More stories

  • in

    Cracking the case of Arctic sea ice breakup

    Despite its below-freezing temperatures, the Arctic is warming twice as fast as the rest of the planet. As Arctic sea ice melts, fewer bright surfaces are available to reflect sunlight back into space. When fractures open in the ice cover, the water underneath gets exposed. Dark, ice-free water absorbs the sun’s energy, heating the ocean and driving further melting — a vicious cycle. This warming in turn melts glacial ice, contributing to rising sea levels.

    Warming climate and rising sea levels endanger the nearly 40 percent of the U.S. population living in coastal areas, the billions of people who depend on the ocean for food and their livelihoods, and species such as polar bears and Artic foxes. Reduced ice coverage is also making the once-impassable region more accessible, opening up new shipping lanes and ports. Interest in using these emerging trans-Arctic routes for product transit, extraction of natural resources (e.g., oil and gas), and military activity is turning an area traditionally marked by low tension and cooperation into one of global geopolitical competition.

    As the Arctic opens up, predicting when and where the sea ice will fracture becomes increasingly important in strategic decision-making. However, huge gaps exist in our understanding of the physical processes contributing to ice breakup. Researchers at MIT Lincoln Laboratory seek to help close these gaps by turning a data-sparse environment into a data-rich one. They envision deploying a distributed set of unattended sensors across the Arctic that will persistently detect and geolocate ice fracturing events. Concurrently, the network will measure various environmental conditions, including water temperature and salinity, wind speed and direction, and ocean currents at different depths. By correlating these fracturing events and environmental conditions, they hope to discover meaningful insights about what is causing the sea ice to break up. Such insights could help predict the future state of Arctic sea ice to inform climate modeling, climate change planning, and policy decision-making at the highest levels.

    “We’re trying to study the relationship between ice cracking, climate change, and heat flow in the ocean,” says Andrew March, an assistant leader of Lincoln Laboratory’s Advanced Undersea Systems and Technology Group. “Do cracks in the ice cause warm water to rise and more ice to melt? Do undersea currents and waves cause cracking? Does cracking cause undersea waves? These are the types of questions we aim to investigate.”

    Arctic access

    In March 2022, Ben Evans and Dave Whelihan, both researchers in March’s group, traveled for 16 hours across three flights to Prudhoe Bay, located on the North Slope of Alaska. From there, they boarded a small specialized aircraft and flew another 90 minutes to a three-and-a-half-mile-long sheet of ice floating 160 nautical miles offshore in the Arctic Ocean. In the weeks before their arrival, the U.S. Navy’s Arctic Submarine Laboratory had transformed this inhospitable ice floe into a temporary operating base called Ice Camp Queenfish, named after the first Sturgeon-class submarine to operate under the ice and the fourth to reach the North Pole. The ice camp featured a 2,500-foot-long runway, a command center, sleeping quarters to accommodate up to 60 personnel, a dining tent, and an extremely limited internet connection.

    At Queenfish, for the next four days, Evans and Whelihan joined U.S. Navy, Army, Air Force, Marine Corps, and Coast Guard members, and members of the Royal Canadian Air Force and Navy and United Kingdom Royal Navy, who were participating in Ice Exercise (ICEX) 2022. Over the course of about three weeks, more than 200 personnel stationed at Queenfish, Prudhoe Bay, and aboard two U.S. Navy submarines participated in this biennial exercise. The goals of ICEX 2022 were to assess U.S. operational readiness in the Arctic; increase our country’s experience in the region; advance our understanding of the Arctic environment; and continue building relationships with other services, allies, and partner organizations to ensure a free and peaceful Arctic. The infrastructure provided for ICEX concurrently enables scientists to conduct research in an environment — either in person or by sending their research equipment for exercise organizers to deploy on their behalf — that would be otherwise extremely difficult and expensive to access.

    In the Arctic, windchill temperatures can plummet to as low as 60 degrees Fahrenheit below zero, cold enough to freeze exposed skin within minutes. Winds and ocean currents can drift the entire camp beyond the reach of nearby emergency rescue aircraft, and the ice can crack at any moment. To ensure the safety of participants, a team of Navy meteorological specialists continually monitors the ever-changing conditions. The original camp location for ICEX 2022 had to be evacuated and relocated after a massive crack formed in the ice, delaying Evans’ and Whelihan’s trip. Even the newly selected site had a large crack form behind the camp and another crack that necessitated moving a number of tents.

