynamics, such as those caused by impacts of wind on the trajectory of a flying vehicle. One way to think about this structure is as a hint that can help guide how to control a system.

    “The focus of our work is to learn intrinsic structure in the dynamics of the system that can be leveraged to design more effective, stabilizing controllers,” says Navid Azizan, the Esther and Harold E. Edgerton Assistant Professor in the MIT Department of Mechanical Engineering and the Institute for Data, Systems, and Society (IDSS), and a member of the Laboratory for Information and Decision Systems (LIDS). “By jointly learning the system’s dynamics and these unique control-oriented structures from data, we’re able to naturally create controllers that function much more effectively in the real world.”

    Using this structure in a learned model, the researchers’ technique immediately extracts an effective controller from the model, as opposed to other machine-learning methods that require a controller to be derived or learned separately with additional steps. With this structure, their approach is also able to learn an effective controller using fewer data than other approaches. This could help their learning-based control system achieve better performance faster in rapidly changing environments.

    “This work tries to strike a balance between identifying structure in your system and just learning a model from data,” says lead author Spencer M. Richards, a graduate student at Stanford University. “Our approach is inspired by how roboticists use physics to derive simpler models for robots. Physical analysis of these models often yields a useful structure for the purposes of control — one that you might miss if you just tried to naively fit a model to data. Instead, we try to identify similarly useful structure from data that indicates how to implement your control logic.”

    Additional authors of the paper are Jean-Jacques Slotine, professor of mechanical engineering and of brain and cognitive sciences at MIT, and Marco Pavone, associate professor of aeronautics and astronautics at Stanford. The research will be presented at the International Conference on Machine Learning (ICML).

    Learning a controller

    Determining the best way to control a robot to accomplish a given task can be a difficult problem, even when researchers know how to model everything about the system.

    A controller is the logic that enables a drone to follow a desired trajectory, for example. This controller would tell the drone how to adjust its rotor forces to compensate for the effect of winds that can knock it off a stable path to reach its goal.

    This drone is a dynamical system — a physical system that evolves over time. In this case, its position and velocity change as it flies through the environment. If such a system is simple enough, engineers can derive a controller by hand. 

    Modeling a system by hand intrinsically captures a certain structure based on the physics of the system. For instance, if a robot were modeled manually using differential equations, these would capture the relationship between velocity, acceleration, and force. Acceleration is the rate of change in velocity over time, which is determined by the mass of and forces applied to the robot.

    But often the system is too complex to be exactly modeled by hand. Aerodynamic effects, like the way swirling wind pushes a flying vehicle, are notoriously difficult to derive manually, Richards explains. Researchers would instead take measurements of the drone’s position, velocity, and rotor speeds over time, and use machine learning to fit a model of this dynamical system to the data. But these approaches typically don’t learn a control-based structure. This structure is useful in determining how to best set the rotor speeds to direct the motion of the drone over time.

    Once they have modeled the dynamical system, many existing approaches also use data to learn a separate controller for the system.

    “Other approaches that try to learn dynamics and a controller from data as separate entities are a bit detached philosophically from the way we normally do it for simpler systems. Our approach is more reminiscent of deriving models by hand from physics and linking that to control,” Richards says.

    Identifying structure

    The team from MIT and Stanford developed a technique that uses machine learning to learn the dynamics model, but in such a way that the model has some prescribed structure that is useful for controlling the system.

    With this structure, they can extract a controller directly from the dynamics model, rather than using data to learn an entirely separate model for the controller.

    “We found that beyond learning the dynamics, it’s also essential to learn the control-oriented structure that supports effective controller design. Our approach of learning state-dependent coefficient factorizations of the dynamics has outperformed the baselines in terms of data efficiency and tracking capability, proving to be successful in efficiently and effectively controlling the system’s trajectory,” Azizan says. 

    When they tested this approach, their controller closely followed desired trajectories, outpacing all the baseline methods. The controller extracted from their learned model nearly matched the performance of a ground-truth controller, which is built using the exact dynamics of the system.

    “By making simpler assumptions, we got something that actually worked better than other complicated baseline approaches,” Richards adds.

    The researchers also found that their method was data-efficient, which means it achieved high performance even with few data. For instance, it could effectively model a highly dynamic rotor-driven vehicle using only 100 data points. Methods that used multiple learned components saw their performance drop much faster with smaller datasets.

    This efficiency could make their technique especially useful in situations where a drone or robot needs to learn quickly in rapidly changing conditions.

