More stories

  • in

    Drones navigate unseen environments with liquid neural networks

    In the vast, expansive skies where birds once ruled supreme, a new crop of aviators is taking flight. These pioneers of the air are not living creatures, but rather a product of deliberate innovation: drones. But these aren’t your typical flying bots, humming around like mechanical bees. Rather, they’re avian-inspired marvels that soar through the sky, guided by liquid neural networks to navigate ever-changing and unseen environments with precision and ease.

    Inspired by the adaptable nature of organic brains, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have introduced a method for robust flight navigation agents to master vision-based fly-to-target tasks in intricate, unfamiliar environments. The liquid neural networks, which can continuously adapt to new data inputs, showed prowess in making reliable decisions in unknown domains like forests, urban landscapes, and environments with added noise, rotation, and occlusion. These adaptable models, which outperformed many state-of-the-art counterparts in navigation tasks, could enable potential real-world drone applications like search and rescue, delivery, and wildlife monitoring.

    The researchers’ recent study, published today in Science Robotics, details how this new breed of agents can adapt to significant distribution shifts, a long-standing challenge in the field. The team’s new class of machine-learning algorithms, however, captures the causal structure of tasks from high-dimensional, unstructured data, such as pixel inputs from a drone-mounted camera. These networks can then extract crucial aspects of a task (i.e., understand the task at hand) and ignore irrelevant features, allowing acquired navigation skills to transfer targets seamlessly to new environments.

    Play video

    Drones navigate unseen environments with liquid neural networks.

    “We are thrilled by the immense potential of our learning-based control approach for robots, as it lays the groundwork for solving problems that arise when training in one environment and deploying in a completely distinct environment without additional training,” says Daniela Rus, CSAIL director and the Andrew (1956) and Erna Viterbi Professor of Electrical Engineering and Computer Science at MIT. “Our experiments demonstrate that we can effectively teach a drone to locate an object in a forest during summer, and then deploy the model in winter, with vastly different surroundings, or even in urban settings, with varied tasks such as seeking and following. This adaptability is made possible by the causal underpinnings of our solutions. These flexible algorithms could one day aid in decision-making based on data streams that change over time, such as medical diagnosis and autonomous driving applications.”

    A daunting challenge was at the forefront: Do machine-learning systems understand the task they are given from data when flying drones to an unlabeled object? And, would they be able to transfer their learned skill and task to new environments with drastic changes in scenery, such as flying from a forest to an urban landscape? What’s more, unlike the remarkable abilities of our biological brains, deep learning systems struggle with capturing causality, frequently over-fitting their training data and failing to adapt to new environments or changing conditions. This is especially troubling for resource-limited embedded systems, like aerial drones, that need to traverse varied environments and respond to obstacles instantaneously. 

    The liquid networks, in contrast, offer promising preliminary indications of their capacity to address this crucial weakness in deep learning systems. The team’s system was first trained on data collected by a human pilot, to see how they transferred learned navigation skills to new environments under drastic changes in scenery and conditions. Unlike traditional neural networks that only learn during the training phase, the liquid neural net’s parameters can change over time, making them not only interpretable, but more resilient to unexpected or noisy data. 

    In a series of quadrotor closed-loop control experiments, the drones underwent range tests, stress tests, target rotation and occlusion, hiking with adversaries, triangular loops between objects, and dynamic target tracking. They tracked moving targets, and executed multi-step loops between objects in never-before-seen environments, surpassing performance of other cutting-edge counterparts. 

    The team believes that the ability to learn from limited expert data and understand a given task while generalizing to new environments could make autonomous drone deployment more efficient, cost-effective, and reliable. Liquid neural networks, they noted, could enable autonomous air mobility drones to be used for environmental monitoring, package delivery, autonomous vehicles, and robotic assistants. 

    “The experimental setup presented in our work tests the reasoning capabilities of various deep learning systems in controlled and straightforward scenarios,” says MIT CSAIL Research Affiliate Ramin Hasani. “There is still so much room left for future research and development on more complex reasoning challenges for AI systems in autonomous navigation applications, which has to be tested before we can safely deploy them in our society.”

