More stories

  • in

    A community collaboration for progress

    While decades of discriminatory policies and practices continue to fuel the affordable housing crisis in the United States, less than three miles from the MIT campus exists a beacon of innovation and community empowerment.“We are very proud to continue MIT’s long-standing partnership with Camfield Estates,” says Catherine D’Ignazio, associate professor of urban science and planning. “Camfield has long been an incubator of creative ideas focused on uplifting their community.”D’Ignazio co-leads a research team focused on housing as part of the MIT Initiative for Combatting Systemic Racism (ICSR) led by the Institute for Data, Systems, and Society (IDSS). The group researches the uneven impacts of data, AI, and algorithmic systems on housing in the United States, as well as ways that these same tools could be used to address racial disparities. The Camfield Tenant Association is a research partner providing insight into the issue and relevant data, as well as opportunities for MIT researchers to solve real challenges and make a local impact.

    Play video

    MIT Initiative on Combatting Systemic Racism – Housing Video: MIT Sociotechnical Systems Research Center

    Formerly known as “Camfield Gardens,” the 102-unit housing development in Roxbury, Massachusetts, was among the pioneering sites in the 1990s to engage in the U.S. Department of Housing and Urban Development’s (HUD) program aimed at revitalizing disrepaired public housing across the country. This also served as the catalyst for their collaboration with MIT, which began in the early 2000s.“The program gave Camfield the money and energy to tear everything on the site down and build it back up anew, in addition to allowing them to buy the property from the city for $1 and take full ownership of the site,” explains Nolen Scruggs, a master’s student in the MIT Department of Urban Studies and Planning (DUSP) who has worked with Camfield over the past few years as part of ICSR’s housing vertical team. “At the time, MIT graduate students helped start a ‘digital divide’ bridge gap program that later evolved into the tech lab that is still there today, continuing to enable residents to learn computer skills and things they might need to get a hand up.”Because of that early collaboration, Camfield Estates reached out to MIT in 2022 to start a new chapter of collaboration with students. Scruggs spent a few months building a team of students from Harvard University, Wentworth Institute of Technology, and MIT to work on a housing design project meant to help the Camfield Tenants Association prepare for their looming redevelopment needs.“One of the things that’s been really important to the work of the ICSR housing vertical is historical context,” says Peko Hosoi, a professor of mechanical engineering and mathematics who co-leads the ICSR Housing vertical with D’Ignazio. “We didn’t get to the place we are right now with housing in an instant. There’s a lot of things that have happened in the U.S. like redlining, predatory lending, and different ways of investing in infrastructure that add important contexts.”“Quantitative methods are a great way to look across macroscale phenomena, but our team recognizes and values qualitative and participatory methods as well, to get a more grounded picture of what community needs really are and what kinds of innovations can bubble up from communities themselves,” D’Ignazio adds. “This is where the partnership with Camfield Estates comes in, which Nolen has been leading.”Finding creative solutionsBefore coming to MIT, Scruggs, a proud New Yorker, worked on housing issues while interning for his local congressperson, House Minority Leader Hakeem Jeffries. He called residents to discuss their housing concerns, learning about the affordability issues that were making it hard for lower- and middle-income families to find places to live.“Having this behind-the-scenes experience set the stage for my involvement in Camfield,” Scruggs says, recalling his start at Camfield conducting participatory action research, meeting with Camfield seniors to discuss and capture their concerns.Scruggs says the biggest issue they have been trying to tackle with Camfield is twofold: creating more space for new residents while also helping current residents achieve their end goal of homeownership.“This speaks to some of the larger issues our group at ICSR is working on in terms of housing affordability,” he says. “With Camfield it is looking at where can people with Section 8 vouchers move, what limits do they have, and what barriers do they face — whether it’s through big tech systems, or individual preferences coming from landlords.”Scruggs adds, “The discrimination those people face while trying to find a house, lock it down, talk to a bank, etc. — it can be very, very difficult and discouraging.” Scruggs says one attempt to combat this issue would be through hiring a caseworker to assist people through the process — one of many ideas that came from a Camfield collaboration with the FHLBank Affordable Housing Development Competition.As part of the competition, the goal for Scruggs’s team was to help Camfield tenants understand all of their options and their potential trade-offs, so that in the end they can make informed decisions about what they want to do with their space.“So often redevelopment schemes don’t ensure people can come back.” Scruggs says. “There are specific design proposals being made to ensure that the structure of people’s lifestyles wouldn’t be disrupted.”Scruggs says that tentative recommendations discussed with tenant association president Paulette Ford include replacing the community center with a high-rise development that would increase the number of units available.“I think they are thinking really creatively about their options,” Hosoi says. “Paulette Ford, and her mother before her, have always referred to Camfield as a ‘hand up,’ with the idea that people come to Camfield to live until they can afford a home of their own locally.”Scruggs’s other partnership with Camfield involves working with MIT undergraduate Amelie Nagle as part of the Undergraduate Research Opportunities Program to create programing that will teach computer design and coding to Camfield community kids — in the very TechLab that goes back to MIT and Camfield’s first collaboration.“Nolen has a real commitment to community-led knowledge production,” says D’Ignazio. “It has been a pleasure to work with him and see how he takes all his urban planning skills (GIS, mapping, urban design, photography, and more) to work in respectful ways that foreground community innovation.”She adds: “We are hopeful that the process will yield some high-quality architectural and planning ideas, and help Camfield take the next step towards realizing their innovative vision.” More