    Plus, their approach is general and could be applied to many types of dynamical systems, from robotic arms to free-flying spacecraft operating in low-gravity environments.

    In the future, the researchers are interested in developing models that are more physically interpretable, and that would be able to identify very specific information about a dynamical system, Richards says. This could lead to better-performing controllers.

    “Despite its ubiquity and importance, nonlinear feedback control remains an art, making it especially suitable for data-driven and learning-based methods. This paper makes a significant contribution to this area by proposing a method that jointly learns system dynamics, a controller, and control-oriented structure,” says Nikolai Matni, an assistant professor in the Department of Electrical and Systems Engineering at the University of Pennsylvania, who was not involved with this work. “What I found particularly exciting and compelling was the integration of these components into a joint learning algorithm, such that control-oriented structure acts as an inductive bias in the learning process. The result is a data-efficient learning process that outputs dynamic models that enjoy intrinsic structure that enables effective, stable, and robust control. While the technical contributions of the paper are excellent themselves, it is this conceptual contribution that I view as most exciting and significant.”

    This research is supported, in part, by the NASA University Leadership Initiative and the Natural Sciences and Engineering Research Council of Canada. More

  • in

    MIT welcomes eight MLK Visiting Professors and Scholars for 2022-23

    From space traffic to virus evolution, community journalism to hip-hop, this year’s cohort in the Martin Luther King Jr. (MLK) Visiting Professors and Scholars Program will power an unprecedented range of intellectual pursuits during their time on the MIT campus. 

    “MIT is so fortunate to have this group of remarkable individuals join us,” says Institute Community and Equity Officer John Dozier. “They bring a range and depth of knowledge to share with our students and faculty, and we look forward to working with them to build a stronger sense of community across the Institute.”

    Since its inception in 1990, the MLK Scholars Program has hosted more than 135 visiting professors, practitioners, and intellectuals who enhance and enrich the MIT community through their engagement with students and faculty. The program, which honors the life and legacy of MLK by increasing the presence and recognizing the contributions of underrepresented scholars, is supported by the Office of the Provost with oversight from the Institute Community and Equity Office. 

    In spring 2022, MIT President Rafael Reif committed to MIT to adding two new positions in the MLK Visiting Scholars Program, including an expert in Native American studies. Those additional positions will be filled in the coming year.  

    The 2022-23 MLK Scholars:

    Daniel Auguste is an assistant professor in the Department of Sociology at Florida Atlantic University and is hosted by Roberto Fernandez in MIT Sloan School of Management. Auguste’s research interests include social inequalities in entrepreneurship development. During his visit, Auguste will study the impact of education debt burden and wealth inequality on business ownership and success, and how these consequences differ by race and ethnicity.

    Tawanna Dillahunt is an associate professor in the School of Information at the University of Michigan, where she also holds an appointment with the electrical engineering and computer science department. Catherine D’Ignazio in the Department of Urban Studies and Planning and Fotini Christia in the Institute for Data, Systems, and Society are her faculty hosts. Dillahunt’s scholarship focuses on equitable and inclusive computing. She identifies technological opportunities and implements tools to address and alleviate employment challenges faced by marginalized people. Dillahunt’s visiting appointment begins in September 2023.

    Javit Drake ’94 is a principal scientist in modeling and simulation and measurement sciences at Proctor & Gamble. His faculty host is Fikile Brushett in the Department of Chemical Engineering. An industry researcher with electrochemical energy expertise, Drake is a Course 10 (chemical engineering) alumnus, repeat lecturer, and research affiliate in the department. During his visit, he will continue to work with the Brushett Research Group to deepen his research and understanding of battery technologies while he innovates from those discoveries.

    Eunice Ferreira is an associate professor in the Department of Theater at Skidmore College and is hosted by Claire Conceison in Music and Theater Arts. This fall, Ferreira will teach “Black Theater Matters,” a course where students will explore performance and the cultural production of Black intellectuals and artists on Broadway and in local communities. Her upcoming book projects include “Applied Theatre and Racial Justice: Radical Imaginings for Just Communities” (forthcoming from Routledge) and “Crioulo Performance: Remapping Creole and Mixed Race Theatre” (forthcoming from Vanderbilt University Press). 

    Wasalu Jaco, widely known as Lupe Fiasco, is a rapper, record producer, and entrepreneur. He will be co-hosted by Nick Montfort of Comparative Media Studies/Writing and Mary Fuller of Literature. Jaco’s interests lie in the nexus of rap, computing, and activism. As a former visiting artist in MIT’s Center for Art, Science and Technology (CAST), he will leverage existing collaborations and participate in digital media and art research projects that use computing to explore novel questions related to hip-hop and rap. In addition to his engagement in cross-departmental projects, Jaco will teach a spring course on rap in the media and social contexts.