    “Such cracking events are only going to increase as the climate warms, so it’s more critical now than ever to understand the physical processes behind them,” Whelihan says. “Such an understanding will require building technology that can persist in the environment despite these incredibly harsh conditions. So, it’s a challenge not only from a scientific perspective but also an engineering one.”

    “The weather always gets a vote, dictating what you’re able to do out here,” adds Evans. “The Arctic Submarine Laboratory does a lot of work to construct the camp and make it a safe environment where researchers like us can come to do good science. ICEX is really the only opportunity we have to go onto the sea ice in a place this remote to collect data.”

    A legacy of sea ice experiments

    Though this trip was Whelihan’s and Evans’ first to the Arctic region, staff from the laboratory’s Advanced Undersea Systems and Technology Group have been conducting experiments at ICEX since 2018. However, because of the Arctic’s remote location and extreme conditions, data collection has rarely been continuous over long periods of time or widespread across large areas. The team now hopes to change that by building low-cost, expendable sensing platforms consisting of co-located devices that can be left unattended for automated, persistent, near-real-time monitoring. 

    “The laboratory’s extensive expertise in rapid prototyping, seismo-acoustic signal processing, remote sensing, and oceanography make us a natural fit to build this sensor network,” says Evans.

    In the months leading up to the Arctic trip, the team collected seismometer data at Firepond, part of the laboratory’s Haystack Observatory site in Westford, Massachusetts. Through this local data collection, they aimed to gain a sense of what anthropogenic (human-induced) noise would look like so they could begin to anticipate the kinds of signatures they might see in the Arctic. They also collected ice melting/fracturing data during a thaw cycle and correlated these data with the weather conditions (air temperature, humidity, and pressure). Through this analysis, they detected an increase in seismic signals as the temperature rose above 32 F — an indication that air temperature and ice cracking may be related.

    A sensing network

    At ICEX, the team deployed various commercial off-the-shelf sensors and new sensors developed by the laboratory and University of New Hampshire (UNH) to assess their resiliency in the frigid environment and to collect an initial dataset.

    “One aspect that differentiates these experiments from those of the past is that we concurrently collected seismo-acoustic data and environmental parameters,” says Evans.

    The commercial technologies were seismometers to detect the vibrational energy released when sea ice fractures or collides with other ice floes; a hydrophone (underwater microphone) array to record the acoustic energy created by ice-fracturing events; a sound speed profiler to measure the speed of sound through the water column; and a conductivity, temperature, and depth (CTD) profiler to measure the salinity (related to conductivity), temperature, and pressure (related to depth) throughout the water column. The speed of sound in the ocean primarily depends on these three quantities. 

    To precisely measure the temperature across the entire water column at one location, they deployed an array of transistor-based temperature sensors developed by the laboratory’s Advanced Materials and Microsystems Group in collaboration with the Advanced Functional Fabrics of America Manufacturing Innovation Institute. The small temperature sensors run along the length of a thread-like polymer fiber embedded with multiple conductors. This fiber platform, which can support a broad range of sensors, can be unspooled hundreds of feet below the water’s surface to concurrently measure temperature or other water properties — the fiber deployed in the Arctic also contained accelerometers to measure depth — at many points in the water column. Traditionally, temperature profiling has required moving a device up and down through the water column.

    The team also deployed a high-frequency echosounder supplied by Anthony Lyons and Larry Mayer, collaborators at UNH’s Center for Coastal and Ocean Mapping. This active sonar uses acoustic energy to detect internal waves, or waves occurring beneath the ocean’s surface.

    “You may think of the ocean as a homogenous body of water, but it’s not,” Evans explains. “Different currents can exist as you go down in depth, much like how you can get different winds when you go up in altitude. The UNH echosounder allows us to see the different currents in the water column, as well as ice roughness when we turn the sensor to look upward.”