    “Robust learning and performance in out-of-distribution tasks and scenarios are some of the key problems that machine learning and autonomous robotic systems have to conquer to make further inroads in society-critical applications,” says Alessio Lomuscio, professor of AI safety in the Department of Computing at Imperial College London. “In this context, the performance of liquid neural networks, a novel brain-inspired paradigm developed by the authors at MIT, reported in this study is remarkable. If these results are confirmed in other experiments, the paradigm here developed will contribute to making AI and robotic systems more reliable, robust, and efficient.”

    Clearly, the sky is no longer the limit, but rather a vast playground for the boundless possibilities of these airborne marvels. 

    Hasani and PhD student Makram Chahine; Patrick Kao ’22, MEng ’22; and PhD student Aaron Ray SM ’21 wrote the paper with Ryan Shubert ’20, MEng ’22; MIT postdocs Mathias Lechner and Alexander Amini; and Rus.

    This research was supported, in part, by Schmidt Futures, the U.S. Air Force Research Laboratory, the U.S. Air Force Artificial Intelligence Accelerator, and the Boeing Co. More

  • in

    A new chip for decoding data transmissions demonstrates record-breaking energy efficiency

    Imagine using an online banking app to deposit money into your account. Like all information sent over the internet, those communications could be corrupted by noise that inserts errors into the data.

    To overcome this problem, senders encode data before they are transmitted, and then a receiver uses a decoding algorithm to correct errors and recover the original message. In some instances, data are received with reliability information that helps the decoder figure out which parts of a transmission are likely errors.

    Researchers at MIT and elsewhere have developed a decoder chip that employs a new statistical model to use this reliability information in a way that is much simpler and faster than conventional techniques.

    Their chip uses a universal decoding algorithm the team previously developed, which can unravel any error correcting code. Typically, decoding hardware can only process one particular type of code. This new, universal decoder chip has broken the record for energy-efficient decoding, performing between 10 and 100 times better than other hardware.

    This advance could enable mobile devices with fewer chips, since they would no longer need separate hardware for multiple codes. This would reduce the amount of material needed for fabrication, cutting costs and improving sustainability. By making the decoding process less energy intensive, the chip could also improve device performance and lengthen battery life. It could be especially useful for demanding applications like augmented and virtual reality and 5G networks.

    “This is the first time anyone has broken below the 1 picojoule-per-bit barrier for decoding. That is roughly the same amount of energy you need to transmit a bit inside the system. It had been a big symbolic threshold, but it also changes the balance in the receiver of what might be the most pressing part from an energy perspective — we can move that away from the decoder to other elements,” says Muriel Médard, the School of Science NEC Professor of Software Science and Engineering, a professor in the Department of Electrical Engineering and Computer Science, and a co-author of a paper presenting the new chip.

    Médard’s co-authors include lead author Arslan Riaz, a graduate student at Boston University (BU); Rabia Tugce Yazicigil, assistant professor of electrical and computer engineering at BU; and Ken R. Duffy, then director of the Hamilton Institute at Maynooth University and now a professor at Northeastern University, as well as others from MIT, BU, and Maynooth University. The work is being presented at the International Solid-States Circuits Conference.

    Smarter sorting

    Digital data are transmitted over a network in the form of bits (0s and 1s). A sender encodes data by adding an error-correcting code, which is a redundant string of 0s and 1s that can be viewed as a hash. Information about this hash is held in a specific code book. A decoding algorithm at the receiver, designed for this particular code, uses its code book and the hash structure to retrieve the original information, which may have been jumbled by noise. Since each algorithm is code-specific, and most require dedicated hardware, a device would need many chips to decode different codes.

    The researchers previously demonstrated GRAND (Guessing Random Additive Noise Decoding), a universal decoding algorithm that can crack any code. GRAND works by guessing the noise that affected the transmission, subtracting that noise pattern from the received data, and then checking what remains in a code book. It guesses a series of noise patterns in the order they are likely to occur.

    Data are often received with reliability information, also called soft information, that helps a decoder figure out which pieces are errors. The new decoding chip, called ORBGRAND (Ordered Reliability Bits GRAND), uses this reliability information to sort data based on how likely each bit is to be an error.