  • in

    Janabel Xia: Algorithms, dance rhythms, and the drive to succeed

    Senior math major Janabel Xia is a study of a person in constant motion.When she isn’t sorting algorithms and improving traffic control systems for driverless vehicles, she’s dancing as a member of at least four dance clubs. She’s joined several social justice organizations, worked on cryptography and web authentication technology, and created a polling app that allows users to vote anonymously.In her final semester, she’s putting the pedal to the metal, with a green light to lessen the carbon footprint of urban transportation by using sensors at traffic light intersections.First stepsGrowing up in Lexington, Massachusetts, Janabel has been competing on math teams since elementary school. On her math team, which met early mornings before the start of school, she discovered a love of problem-solving that challenged her more than her classroom “plug-and-chug exercises.”At Lexington High School, she was math team captain, a two-time Math Olympiad attendee, and a silver medalist for Team USA at the European Girls’ Mathematical Olympiad.As a math major, she studies combinatorics and theoretical computer science, including theoretical and applied cryptography. In her sophomore year, she was a researcher in the Cryptography and Information Security Group at the MIT Computer Science and Artificial Intelligence Laboratory, where she conducted cryptanalysis research under Professor Vinod Vaikuntanathan.Part of her interests in cryptography stem from the beauty of the underlying mathematics itself — the field feels like clever engineering with mathematical tools. But another part of her interest in cryptography stems from its political dimensions, including its potential to fundamentally change existing power structures and governance. Xia and students at the University of California at Berkeley and Stanford University created zkPoll, a private polling app written with the Circom programming language, that allows users to create polls for specific sets of people, while generating a zero-knowledge proof that keeps personal information hidden to decrease negative voting influences from public perception.Her participation in the PKG Center’s Active Community Engagement Freshman Pre-Orientation Program introduced her to local community organizations focusing on food security, housing for formerly incarcerated individuals, and access to health care. She is also part of Reading for Revolution, a student book club that discusses race, class, and working-class movements within MIT and the Greater Boston area.Xia’s educational journey led to her ongoing pursuit of combining mathematical and computational methods in areas adjacent to urban planning.  “When I realized how much planning was concerned with social justice as it was concerned with design, I became more attracted to the field.”Going on autopilotShe took classes with the Department of Urban Studies and Planning and is currently working on an Undergraduate Research Opportunities Program (UROP) project with Professor Cathy Wu in the Institute for Data, Systems, and Society.Recent work on eco-driving by Wu and doctoral student Vindula Jayawardana investigated semi-autonomous vehicles that communicate with sensors localized at traffic intersections, which in theory could reduce carbon emissions by up to 21 percent.Xia aims to optimize the implementation scheme for these sensors at traffic intersections, considering a graded scheme where perhaps only 20 percent of all sensors are initially installed, and more sensors get added in waves. She wants to maximize the emission reduction rates at each step of the process, as well as ensure there is no unnecessary installation and de-installation of such sensors.  Dance numbersMeanwhile, Xia has been a member of MIT’s Fixation, Ridonkulous, and MissBehavior groups, and as a traditional Chinese dance choreographer for the MIT Asian Dance Team. A dancer since she was 3, Xia started with Chinese traditional dance, and later added ballet and jazz. Because she is as much of a dancer as a researcher, she has figured out how to make her schedule work.“Production weeks are always madness, with dancers running straight from class to dress rehearsals and shows all evening and coming back early next morning to take down lights and roll up marley [material that covers the stage floor],” she says. “As busy as it keeps me, I couldn’t have survived MIT without dance. I love the discipline, creativity, and most importantly the teamwork that dance demands of us. I really love the dance community here with my whole heart. These friends have inspired me and given me the love to power me through MIT.”Xia lives with her fellow Dance Team members at the off-campus Women’s Independent Living Group (WILG).  “I really value WILG’s culture of independence, both in lifestyle — cooking, cleaning up after yourself, managing house facilities, etc. — and thought — questioning norms, staying away from status games, finding new passions.”In addition to her UROP, she’s wrapping up some graduation requirements, finishing up a research paper on sorting algorithms from her summer at the University of Minnesota Duluth Research Experience for Undergraduates in combinatorics, and deciding between PhD programs in math and computer science.  “My biggest goal right now is to figure out how to combine my interests in mathematics and urban studies, and more broadly connect technical perspectives with human-centered work in a way that feels right to me,” she says.“Overall, MIT has given me so many avenues to explore that I would have never thought about before coming here, for which I’m infinitely grateful. Every time I find something new, it’s hard for me not to find it cool. There’s just so much out there to learn about. While it can feel overwhelming at times, I hope to continue that learning and exploration for the rest of my life.” More