    “The reason we care about currents is that we believe they will tell us something about how warmer water from the Atlantic Ocean is coming into contact with sea ice,” adds Whelihan. “Not only is that water melting ice but it also has lower salt content, resulting in oceanic layers and affecting how long ice lasts and where it lasts.”

    Back home, the team has begun analyzing their data. For the seismic data, this analysis involves distinguishing any ice events from various sources of anthropogenic noise, including generators, snowmobiles, footsteps, and aircraft. Similarly, the researchers know their hydrophone array acoustic data are contaminated by energy from a sound source that another research team participating in ICEX placed in the water. Based on their physics, icequakes — the seismic events that occur when ice cracks — have characteristic signatures that can be used to identify them. One approach is to manually find an icequake and use that signature as a guide for finding other icequakes in the dataset.

    From their water column profiling sensors, they identified an interesting evolution in the sound speed profile 30 to 40 meters below the ocean surface, related to a mass of colder water moving in later in the day. The group’s physical oceanographer believes this change in the profile is due to water coming up from the Bering Sea, water that initially comes from the Atlantic Ocean. The UNH-supplied echosounder also generated an interesting signal at a similar depth.

    “Our supposition is that this result has something to do with the large sound speed variation we detected, either directly because of reflections off that layer or because of plankton, which tend to rise on top of that layer,” explains Evans.  

    A future predictive capability

    Going forward, the team will continue mining their collected data and use these data to begin building algorithms capable of automatically detecting and localizing — and ultimately predicting — ice events correlated with changes in environmental conditions. To complement their experimental data, they have initiated conversations with organizations that model the physical behavior of sea ice, including the National Oceanic and Atmospheric Administration and the National Ice Center. Merging the laboratory’s expertise in sensor design and signal processing with their expertise in ice physics would provide a more complete understanding of how the Arctic is changing.

    The laboratory team will also start exploring cost-effective engineering approaches for integrating the sensors into packages hardened for deployment in the harsh environment of the Arctic.

    “Until these sensors are truly unattended, the human factor of usability is front and center,” says Whelihan. “Because it’s so cold, equipment can break accidentally. For example, at ICEX 2022, our waterproof enclosure for the seismometers survived, but the enclosure for its power supply, which was made out of a cheaper plastic, shattered in my hand when I went to pick it up.”

    The sensor packages will not only need to withstand the frigid environment but also be able to “phone home” over some sort of satellite data link and sustain their power. The team plans to investigate whether waste heat from processing can keep the instruments warm and how energy could be harvested from the Arctic environment.

    Before the next ICEX scheduled for 2024, they hope to perform preliminary testing of their sensor packages and concepts in Arctic-like environments. While attending ICEX 2022, they engaged with several other attendees — including the U.S. Navy, Arctic Submarine Laboratory, National Ice Center, and University of Alaska Fairbanks (UAF) — and identified cold room experimentation as one area of potential collaboration. Testing can also be performed at outdoor locations a bit closer to home and more easily accessible, such as the Great Lakes in Michigan and a UAF-maintained site in Barrow, Alaska. In the future, the laboratory team may have an opportunity to accompany U.S. Coast Guard personnel on ice-breaking vessels traveling from Alaska to Greenland. The team is also thinking about possible venues for collecting data far removed from human noise sources.

    “Since I’ve told colleagues, friends, and family I was going to the Arctic, I’ve had a lot of interesting conversations about climate change and what we’re doing there and why we’re doing it,” Whelihan says. “People don’t have an intrinsic, automatic understanding of this environment and its impact because it’s so far removed from us. But the Arctic plays a crucial role in helping to keep the global climate in balance, so it’s imperative we understand the processes leading to sea ice fractures.”

    This work is funded through Lincoln Laboratory’s internally administered R&D portfolio on climate. More

  • in

    Engineers use artificial intelligence to capture the complexity of breaking waves

    Waves break once they swell to a critical height, before cresting and crashing into a spray of droplets and bubbles. These waves can be as large as a surfer’s point break and as small as a gentle ripple rolling to shore. For decades, the dynamics of how and when a wave breaks have been too complex to predict.

    Now, MIT engineers have found a new way to model how waves break. The team used machine learning along with data from wave-tank experiments to tweak equations that have traditionally been used to predict wave behavior. Engineers typically rely on such equations to help them design resilient offshore platforms and structures. But until now, the equations have not been able to capture the complexity of breaking waves.