    But it isn’t as simple as ordering single bits. While the most unreliable bit might be the likeliest error, perhaps the third and fourth most unreliable bits together are as likely to be an error as the seventh-most unreliable bit. ORBGRAND uses a new statistical model that can sort bits in this fashion, considering that multiple bits together are as likely to be an error as some single bits.

    “If your car isn’t working, soft information might tell you that it is probably the battery. But if it isn’t the battery alone, maybe it is the battery and the alternator together that are causing the problem. This is how a rational person would troubleshoot — you’d say that it could actually be these two things together before going down the list to something that is much less likely,” Médard says.

    This is a much more efficient approach than traditional decoders, which would instead look at the code structure and have a performance that is generally designed for the worst-case.

    “With a traditional decoder, you’d pull out the blueprint of the car and examine each and every piece. You’ll find the problem, but it will take you a long time and you’ll get very frustrated,” Médard explains.

    ORBGRAND stops sorting as soon as a code word is found, which is often very soon. The chip also employs parallelization, generating and testing multiple noise patterns simultaneously so it finds the code word faster. Because the decoder stops working once it finds the code word, its energy consumption stays low even though it runs multiple processes simultaneously.

    Record-breaking efficiency

    When they compared their approach to other chips, ORBGRAND decoded with maximum accuracy while consuming only 0.76 picojoules of energy per bit, breaking the previous performance record. ORBGRAND consumes between 10 and 100 times less energy than other devices.

    One of the biggest challenges of developing the new chip came from this reduced energy consumption, Médard says. With ORBGRAND, generating noise sequences is now so energy-efficient that other processes the researchers hadn’t focused on before, like checking the code word in a code book, consume most of the effort.

    “Now, this checking process, which is like turning on the car to see if it works, is the hardest part. So, we need to find more efficient ways to do that,” she says.

    The team is also exploring ways to change the modulation of transmissions so they can take advantage of the improved efficiency of the ORBGRAND chip. They also plan to see how their technique could be utilized to more efficiently manage multiple transmissions that overlap.

    The research is funded, in part, by the U.S. Defense Advanced Research Projects Agency (DARPA) and Science Foundation Ireland. More

  • in

    Researchers discover major roadblock in alleviating network congestion

    When users want to send data over the internet faster than the network can handle, congestion can occur — the same way traffic congestion snarls the morning commute into a big city.

    Computers and devices that transmit data over the internet break the data down into smaller packets and use a special algorithm to decide how fast to send those packets. These congestion control algorithms seek to fully discover and utilize available network capacity while sharing it fairly with other users who may be sharing the same network. These algorithms try to minimize delay caused by data waiting in queues in the network.

    Over the past decade, researchers in industry and academia have developed several algorithms that attempt to achieve high rates while controlling delays. Some of these, such as the BBR algorithm developed by Google, are now widely used by many websites and applications.

    But a team of MIT researchers has discovered that these algorithms can be deeply unfair. In a new study, they show there will always be a network scenario where at least one sender receives almost no bandwidth compared to other senders; that is, a problem known as “starvation” cannot be avoided.

    “What is really surprising about this paper and the results is that when you take into account the real-world complexity of network paths and all the things they can do to data packets, it is basically impossible for delay-controlling congestion control algorithms to avoid starvation using current methods,” says Mohammad Alizadeh, associate professor of electrical engineering and computer science (EECS).

    While Alizadeh and his co-authors weren’t able to find a traditional congestion control algorithm that could avoid starvation, there may be algorithms in a different class that could prevent this problem. Their analysis also suggests that changing how these algorithms work, so that they allow for larger variations in delay, could help prevent starvation in some network situations.

    Alizadeh wrote the paper with first author and EECS graduate student Venkat Arun and senior author Hari Balakrishnan, the Fujitsu Professor of Computer Science and Artificial Intelligence. The research will be presented at the ACM Special Interest Group on Data Communications (SIGCOMM) conference.

    Controlling congestion

    Congestion control is a fundamental problem in networking that researchers have been trying to tackle since the 1980s.