    Moribah Jah is an associate professor in the Aerospace Engineering and Engineering Mechanics Department at the University of Texas at Austin. He is hosted by Danielle Wood in Media Arts and Sciences and the Department of Aeronautics and Astronautics, and Richard Linares in the Department of Aeronautics and Astronautics. Jah’s research interests include space sustainability and space traffic management; as a visiting scholar, he will develop and strengthen a joint MIT/UT-Austin research program to increase resources and visibility of space sustainability. Jah will also help host the AeroAstro Rising Stars symposium, which highlights graduate students, postdocs, and early-career faculty from backgrounds underrepresented in aerospace engineering. 

    Louis Massiah SM ’82 is a documentary filmmaker and the founder and director of community media of Scribe Video Center, a nonprofit organization that uses media as a tool for social change. His work focuses on empowering Black, Indigenous, and People of Color (BIPOC) filmmakers to tell the stories of/by BIPOC communities. Massiah is hosted by Vivek Bald in Creative Media Studies/Writing. Massiah’s first project will be the launch of a National Community Media Journalism Consortium, a platform to share local news on a broader scale across communities.

    Brian Nord, a scientist at Fermi National Accelerator Laboratory, will join the Laboratory for Nuclear Science, hosted by Jesse Thaler in the Department of Physics. Nord’s research interests include the connection between ethics, justice, and scientific discovery. His efforts will be aimed at introducing new insights into how we model physical systems, design scientific experiments, and approach the ethics of artificial intelligence. As a lead organizer of the Strike for Black Lives in 2020, Nord will engage with justice-oriented members of the MIT physics community to strategize actions for advocacy and activism.

    Brandon Ogbunu, an assistant professor in the Department of Ecology and Evolutionary Biology at Yale University, will be hosted by Matthew Shoulders in the Department of Chemistry. Ogbunu’s research focus is on implementing chemistry and materials science perspectives into his work on virus evolution. In addition to serving as a guest lecturer in graduate courses, he will be collaborating with the Office of Engineering Outreach Programs on their K-12 outreach and recruitment efforts.

    For more information about these scholars and the program, visit mlkscholars.mit.edu. More

  • in

    3 Questions: Marking the 10th anniversary of the Higgs boson discovery

    This July 4 marks 10 years since the discovery of the Higgs boson, the long-sought particle that imparts mass to all elementary particles. The elusive particle was the last missing piece in the Standard Model of particle physics, which is our most complete model of the universe.

    In early summer of 2012, signs of the Higgs particle were detected in the Large Hadron Collider (LHC), the world’s largest particle accelerator, which is operated by CERN, the European Organization for Nuclear Research. The LHC is engineered to smash together billions upon billions of protons for the chance at producing the Higgs boson and other particles that are predicted to have been created in the early universe.

    In analyzing the products of countless proton-on-proton collisions, scientists registered a Higgs-like signal in the accelerator’s two independent detectors, ATLAS and CMS (the Compact Muon Solenoid). Specifically, the teams observed signs that a new particle had been created and then decayed to two photons, two Z bosons or two W bosons, and that this new particle was likely the Higgs boson.

    The discovery was revealed within the CMS collaboration, including over 3,000 scientists, on June 15, and ATLAS and CMS announced their respective observations to the world on July 4. More than 50 MIT physicists and students contributed to the CMS experiment, including Christoph Paus, professor of physics, who was one of the experiment’s two lead investigators to organize the search for the Higgs boson.

    As the LHC prepares to start back up on July 5 with “Run 3,” MIT News spoke with Paus about what physicists have learned about the Higgs particle in the last 10 years, and what they hope to discover with this next deluge of particle data.

    Q: Looking back, what do you remember as the key moments leading up to the Higgs boson’s discovery?

    A: I remember that by the end of 2011, we had taken a significant amount of data, and there were some first hints that there could be something, but nothing that was conclusive enough. It was clear to everybody that we were entering the critical phase of a potential discovery. We still wanted to improve our searches, and so we decided, which I felt was one of the most important decisions we took, that we had to remove the bias — that is, remove our knowledge about where the signal could appear. Because it’s dangerous as a scientist to say, “I know the solution,” which can influence the result unconsciously. So, we made that decision together in the coordination group and said, we are going to get rid of this bias by doing what people refer to as a “blind” analysis. This allowed the analyzers to focus on the technical aspects, making sure everything was correct without having to worry about being influenced by what they saw.