  • in

    Q&A: Exploring ethnic dynamics and climate change in Africa

    Evan Lieberman is the Total Professor of Political Science and Contemporary Africa at MIT, and is also director of the Center for International Studies. During a semester-long sabbatical, he’s currently based at the African Climate and Development Initiative at the University of Cape Town.In this Q&A, Lieberman discusses several climate-related research projects he’s pursuing in South Africa and surrounding countries. This is part of an ongoing series exploring how the School of Humanities, Arts, and Social Sciences is addressing the climate crisis.Q: South Africa is a nation whose political and economic development you have long studied and written about. Do you see this visit as an extension of the kind of research you have been pursuing, or a departure from it?A: Much of my previous work has been animated by the question of understanding the causes and consequences of group-based disparities, whether due to AIDS or Covid. These are problems that know no geographic boundaries, and where ethnic and racial minorities are often hardest hit. Climate change is an analogous problem, with these minority populations living in places where they are most vulnerable, in heat islands in cities, and in coastal areas where they are not protected. The reality is they might get hit much harder by longer-term trends and immediate shocks.In one line of research, I seek to understand how people in different African countries, in different ethnic groups, perceive the problems of climate change and their governments’ response to it. There are ethnic divisions of labor in terms of what people do — whether they are farmers or pastoralists, or live in cities. So some ethnic groups are simply more affected by drought or extreme weather than others, and this can be a basis for conflict, especially when competing for often limited government resources.In this area, just like in my previous research, learning what shapes ordinary citizen perspectives is really important, because these views affect people’s everyday practices, and the extent to which they support certain kinds of policies and investments their government makes in response to climate-related challenges. But I will also try to learn more about the perspectives of policymakers and various development partners who seek to balance climate-related challenges against a host of other problems and priorities.Q: You recently published “Until We Have Won Our Liberty,” which examines the difficult transition of South Africa from apartheid to a democratic government, scrutinizing in particular whether the quality of life for citizens has improved in terms of housing, employment, discrimination, and ethnic conflicts. How do climate change-linked issues fit into your scholarship?A: I never saw myself as a climate researcher, but a number of years ago, heavily influenced by what I was learning at MIT, I began to recognize more and more how important the issue of climate change is. And I realized there were lots of ways in which the climate problem resonated with other kinds of problems I had tackled in earlier parts of my work.There was once a time when climate and the environment was the purview primarily of white progressives: the “tree huggers.” And that’s really changed in recent decades as it has become evident that the people who’ve been most affected by the climate emergency are ethnic and racial minorities. We saw with Hurricane Katrina and other places [that] if you are Black, you’re more likely to live in a vulnerable area and to just generally experience more environmental harms, from pollution and emissions, leaving these communities much less resilient than white communities. Government has largely not addressed this inequity. When you look at American survey data in terms of who’s concerned about climate change, Black Americans, Hispanic Americans, and Asian Americans are more unified in their worries than are white Americans.There are analogous problems in Africa, my career research focus. Governments there have long responded in different ways to different ethnic groups. The research I am starting looks at the extent to which there are disparities in how governments try to solve climate-related challenges.Q: It’s difficult enough in the United States taking the measure of different groups’ perceptions of the impact of climate change and government’s effectiveness in contending with it. How do you go about this in Africa?A: Surprisingly, there’s only been a little bit of work done so far on how ordinary African citizens, who are ostensibly being hit the hardest in the world by the climate emergency, are thinking about this problem. Climate change has not been politicized there in a very big way. In fact, only 50 percent of Africans in one poll had heard of the term.In one of my new projects, with political science faculty colleague Devin Caughey and political science doctoral student Preston Johnston, we are analyzing social and climate survey data [generated by the Afrobarometer research network] from over 30 African countries to understand