    The updated model made more accurate predictions of how and when waves break, the researchers found. For instance, the model estimated a wave’s steepness just before breaking, and its energy and frequency after breaking, more accurately than the conventional wave equations.

    Their results, published today in the journal Nature Communications, will help scientists understand how a breaking wave affects the water around it. Knowing precisely how these waves interact can help hone the design of offshore structures. It can also improve predictions for how the ocean interacts with the atmosphere. Having better estimates of how waves break can help scientists predict, for instance, how much carbon dioxide and other atmospheric gases the ocean can absorb.

    “Wave breaking is what puts air into the ocean,” says study author Themis Sapsis, an associate professor of mechanical and ocean engineering and an affiliate of the Institute for Data, Systems, and Society at MIT. “It may sound like a detail, but if you multiply its effect over the area of the entire ocean, wave breaking starts becoming fundamentally important to climate prediction.”

    The study’s co-authors include lead author and MIT postdoc Debbie Eeltink, Hubert Branger and Christopher Luneau of Aix-Marseille University, Amin Chabchoub of Kyoto University, Jerome Kasparian of the University of Geneva, and T.S. van den Bremer of Delft University of Technology.

    Learning tank

    To predict the dynamics of a breaking wave, scientists typically take one of two approaches: They either attempt to precisely simulate the wave at the scale of individual molecules of water and air, or they run experiments to try and characterize waves with actual measurements. The first approach is computationally expensive and difficult to simulate even over a small area; the second requires a huge amount of time to run enough experiments to yield statistically significant results.

    The MIT team instead borrowed pieces from both approaches to develop a more efficient and accurate model using machine learning. The researchers started with a set of equations that is considered the standard description of wave behavior. They aimed to improve the model by “training” the model on data of breaking waves from actual experiments.

    “We had a simple model that doesn’t capture wave breaking, and then we had the truth, meaning experiments that involve wave breaking,” Eeltink explains. “Then we wanted to use machine learning to learn the difference between the two.”

    The researchers obtained wave breaking data by running experiments in a 40-meter-long tank. The tank was fitted at one end with a paddle which the team used to initiate each wave. The team set the paddle to produce a breaking wave in the middle of the tank. Gauges along the length of the tank measured the water’s height as waves propagated down the tank.

    “It takes a lot of time to run these experiments,” Eeltink says. “Between each experiment you have to wait for the water to completely calm down before you launch the next experiment, otherwise they influence each other.”

    Safe harbor

    In all, the team ran about 250 experiments, the data from which they used to train a type of machine-learning algorithm known as a neural network. Specifically, the algorithm is trained to compare the real waves in experiments with the predicted waves in the simple model, and based on any differences between the two, the algorithm tunes the model to fit reality.

    After training the algorithm on their experimental data, the team introduced the model to entirely new data — in this case, measurements from two independent experiments, each run at separate wave tanks with different dimensions. In these tests, they found the updated model made more accurate predictions than the simple, untrained model, for instance making better estimates of a breaking wave’s steepness.

    The new model also captured an essential property of breaking waves known as the “downshift,” in which the frequency of a wave is shifted to a lower value. The speed of a wave depends on its frequency. For ocean waves, lower frequencies move faster than higher frequencies. Therefore, after the downshift, the wave will move faster. The new model predicts the change in frequency, before and after each breaking wave, which could be especially relevant in preparing for coastal storms.

    “When you want to forecast when high waves of a swell would reach a harbor, and you want to leave the harbor before those waves arrive, then if you get the wave frequency wrong, then the speed at which the waves are approaching is wrong,” Eeltink says.

    The team’s updated wave model is in the form of an open-source code that others could potentially use, for instance in climate simulations of the ocean’s potential to absorb carbon dioxide and other atmospheric gases. The code can also be worked into simulated tests of offshore platforms and coastal structures.

    “The number one purpose of this model is to predict what a wave will do,” Sapsis says. “If you don’t model wave breaking right, it would have tremendous implications for how structures behave. With this, you could simulate waves to help design structures better, more efficiently, and without huge safety factors.”