    Then, of course, there had to be the moment where we unblind the data and really look to see, is the Higgs there or not. And about two weeks before the scheduled presentations on July 4 where we eventually announced the discovery, there was a meeting on June 15 to show the analysis with its results to the collaboration. The most significant analysis turned out to be the two-photon analysis. One of my students, Joshua Bendavid PhD ’13, was leading that analysis, and the night before the meeting, only he and another person on the team were allowed to unblind the data. They were working until 2 in the morning, when they finally pushed a button to see what it looks like. And they were the first in CMS to have that moment of seeing that [the Higgs boson] was there. Another student of mine who was working on this analysis, Mingming Yang PhD ’15, presented the results of that search to the Collaboration at CERN that following afternoon. It was a very exciting moment for all of us. The room was hot and filled with electricity.

    The scientific process of the discovery was very well-designed and executed, and I think it can serve as a blueprint for how people should do such searches.

    Q: What more have scientists learned of the Higgs boson since the particle’s detection?

    A: At the time of the discovery, something interesting happened I did not really expect. While we were always talking about the Higgs boson before, we became very careful once we saw that “narrow peak.” How could we be sure that it was the Higgs boson and not something else? It certainly looked like the Higgs boson, but our vision was quite blurry. It could have turned out in the following years that it was not the Higgs boson. But as we now know, with so much more data, everything is completely consistent with what the Higgs boson is predicted to look like, so we became comfortable with calling the narrow resonance not just a Higgs-like particle but rather simply the Higgs boson. And there were a few milestones that made sure this is really the Higgs as we know it.

    The initial discovery was based on Higgs bosons decaying to two photons, two Z bosons or two W bosons. That was only a small fraction of decays that the Higgs could undergo. There are many more. The amount of decays of the Higgs boson into a particular set of particles depends critically on their masses. This characteristic feature is essential to confirm that we are really dealing with the Higgs boson.

    What we found since then is that the Higgs boson does not only decay to bosons, but also to fermions, which is not obvious because bosons are force carrier particles while fermions are matter particles. The first new decay was the decay to tau leptons, the heavier sibling of the electron. The next step was the observation of the Higgs boson decaying to b quarks, the heaviest quark that the Higgs can decay to. The b quark is the heaviest sibling of the down quark, which is a building block of protons and neutrons and thus all atomic nuclei around us. These two fermions are part of the heaviest generation of fermions in the standard model. Only recently the Higgs boson was observed to decay to muons, the charge lepton of the second and thus lighter generation, at the expected rate. Also, the direct coupling to the heaviest  top quark was established, which spans together with the muons four orders of magnitudes in terms of their masses, and the Higgs coupling behaves as expected over this wide range.

    Q: As the Large Hadron Collider gears up for its new “Run 3,” what do you hope to discover next?

    One very interesting question that Run 3 might give us some first hints on is the self-coupling of the Higgs boson. As the Higgs couples to any massive particle, it can also couple to itself. It is unlikely that there is enough data to make a discovery, but first hints of this coupling would be very exciting to see, and this constitutes a fundamentally different test than what has been done so far.

    Another interesting aspect that more data will help to elucidate is the question of whether the Higgs boson might be a portal and decay to invisible particles that could be candidates for explaining the mystery of dark matter in the universe. This is not predicted in our standard model and thus would unveil the Higgs boson as an imposter.

    Of course, we want to double down on all the measurements we have made so far and see whether they continue to line up with our expectations.

    This is true also for the upcoming major upgrade of the LHC (runs starting in 2029) for what we refer to as the High Luminosity LHC (HL-LHC). Another factor of 10 more events will be accumulated during this program, which for the Higgs boson means we will be able to observe its self-coupling. For the far future, there are plans for a Future Circular Collider, which could ultimately measure the total decay width of the Higgs boson independent of its decay mode, which would be another important and very precise test whether the Higgs boson is an imposter.

    As any other good physicist, I hope though that we can find a crack in the armor of the Standard Model, which is so far holding up all too well. There are a number of very important observations, for example the nature of dark matter, that cannot be explained using the Standard Model. All of our future studies, from Run 3 starting on July 5 to the very in the future FCC, will give us access to entirely uncharted territory. New phenomena can pop up, and I like to be optimistic. More

  • in

    Is it topological? A new materials database has the answer

    What will it take to make our electronics smarter, faster, and more resilient? One idea is to build them from materials that are topological.