within and across countries the ways in which ethnic identities structure people’s perception of the climate crisis, and their beliefs in what government ought to be doing. In largely agricultural African societies, people routinely experience drought, extreme rain, and heat. They also lack the infrastructure that can shield them from the intense variability of weather patterns. But we’re adding a lens, which is looking at sources of inequality, especially ethnic differences.I will also be investigating specific sectors. Africa is a continent where in most places people cannot take for granted universal, piped access to clean water. In Cape Town, several years ago, the combination of failure to replace infrastructure and lack of rain caused such extreme conditions that one of the world’s most important cities almost ran out of water.While these studies are in progress, it is clear that in many countries, there are substantively large differences in perceptions of the severity of climate change, and attitudes about who should be doing what, and who’s capable of doing what. In several countries, both perceptions and policy preferences are differentiated along ethnic lines, more so than with respect to generational or class differences within societies.This is interesting as a phenomenon, but substantively, I think it’s important in that it may provide the basis for how politicians and government actors decide to move on allocating resources and implementing climate-protection policies. We see this kind of political calculation in the U.S. and we shouldn’t be surprised that it happens in Africa as well.That’s ultimately one of the challenges from the perch of MIT, where we’re really interested in understanding climate change, and creating technological tools and policies for mitigating the problem or adapting to it. The reality is frustrating. The political world — those who make decisions about whether to acknowledge the problem and whether to implement resources in the best technical way — are playing a whole other game. That game is about rewarding key supporters and being reelected.Q: So how do you go from measuring perceptions and beliefs among citizens about climate change and government responsiveness to those problems, to policies and actions that might actually reduce disparities in the way climate-vulnerable African groups receive support?A: Some of the work I have been doing involves understanding what local and national governments across Africa are actually doing to address these problems. We will have to drill down into government budgets to determine the actual resources devoted to addressing a challenge, what sorts of practices the government follows, and the political ramifications for governments that act aggressively versus those that don’t. With the Cape Town water crisis, for example, the government dramatically changed residents’ water usage through naming and shaming, and transformed institutional practices of water collection. They made it through a major drought by using much less water, and doing it with greater energy efficiency. Through the government’s strong policy and implementation, and citizens’ active responses, an entire city, with all its disparate groups, gained resilience. Maybe we can highlight creative solutions to major climate-related problems and use them as prods to push more effective policies and solutions in other places.In the MIT Global Diversity Lab, along with political science faculty colleague Volha Charnysh, political science doctoral student Jared Kalow, and Institute for Data, Systems and Society doctoral student Erin Walk, we are exploring American perspectives on climate-related foreign aid, asking survey respondents whether the U.S. should be giving more to people in the global South who didn’t cause the problems of climate change but have to suffer the externalities. We are particularly interested in whether people’s desire to help vulnerable communities rests on the racial or national identity of those communities.From my new seat as director of the Center for International Studies (CIS), I hope to do more and more to connect social science findings to relevant policymakers, whether in the U.S. or in other places. CIS is making climate one of our thematic priority areas, directing hundreds of thousands of dollars for MIT faculty to spark climate collaborations with researchers worldwide through the Global Seed Fund program. COP 28 (the U.N. Climate Change Conference), which I attended in December in Dubai, really drove home the importance of people coming together from around the world to exchange ideas and form networks. It was unbelievably large, with 85,000 people. But so many of us shared the belief that we are not doing enough. We need enforceable global solutions and innovation. We need ways of financing. We need to provide opportunities for journalists to broadcast the importance of this problem. And we need to understand the incentives that different actors have and what sorts of messages and strategies will resonate with them, and inspire those who have resources to be more generous. More