    A user’s computer does not know how fast to send data packets over the network because it lacks information, such as the quality of the network connection or how many other senders are using the network. Sending packets too slowly makes poor use of the available bandwidth. But sending them too quickly can overwhelm the network, and in doing so, packets will start to get dropped. These packets must be resent, which leads to longer delays. Delays can also be caused by packets waiting in queues for a long time.

    Congestion control algorithms use packet losses and delays as signals to infer congestion and decide how fast to send data. But the internet is complicated, and packets can be delayed and lost for reasons unrelated to network congestion. For instance, data could be held up in a queue along the way and then released with a burst of other packets, or the receiver’s acknowledgement might be delayed. The authors call delays that are not caused by congestion “jitter.”

    Even if a congestion control algorithm measures delay perfectly, it can’t tell the difference between delay caused by congestion and delay caused by jitter. Delay caused by jitter is unpredictable and confuses the sender. Because of this ambiguity, users start estimating delay differently, which causes them to send packets at unequal rates. Eventually, this leads to a situation where starvation occurs and someone gets shut out completely, Arun explains.

    “We started the project because we lacked a theoretical understanding of congestion control behavior in the presence of jitter. To place it on a firmer theoretical footing, we built a mathematical model that was simple enough to think about, yet able to capture some of the complexities of the internet. It has been very rewarding to have math tell us things we didn’t know and that have practical relevance,” he says.

    Studying starvation

    The researchers fed their mathematical model to a computer, gave it a series of commonly used congestion control algorithms, and asked the computer to find an algorithm that could avoid starvation, using their model.

    “We couldn’t do it. We tried every algorithm that we are aware of, and some new ones we made up. Nothing worked. The computer always found a situation where some people get all the bandwidth and at least one person gets basically nothing,” Arun says.

    The researchers were surprised by this result, especially since these algorithms are widely believed to be reasonably fair. They started suspecting that it may not be possible to avoid starvation, an extreme form of unfairness. This motivated them to define a class of algorithms they call “delay-convergent algorithms” that they proved will always suffer from starvation under their network model. All existing congestion control algorithms that control delay (that the researchers are aware of) are delay-convergent.

    The fact that such simple failure modes of these widely used algorithms remained unknown for so long illustrates how difficult it is to understand algorithms through empirical testing alone, Arun adds. It underscores the importance of a solid theoretical foundation.

    But all hope is not lost. While all the algorithms they tested failed, there may be other algorithms which are not delay-convergent that might be able to avoid starvation This suggests that one way to fix the problem might be to design congestion control algorithms that vary the delay range more widely, so the range is larger than any delay that might occur due to jitter in the network.

    “To control delays, algorithms have tried to also bound the variations in delay about a desired equilibrium, but there is nothing wrong in potentially creating greater delay variation to get better measurements of congestive delays. It is just a new design philosophy you would have to adopt,” Balakrishnan adds.

    Now, the researchers want to keep pushing to see if they can find or build an algorithm that will eliminate starvation. They also want to apply this approach of mathematical modeling and computational proofs to other thorny, unsolved problems in networked systems.

    “We are increasingly reliant on computer systems for very critical things, and we need to put their reliability on a firmer conceptual footing. We’ve shown the surprising things you can discover when you put in the time to come up with these formal specifications of what the problem actually is,” says Alizadeh.

    The NASA University Leadership Initiative (grant #80NSSC20M0163) provided funds to assist the authors with their research, but the research paper solely reflects the opinions and conclusions of its authors and not any NASA entity. This work was also partially funded by the National Science Foundation, award number 1751009. More

  • in

    Security tool guarantees privacy in surveillance footage

    Surveillance cameras have an identity problem, fueled by an inherent tension between utility and privacy. As these powerful little devices have cropped up seemingly everywhere, the use of machine learning tools has automated video content analysis at a massive scale — but with increasing mass surveillance, there are currently no legally enforceable rules to limit privacy invasions. 

    Security cameras can do a lot — they’ve become smarter and supremely more competent than their ghosts of grainy pictures past, the ofttimes “hero tool” in crime media. (“See that little blurry blue blob in the right hand corner of that densely populated corner — we got him!”) Now, video surveillance can help health officials measure the fraction of people wearing masks, enable transportation departments to monitor the density and flow of vehicles, bikes, and pedestrians, and provide businesses with a better understanding of shopping behaviors. But why has privacy remained a weak afterthought? 