    This research is supported, in part, by the Swiss National Science Foundation, and by the U.S. Office of Naval Research. More

  • in

    Ocean vital signs

    Without the ocean, the climate crisis would be even worse than it is. Each year, the ocean absorbs billions of tons of carbon from the atmosphere, preventing warming that greenhouse gas would otherwise cause. Scientists estimate about 25 to 30 percent of all carbon released into the atmosphere by both human and natural sources is absorbed by the ocean.

    “But there’s a lot of uncertainty in that number,” says Ryan Woosley, a marine chemist and a principal research scientist in the Department of Earth, Atmospheric and Planetary Sciences (EAPS) at MIT. Different parts of the ocean take in different amounts of carbon depending on many factors, such as the season and the amount of mixing from storms. Current models of the carbon cycle don’t adequately capture this variation.

    To close the gap, Woosley and a team of other MIT scientists developed a research proposal for the MIT Climate Grand Challenges competition — an Institute-wide campaign to catalyze and fund innovative research addressing the climate crisis. The team’s proposal, “Ocean Vital Signs,” involves sending a fleet of sailing drones to cruise the oceans taking detailed measurements of how much carbon the ocean is really absorbing. Those data would be used to improve the precision of global carbon cycle models and improve researchers’ ability to verify emissions reductions claimed by countries.

    “If we start to enact mitigation strategies—either through removing CO2 from the atmosphere or reducing emissions — we need to know where CO2 is going in order to know how effective they are,” says Woosley. Without more precise models there’s no way to confirm whether observed carbon reductions were thanks to policy and people, or thanks to the ocean.

    “So that’s the trillion-dollar question,” says Woosley. “If countries are spending all this money to reduce emissions, is it enough to matter?”

    In February, the team’s Climate Grand Challenges proposal was named one of 27 finalists out of the almost 100 entries submitted. From among this list of finalists, MIT will announce in April the selection of five flagship projects to receive further funding and support.

    Woosley is leading the team along with Christopher Hill, a principal research engineer in EAPS. The team includes physical and chemical oceanographers, marine microbiologists, biogeochemists, and experts in computational modeling from across the department, in addition to collaborators from the Media Lab and the departments of Mathematics, Aeronautics and Astronautics, and Electrical Engineering and Computer Science.

    Today, data on the flux of carbon dioxide between the air and the oceans are collected in a piecemeal way. Research ships intermittently cruise out to gather data. Some commercial ships are also fitted with sensors. But these present a limited view of the entire ocean, and include biases. For instance, commercial ships usually avoid storms, which can increase the turnover of water exposed to the atmosphere and cause a substantial increase in the amount of carbon absorbed by the ocean.

    “It’s very difficult for us to get to it and measure that,” says Woosley. “But these drones can.”

    If funded, the team’s project would begin by deploying a few drones in a small area to test the technology. The wind-powered drones — made by a California-based company called Saildrone — would autonomously navigate through an area, collecting data on air-sea carbon dioxide flux continuously with solar-powered sensors. This would then scale up to more than 5,000 drone-days’ worth of observations, spread over five years, and in all five ocean basins.

    Those data would be used to feed neural networks to create more precise maps of how much carbon is absorbed by the oceans, shrinking the uncertainties involved in the models. These models would continue to be verified and improved by new data. “The better the models are, the more we can rely on them,” says Woosley. “But we will always need measurements to verify the models.”

    Improved carbon cycle models are relevant beyond climate warming as well. “CO2 is involved in so much of how the world works,” says Woosley. “We’re made of carbon, and all the other organisms and ecosystems are as well. What does the perturbation to the carbon cycle do to these ecosystems?”

    One of the best understood impacts is ocean acidification. Carbon absorbed by the ocean reacts to form an acid. A more acidic ocean can have dire impacts on marine organisms like coral and oysters, whose calcium carbonate shells and skeletons can dissolve in the lower pH. Since the Industrial Revolution, the ocean has become about 30 percent more acidic on average.

    “So while it’s great for us that the oceans have been taking up the CO2, it’s not great for the oceans,” says Woosley. “Knowing how this uptake affects the health of the ocean is important as well.” More