  • in

    Exploring the mysterious alphabet of sperm whales

    The allure of whales has stoked human consciousness for millennia, casting these ocean giants as enigmatic residents of the deep seas. From the biblical Leviathan to Herman Melville’s formidable Moby Dick, whales have been central to mythologies and folklore. And while cetology, or whale science, has improved our knowledge of these marine mammals in the past century in particular, studying whales has remained a formidable a challenge.Now, thanks to machine learning, we’re a little closer to understanding these gentle giants. Researchers from the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) and Project CETI (Cetacean Translation Initiative) recently used algorithms to decode the “sperm whale phonetic alphabet,” revealing sophisticated structures in sperm whale communication akin to human phonetics and communication systems in other animal species. In a new open-access study published in Nature Communications, the research shows that sperm whales codas, or short bursts of clicks that they use to communicate, vary significantly in structure depending on the conversational context, revealing a communication system far more intricate than previously understood. 

    Play video

    The Secret Language of Sperm Whales, DecodedVideo: MIT CSAIL

    Nine thousand codas, collected from Eastern Caribbean sperm whale families observed by the Dominica Sperm Whale Project, proved an instrumental starting point in uncovering the creatures’ complex communication system. Alongside the data gold mine, the team used a mix of algorithms for pattern recognition and classification, as well as on-body recording equipment. It turned out that sperm whale communications were indeed not random or simplistic, but rather structured in a complex, combinatorial manner. The researchers identified something of a “sperm whale phonetic alphabet,” where various elements that researchers call  “rhythm,” “tempo,” “rubato,” and “ornamentation” interplay to form a vast array of distinguishable codas. For example, the whales would systematically modulate certain aspects of their codas based on the conversational context, such as smoothly varying the duration of the calls — rubato — or adding extra ornamental clicks. But even more remarkably, they found that the basic building blocks of these codas could be combined in a combinatorial fashion, allowing the whales to construct a vast repertoire of distinct vocalizations.The experiments were conducted using acoustic bio-logging tags (specifically something called “D-tags”) deployed on whales from the Eastern Caribbean clan. These tags captured the intricate details of the whales’ vocal patterns. By developing new visualization and data analysis techniques, the CSAIL researchers found that individual sperm whales could emit various coda patterns in long exchanges, not just repeats of the same coda. These patterns, they say, are nuanced, and include fine-grained variations that other whales also produce and recognize.“We are venturing into the unknown, to decipher the mysteries of sperm whale communication without any pre-existing ground truth data,” says Daniela Rus, CSAIL director and professor of electrical engineering and computer science (EECS) at MIT. “Using machine learning is important for identifying the features of their communications and predicting what they say next. Our findings indicate the presence of structured information content and also challenges the prevailing belief among many linguists that complex communication is unique to humans. This is a step toward showing that other species have levels of communication complexity that have not been identified so far, deeply connected to behavior. Our next steps aim to decipher the meaning behind these communications and explore the societal-level correlations between what is being said and group actions.”Whaling aroundSperm whales have the largest brains among all known animals. This is accompanied by very complex social behaviors between families and cultural groups, necessitating strong communication for coordination, especially in pressurized environments like deep sea hunting.Whales owe much to Roger Payne, former Project CETI advisor, whale biologist, conservationist, and MacArthur Fellow who was a major figure in elucidating their musical careers. In the noted 1971 Science article “Songs of Humpback Whales,” Payne documented how whales can sing. His work later catalyzed the “Save the Whales” movement, a successful and timely conservation initiative.