    The status quo is to retrofit video with blurred faces or black boxes. Not only does this prevent analysts from asking some genuine queries (e.g., Are people wearing masks?), it also doesn’t always work; the system may miss some faces and leave them unblurred for the world to see. Dissatisfied with this status quo, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), in collaboration with other institutions, came up with a system to better guarantee privacy in video footage from surveillance cameras. Called “Privid,” the system lets analysts submit video data queries, and adds a little bit of noise (extra data) to the end result to ensure that an individual can’t be identified. The system builds on a formal definition of privacy — “differential privacy” — which allows access to aggregate statistics about private data without revealing personally identifiable information.

    Typically, analysts would just have access to the entire video to do whatever they want with it, but Privid makes sure the video isn’t a free buffet. Honest analysts can get access to the information they need, but that access is restrictive enough that malicious analysts can’t do too much with it. To enable this, rather than running the code over the entire video in one shot, Privid breaks the video into small pieces and runs processing code over each chunk. Instead of getting results back from each piece, the segments are aggregated, and that additional noise is added. (There’s also information on the error bound you’re going to get on your result — maybe a 2 percent error margin, given the extra noisy data added). 

    For example, the code might output the number of people observed in each video chunk, and the aggregation might be the “sum,” to count the total number of people wearing face coverings, or the “average” to estimate the density of crowds. 

    Privid allows analysts to use their own deep neural networks that are commonplace for video analytics today. This gives analysts the flexibility to ask questions that the designers of Privid did not anticipate. Across a variety of videos and queries, Privid was accurate within 79 to 99 percent of a non-private system.

    “We’re at a stage right now where cameras are practically ubiquitous. If there’s a camera on every street corner, every place you go, and if someone could actually process all of those videos in aggregate, you can imagine that entity building a very precise timeline of when and where a person has gone,” says MIT CSAIL PhD student ​​Frank Cangialosi, the lead author on a paper about Privid. “People are already worried about location privacy with GPS — video data in aggregate could capture not only your location history, but also moods, behaviors, and more at each location.” 

    Privid introduces a new notion of “duration-based privacy,” which decouples the definition of privacy from its enforcement — with obfuscation, if your privacy goal is to protect all people, the enforcement mechanism needs to do some work to find the people to protect, which it may or may not do perfectly. With this mechanism, you don’t need to fully specify everything, and you’re not hiding more information than you need to. 

    Let’s say we have a video overlooking a street. Two analysts, Alice and Bob, both claim they want to count the number of people that pass by each hour, so they submit a video processing module and ask for a sum aggregation.

    The first analyst is the city planning department, which hopes to use this information to understand footfall patterns and plan sidewalks for the city. Their model counts people and outputs this count for each video chunk.

    The other analyst is malicious. They hope to identify every time “Charlie” passes by the camera. Their model only looks for Charlie’s face, and outputs a large number if Charlie is present (i.e., the “signal” they’re trying to extract), or zero otherwise. Their hope is that the sum will be non-zero if Charlie was present. 

    From Privid’s perspective, these two queries look identical. It’s hard to reliably determine what their models might be doing internally, or what the analyst hopes to use the data for. This is where the noise comes in. Privid executes both of the queries, and adds the same amount of noise for each. In the first case, because Alice was counting all people, this noise will only have a small impact on the result, but likely won’t impact the usefulness. 

    In the second case, since Bob was looking for a specific signal (Charlie was only visible for a few chunks), the noise is enough to prevent them from knowing if Charlie was there or not. If they see a non-zero result, it might be because Charlie was actually there, or because the model outputs “zero,” but the noise made it non-zero. Privid didn’t need to know anything about when or where Charlie appeared, the system just needed to know a rough upper bound on how long Charlie might appear for, which is easier to specify than figuring out the exact locations, which prior methods rely on. 

    The challenge is determining how much noise to add — Privid wants to add just enough to hide everyone, but not so much that it would be useless for analysts. Adding noise to the data and insisting on queries over time windows means that your result isn’t going to be as accurate as it could be, but the results are still useful while providing better privacy. 