    Topology stems from a branch of mathematics that studies shapes that can be manipulated or deformed without losing certain core properties. A donut is a common example: If it were made of rubber, a donut could be twisted and squeezed into a completely new shape, such as a coffee mug, while retaining a key trait — namely, its center hole, which takes the form of the cup’s handle. The hole, in this case, is a topological trait, robust against certain deformations.

    In recent years, scientists have applied concepts of topology to the discovery of materials with similarly robust electronic properties. In 2007, researchers predicted the first electronic topological insulators — materials in which electrons that behave in ways that are “topologically protected,” or persistent in the face of certain disruptions.

    Since then, scientists have searched for more topological materials with the aim of building better, more robust electronic devices. Until recently, only a handful of such materials were identified, and were therefore assumed to be a rarity.

    Now researchers at MIT and elsewhere have discovered that, in fact, topological materials are everywhere, if you know how to look for them.

    In a paper published today in Science, the team, led by Nicolas Regnault of Princeton University and the École Normale Supérieure Paris, reports harnessing the power of multiple supercomputers to map the electronic structure of more than 96,000 natural and synthetic crystalline materials. They applied sophisticated filters to determine whether and what kind of topological traits exist in each structure.

    Overall, they found that 90 percent of all known crystalline structures contain at least one topological property, and more than 50 percent of all naturally occurring materials exhibit some sort of topological behavior.

    “We found there’s a ubiquity — topology is everywhere,” says Benjamin Wieder, the study’s co-lead, and a postdoc in MIT’s Department of Physics.

    The team has compiled the newly identified materials into a new, freely accessible Topological Materials Database resembling a periodic table of topology. With this new library, scientists can quickly search materials of interest for any topological properties they might hold, and harness them to build ultra-low-power transistors, new magnetic memory storage, and other devices with robust electronic properties.

    The paper includes co-lead author Maia Vergniory of the Donostia International Physics Center, Luis Elcoro of the University of Basque Country, Stuart Parkin and Claudia Felser of the Max Planck Institute, and Andrei Bernevig of Princeton University.

    Beyond intuition

    The new study was motivated by a desire to speed up the traditional search for topological materials.

    “The way the original materials were found was through chemical intuition,” Wieder says. “That approach had a lot of early successes. But as we theoretically predicted more kinds of topological phases, it seemed intuition wasn’t getting us very far.”

    Wieder and his colleagues instead utilized an efficient and systematic method to root out signs of topology, or robust electronic behavior, in all known crystalline structures, also known as inorganic solid-state materials.

    For their study, the researchers looked to the Inorganic Crystal Structure Database, or ICSD, a repository into which researchers enter the atomic and chemical structures of crystalline materials that they have studied. The database includes materials found in nature, as well as those that have been synthesized and manipulated in the lab. The ICSD is currently the largest materials database in the world, containing over 193,000 crystals whose structures have been mapped and characterized.

    The team downloaded the entire ICSD, and after performing some data cleaning to weed out structures with corrupted files or incomplete data, the researchers were left with just over 96,000 processable structures. For each of these structures, they performed a set of calculations based on fundamental knowledge of the relation between chemical constituents, to produce a map of the material’s electronic structure, also known as the electron band structure.

    The team was able to efficiently carry out the complicated calculations for each structure using multiple supercomputers, which they then employed to perform a second set of operations, this time to screen for various known topological phases, or persistent electrical behavior in each crystal material.

    “We’re looking for signatures in the electronic structure in which certain robust phenomena should occur in this material,” explains Wieder, whose previous work involved refining and expanding the screening technique, known as topological quantum chemistry.

    From their high-throughput analysis, the team quickly discovered a surprisingly large number of materials that are naturally topological, without any experimental manipulation, as well as materials that can be manipulated, for instance with light or chemical doping, to exhibit some sort of robust electronic behavior. They also discovered a handful of materials that contained more than one topological state when exposed to certain conditions.

    “Topological phases of matter in 3D solid-state materials have been proposed as venues for observing and manipulating exotic effects, including the interconversion of electrical current and electron spin, the tabletop simulation of exotic theories from high-energy physics, and even, under the right conditions, the storage and manipulation of quantum information,” Wieder notes. 

    For experimentalists who are studying such effects, Wieder says the team’s new database now reveals a menagerie of new materials to explore.

    This research was funded, in part, by the U.S. Department of Energy, the National Science Foundation, and the Office of Naval Research. More