“Roger’s research highlights the impact science can have on society. His finding that whales sing led to the marine mammal protection act and helped save several whale species from extinction. This interdisciplinary research now brings us one step closer to knowing what sperm whales are saying,” says David Gruber, lead and founder of Project CETI and distinguished professor of biology at the City University of New York.Today, CETI’s upcoming research aims to discern whether elements like rhythm, tempo, ornamentation, and rubato carry specific communicative intents, potentially providing insights into the “duality of patterning” — a linguistic phenomenon where simple elements combine to convey complex meanings previously thought unique to human language.Aliens among us“One of the intriguing aspects of our research is that it parallels the hypothetical scenario of contacting alien species. It’s about understanding a species with a completely different environment and communication protocols, where their interactions are distinctly different from human norms,” says Pratyusha Sharma, an MIT PhD student in EECS, CSAIL affiliate, and the study’s lead author. “We’re exploring how to interpret the basic units of meaning in their communication. This isn’t just about teaching animals a subset of human language, but decoding a naturally evolved communication system within their unique biological and environmental constraints. Essentially, our work could lay the groundwork for deciphering how an ‘alien civilization’ might communicate, providing insights into creating algorithms or systems to understand entirely unfamiliar forms of communication.”“Many animal species have repertoires of several distinct signals, but we are only beginning to uncover the extent to which they combine these signals to create new messages,” says Robert Seyfarth, a University of Pennsylvania professor emeritus of psychology who was not involved in the research. “Scientists are particularly interested in whether signal combinations vary according to the social or ecological context in which they are given, and the extent to which signal combinations follow discernible ‘rules’ that are recognized by listeners. The problem is particularly challenging in the case of marine mammals, because scientists usually cannot see their subjects or identify in complete detail the context of communication. Nonetheless, this paper offers new, tantalizing details of call combinations and the rules that underlie them in sperm whales.”Joining Sharma, Rus, and Gruber are two others from MIT, both CSAIL principal investigators and professors in EECS: Jacob Andreas and Antonio Torralba. They join Shane Gero, biology lead at CETI, founder of the Dominica Sperm Whale Project, and scientist-in residence at Carleton University. The paper was funded by Project CETI via Dalio Philanthropies and Ocean X, Sea Grape Foundation, Rosamund Zander/Hansjorg Wyss, and Chris Anderson/Jacqueline Novogratz through The Audacious Project: a collaborative funding initiative housed at TED, with further support from the J.H. and E.V. Wade Fund at MIT. More

  • in

    This tiny chip can safeguard user data while enabling efficient computing on a smartphone

    Health-monitoring apps can help people manage chronic diseases or stay on track with fitness goals, using nothing more than a smartphone. However, these apps can be slow and energy-inefficient because the vast machine-learning models that power them must be shuttled between a smartphone and a central memory server.

    Engineers often speed things up using hardware that reduces the need to move so much data back and forth. While these machine-learning accelerators can streamline computation, they are susceptible to attackers who can steal secret information.

    To reduce this vulnerability, researchers from MIT and the MIT-IBM Watson AI Lab created a machine-learning accelerator that is resistant to the two most common types of attacks. Their chip can keep a user’s health records, financial information, or other sensitive data private while still enabling huge AI models to run efficiently on devices.

    The team developed several optimizations that enable strong security while only slightly slowing the device. Moreover, the added security does not impact the accuracy of computations. This machine-learning accelerator could be particularly beneficial for demanding AI applications like augmented and virtual reality or autonomous driving.