    Cangialosi wrote the paper with Princeton PhD student Neil Agarwal, MIT CSAIL PhD student Venkat Arun, assistant professor at the University of Chicago Junchen Jiang, assistant professor at Rutgers University and former MIT CSAIL postdoc Srinivas Narayana, associate professor at Rutgers University Anand Sarwate, and assistant professor at Princeton University and Ravi Netravali SM ’15, PhD ’18. Cangialosi will present the paper at the USENIX Symposium on Networked Systems Design and Implementation Conference in April in Renton, Washington. 

    This work was partially supported by a Sloan Research Fellowship and National Science Foundation grants. More

  • in

    A universal system for decoding any type of data sent across a network

    Every piece of data that travels over the internet — from paragraphs in an email to 3D graphics in a virtual reality environment — can be altered by the noise it encounters along the way, such as electromagnetic interference from a microwave or Bluetooth device. The data are coded so that when they arrive at their destination, a decoding algorithm can undo the negative effects of that noise and retrieve the original data.

    Since the 1950s, most error-correcting codes and decoding algorithms have been designed together. Each code had a structure that corresponded with a particular, highly complex decoding algorithm, which often required the use of dedicated hardware.

    Researchers at MIT, Boston University, and Maynooth University in Ireland have now created the first silicon chip that is able to decode any code, regardless of its structure, with maximum accuracy, using a universal decoding algorithm called Guessing Random Additive Noise Decoding (GRAND). By eliminating the need for multiple, computationally complex decoders, GRAND enables increased efficiency that could have applications in augmented and virtual reality, gaming, 5G networks, and connected devices that rely on processing a high volume of data with minimal delay.

    The research at MIT is led by Muriel Médard, the Cecil H. and Ida Green Professor in the Department of Electrical Engineering and Computer Science, and was co-authored by Amit Solomon and Wei Ann, both graduate students at MIT; Rabia Tugce Yazicigil, assistant professor of electrical and computer engineering at Boston University; Arslan Riaz and Vaibhav Bansal, both graduate students at Boston University; Ken R. Duffy, director of the Hamilton Institute at the National University of Ireland at Maynooth; and Kevin Galligan, a Maynooth graduate student. The research will be presented at the European Solid-States Device Research and Circuits Conference next week.

    Focus on noise

    One way to think of these codes is as redundant hashes (in this case, a series of 1s and 0s) added to the end of the original data. The rules for the creation of that hash are stored in a specific codebook.

    As the encoded data travel over a network, they are affected by noise, or energy that disrupts the signal, which is often generated by other electronic devices. When that coded data and the noise that affected them arrive at their destination, the decoding algorithm consults its codebook and uses the structure of the hash to guess what the stored information is.

    Instead, GRAND works by guessing the noise that affected the message, and uses the noise pattern to deduce the original information. GRAND generates a series of noise sequences in the order they are likely to occur, subtracts them from the received data, and checks to see if the resulting codeword is in a codebook.

    While the noise appears random in nature, it has a probabilistic structure that allows the algorithm to guess what it might be.

    “In a way, it is similar to troubleshooting. If someone brings their car into the shop, the mechanic doesn’t start by mapping the entire car to blueprints. Instead, they start by asking, ‘What is the most likely thing to go wrong?’ Maybe it just needs gas. If that doesn’t work, what’s next? Maybe the battery is dead?” Médard says.

    Novel hardware

    The GRAND chip uses a three-tiered structure, starting with the simplest possible solutions in the first stage and working up to longer and more complex noise patterns in the two subsequent stages. Each stage operates independently, which increases the throughput of the system and saves power.

    The device is also designed to switch seamlessly between two codebooks. It contains two static random-access memory chips, one that can crack codewords, while the other loads a new codebook and then switches to decoding without any downtime.

    The researchers tested the GRAND chip and found it could effectively decode any moderate redundancy code up to 128 bits in length, with only about a microsecond of latency.

    Médard and her collaborators had previously demonstrated the success of the algorithm, but this new work showcases the effectiveness and efficiency of GRAND in hardware for the first time.

    Developing hardware for the novel decoding algorithm required the researchers to first toss aside their preconceived notions, Médard says.