    While implementing the chip would make a device slightly more expensive and less energy-efficient, that is sometimes a worthwhile price to pay for security, says lead author Maitreyi Ashok, an electrical engineering and computer science (EECS) graduate student at MIT.

    “It is important to design with security in mind from the ground up. If you are trying to add even a minimal amount of security after a system has been designed, it is prohibitively expensive. We were able to effectively balance a lot of these tradeoffs during the design phase,” says Ashok.

    Her co-authors include Saurav Maji, an EECS graduate student; Xin Zhang and John Cohn of the MIT-IBM Watson AI Lab; and senior author Anantha Chandrakasan, MIT’s chief innovation and strategy officer, dean of the School of Engineering, and the Vannevar Bush Professor of EECS. The research will be presented at the IEEE Custom Integrated Circuits Conference.

    Side-channel susceptibility

    The researchers targeted a type of machine-learning accelerator called digital in-memory compute. A digital IMC chip performs computations inside a device’s memory, where pieces of a machine-learning model are stored after being moved over from a central server.

    The entire model is too big to store on the device, but by breaking it into pieces and reusing those pieces as much as possible, IMC chips reduce the amount of data that must be moved back and forth.

    But IMC chips can be susceptible to hackers. In a side-channel attack, a hacker monitors the chip’s power consumption and uses statistical techniques to reverse-engineer data as the chip computes. In a bus-probing attack, the hacker can steal bits of the model and dataset by probing the communication between the accelerator and the off-chip memory.

    Digital IMC speeds computation by performing millions of operations at once, but this complexity makes it tough to prevent attacks using traditional security measures, Ashok says.

    She and her collaborators took a three-pronged approach to blocking side-channel and bus-probing attacks.

    First, they employed a security measure where data in the IMC are split into random pieces. For instance, a bit zero might be split into three bits that still equal zero after a logical operation. The IMC never computes with all pieces in the same operation, so a side-channel attack could never reconstruct the real information.

    But for this technique to work, random bits must be added to split the data. Because digital IMC performs millions of operations at once, generating so many random bits would involve too much computing. For their chip, the researchers found a way to simplify computations, making it easier to effectively split data while eliminating the need for random bits.

    Second, they prevented bus-probing attacks using a lightweight cipher that encrypts the model stored in off-chip memory. This lightweight cipher only requires simple computations. In addition, they only decrypted the pieces of the model stored on the chip when necessary.

    Third, to improve security, they generated the key that decrypts the cipher directly on the chip, rather than moving it back and forth with the model. They generated this unique key from random variations in the chip that are introduced during manufacturing, using what is known as a physically unclonable function.

    “Maybe one wire is going to be a little bit thicker than another. We can use these variations to get zeros and ones out of a circuit. For every chip, we can get a random key that should be consistent because these random properties shouldn’t change significantly over time,” Ashok explains.

    They reused the memory cells on the chip, leveraging the imperfections in these cells to generate the key. This requires less computation than generating a key from scratch.

    “As security has become a critical issue in the design of edge devices, there is a need to develop a complete system stack focusing on secure operation. This work focuses on security for machine-learning workloads and describes a digital processor that uses cross-cutting optimization. It incorporates encrypted data access between memory and processor, approaches to preventing side-channel attacks using randomization, and exploiting variability to generate unique codes. Such designs are going to be critical in future mobile devices,” says Chandrakasan.

    Safety testing

    To test their chip, the researchers took on the role of hackers and tried to steal secret information using side-channel and bus-probing attacks.

    Even after making millions of attempts, they couldn’t reconstruct any real information or extract pieces of the model or dataset. The cipher also remained unbreakable. By contrast, it took only about 5,000 samples to steal information from an unprotected chip.

    The addition of security did reduce the energy efficiency of the accelerator, and it also required a larger chip area, which would make it more expensive to fabricate.

    The team is planning to explore methods that could reduce the energy consumption and size of their chip in the future, which would make it easier to implement at scale.