    “We couldn’t go out and reuse things that had already been done. This was like a complete whiteboard. We had to really think about every single component from scratch. It was a journey of reconsideration. And I think when we do our next chip, there will be things with this first chip that we’ll realize we did out of habit or assumption that we can do better,” she says.

    A chip for the future

    Since GRAND only uses codebooks for verification, the chip not only works with legacy codes but could also be used with codes that haven’t even been introduced yet.

    In the lead-up to 5G implementation, regulators and communications companies struggled to find consensus as to which codes should be used in the new network. Regulators ultimately chose to use two types of traditional codes for 5G infrastructure in different situations. Using GRAND could eliminate the need for that rigid standardization in the future, Médard says.

    The GRAND chip could even open the field of coding to a wave of innovation.

    “For reasons I’m not quite sure of, people approach coding with awe, like it is black magic. The process is mathematically nasty, so people just use codes that already exist. I’m hoping this will recast the discussion so it is not so standards-oriented, enabling people to use codes that already exist and create new codes,” she says.

    Moving forward, Médard and her collaborators plan to tackle the problem of soft detection with a retooled version of the GRAND chip. In soft detection, the received data are less precise.

    They also plan to test the ability of GRAND to crack longer, more complex codes and adjust the structure of the silicon chip to improve its energy efficiency.

    The research was funded by the Battelle Memorial Institute and Science Foundation of Ireland. More

  • in

    Lincoln Laboratory convenes top network scientists for Graph Exploitation Symposium

    As the Covid-19 pandemic has shown, we live in a richly connected world, facilitating not only the efficient spread of a virus but also of information and influence. What can we learn by analyzing these connections? This is a core question of network science, a field of research that models interactions across physical, biological, social, and information systems to solve problems.

    The 2021 Graph Exploitation Symposium (GraphEx), hosted by MIT Lincoln Laboratory, brought together top network science researchers to share the latest advances and applications in the field.

    “We explore and identify how exploitation of graph data can offer key technology enablers to solve the most pressing problems our nation faces today,” says Edward Kao, a symposium organizer and technical staff in Lincoln Laboratory’s AI Software Architectures and Algorithms Group.

    The themes of the virtual event revolved around some of the year’s most relevant issues, such as analyzing disinformation on social media, modeling the pandemic’s spread, and using graph-based machine learning models to speed drug design.

    “The special sessions on influence operations and Covid-19 at GraphEx reflect the relevance of network and graph-based analysis for understanding the phenomenology of these complicated and impactful aspects of modern-day life, and also may suggest paths forward as we learn more and more about graph manipulation,” says William Streilein, who co-chaired the event with Rajmonda Caceres, both of Lincoln Laboratory.

    Social networks

    Several presentations at the symposium focused on the role of network science in analyzing influence operations (IO), or organized attempts by state and/or non-state actors to spread disinformation narratives.  

    Lincoln Laboratory researchers have been developing tools to classify and quantify the influence of social media accounts that are likely IO accounts, such as those willfully spreading false Covid-19 treatments to vulnerable populations.

    “A cluster of IO accounts acts as an echo chamber to amplify the narrative. The vulnerable population is then engaging in these narratives,” says Erika Mackin, a researcher developing the tool, called RIO or Reconnaissance of Influence Operations.

    To classify IO accounts, Mackin and her team trained an algorithm to detect probable IO accounts in Twitter networks based on a specific hashtag or narrative. One example they studied was #MacronLeaks, a disinformation campaign targeting Emmanuel Macron during the 2017 French presidential election. The algorithm is trained to label accounts within this network as being IO on the basis of several factors, such as the number of interactions with foreign news accounts, the number of links tweeted, or number of languages used. Their model then uses a statistical approach to score an account’s level of influence in spreading the narrative within that network.

    The team has found that their classifier outperforms existing detectors of IO accounts, because it can identify both bot accounts and human-operated ones. They’ve also discovered that IO accounts that pushed the 2017 French election disinformation narrative largely overlap with accounts influentially spreading Covid-19 pandemic disinformation today. “This suggests that these accounts will continue to transition to disinformation narratives,” Mackin says.

    Pandemic modeling

    Throughout the Covid-19 pandemic, leaders have been looking to epidemiological models, which predict how disease will spread, to make sound decisions. Alessandro Vespignani, director of the Network Science Institute at Northeastern University, has been leading Covid-19 modeling efforts in the United States, and shared a keynote on this work at the symposium.

    Besides taking into account the biological facts of the disease, such as its incubation period, Vespignani’s model is especially powerful in its inclusion of community behavior. To run realistic simulations of disease spread, he develops “synthetic populations” that are built by using publicly available, highly detailed datasets about U.S. households. “We create a population that is not real, but is statistically real, and generate a map of the interactions of those individuals,” he says. This information feeds back into the model to predict the spread of the disease. 

    Today, Vespignani is considering how to integrate genomic analysis of the virus into this kind of population modeling in order to understand how variants are spreading. “It’s still a work in progress that is extremely interesting,” he says, adding that this approach has been useful in modeling the dispersal of the Delta variant of SARS-CoV-2. 

    As researchers model the virus’ spread, Lucas Laird at Lincoln Laboratory is considering how network science can be used to design effective control strategies. He and his team are developing a model for customizing strategies for different geographic regions. The effort was spurred by the differences in Covid-19 spread across U.S. communities, and what the researchers found to be a gap in intervention modeling to address those differences.

    As examples, they applied their planning algorithm to three counties in Florida, Massachusetts, and California. Taking into account the characteristics of a specific geographic center, such as the number of susceptible individuals and number of infections there, their planner institutes different strategies in those communities throughout the outbreak duration.

    “Our approach eradicates disease in 100 days, but it also is able to do it with much more targeted interventions than any of the global interventions. In other words, you don’t have to shut down a full country.” Laird adds that their planner offers a “sandbox environment” for exploring intervention strategies in the future.

    Machine learning with graphs

    Graph-based machine learning is receiving increasing attention for its potential to “learn” the complex relationships between graphical data, and thus extract new insights or predictions about these relationships. This interest has given rise to a new class of algorithms called graph neural networks. Today, graph neural networks are being applied in areas such as drug discovery and material design, with promising results.

    “We can now apply deep learning much more broadly, not only to medical images and biological sequences. This creates new opportunities in data-rich biology and medicine,” says Marinka Zitnik, an assistant professor at Harvard University who presented her research at GraphEx.

    Zitnik’s research focuses on the rich networks of interactions between proteins, drugs, disease, and patients, at the scale of billions of interactions. One application of this research is discovering drugs to treat diseases with no or few approved drug treatments, such as for Covid-19. In April, Zitnik’s team published a paper on their research that used graph neural networks to rank 6,340 drugs for their expected efficacy against SARS-CoV-2, identifying four that could be repurposed to treat Covid-19.

    At Lincoln Laboratory, researchers are similarly applying graph neural networks to the challenge of designing advanced materials, such as those that can withstand extreme radiation or capture carbon dioxide. Like the process of designing drugs, the trial-and-error approach to materials design is time-consuming and costly. The laboratory’s team is developing graph neural networks that can learn relationships between a material’s crystalline structure and its properties. This network can then be used to predict a variety of properties from any new crystal structure, greatly speeding up the process of screening materials with desired properties for specific applications.

    “Graph representation learning has emerged as a rich and thriving research area for incorporating inductive bias and structured priors during the machine learning process, with broad applications such as drug design, accelerated scientific discovery, and personalized recommendation systems,” Caceres says. 

    A vibrant community

    Lincoln Laboratory has hosted the GraphEx Symposium annually since 2010, with the exception of last year’s cancellation due to Covid-19. “One key takeaway is that despite the postponement from last year and the need to be virtual, the GraphEx community is as vibrant and active as it’s ever been,” Streilein says. “Network-based analysis continues to expand its reach and is applied to ever-more important areas of science, society, and defense with increasing impact.”

    In addition to those from Lincoln Laboratory, technical committee members and co-chairs of the GraphEx Symposium included researchers from Harvard University, Arizona State University, Stanford University, Smith College, Duke University, the U.S. Department of Defense, and Sandia National Laboratories. More