    “As it becomes too expensive, it becomes harder to convince someone that security is critical. Future work could explore these tradeoffs. Maybe we could make it a little less secure but easier to implement and less expensive,” Ashok says.

    The research is funded, in part, by the MIT-IBM Watson AI Lab, the National Science Foundation, and a Mathworks Engineering Fellowship. More

  • in

    Growing our donated organ supply

    For those in need of one, an organ transplant is a matter of life and death. 

    Every year, the medical procedure gives thousands of people with advanced or end-stage diseases extended life. This “second chance” is heavily dependent on the availability, compatibility, and proximity of a precious resource that can’t be simply bought, grown, or manufactured — at least not yet.

    Instead, organs must be given — cut from one body and implanted into another. And because living organ donation is only viable in certain cases, many organs are only available for donation after the donor’s death.

    Unsurprisingly, the logistical and ethical complexity of distributing a limited number of transplant organs to a growing wait list of patients has received much attention. There’s an important part of the process that has received less focus, however, and which may hold significant untapped potential: organ procurement itself.

    “If you have a donated organ, who should you give it to? This question has been extensively studied in operations research, economics, and even applied computer science,” says Hammaad Adam, a graduate student in the Social and Engineering Systems (SES) doctoral program at the MIT Institute for Data, Systems, and Society (IDSS). “But there’s been a lot less research on where that organ comes from in the first place.”

    In the United States, nonprofits called organ procurement organizations, or OPOs, are responsible for finding and evaluating potential donors, interacting with grieving families and hospital administrations, and recovering and delivering organs — all while following the federal laws that serve as both their mandate and guardrails. Recent studies estimate that obstacles and inefficiencies lead to thousands of organs going uncollected every year, even as the demand for transplants continues to grow.

    “There’s been little transparent data on organ procurement,” argues Adam. Working with MIT computer science professors Marzyeh Ghassemi and Ashia Wilson, and in collaboration with stakeholders in organ procurement, Adam led a project to create a dataset called ORCHID: Organ Retrieval and Collection of Health Information for Donation. ORCHID contains a decade of clinical, financial, and administrative data from six OPOs.

    “Our goal is for the ORCHID database to have an impact in how organ procurement is understood, internally and externally,” says Ghassemi.

    Efficiency and equity 

    It was looking to make an impact that drew Adam to SES and MIT. With a background in applied math and experience in strategy consulting, solving problems with technical components sits right in his wheelhouse.

    “I really missed challenging technical problems from a statistics and machine learning standpoint,” he says of his time in consulting. “So I went back and got a master’s in data science, and over the course of my master’s got involved in a bunch of academic research projects in a few different fields, including biology, management science, and public policy. What I enjoyed most were some of the more social science-focused projects that had immediate impact.”

    As a grad student in SES, Adam’s research focuses on using statistical tools to uncover health-care inequities, and developing machine learning approaches to address them. “Part of my dissertation research focuses on building tools that can improve equity in clinical trials and other randomized experiments,” he explains.

    One recent example of Adam’s work: developing a novel method to stop clinical trials early if the treatment has an unintended harmful effect for a minority group of participants. “I’ve also been thinking about ways to increase minority representation in clinical trials through improved patient recruitment,” he adds.

    Racial inequities in health care extend into organ transplantation, where a majority of wait-listed patients are not white — far in excess of their demographic groups’ proportion to the overall population. There are fewer organ donations from many of these communities, due to various obstacles in need of better understanding if they are to be overcome. 

    “My work in organ transplantation began on the allocation side,” explains Adam. “In work under review, we examined the role of race in the acceptance of heart, liver, and lung transplant offers by physicians on behalf of their patients. We found that Black race of the patient was associated with significantly lower odds of organ offer acceptance — in other words, transplant doctors seemed more likely to turn down organs offered to Black patients. This trend may have multiple explanations, but it is nevertheless concerning.”

    Adam’s research has also found that donor-candidate race match was associated with significantly higher odds of offer acceptance, an association that Adam says “highlights the importance of organ donation from racial minority communities, and has motivated our work on equitable organ procurement.”

    Working with Ghassemi through the IDSS Initiative on Combatting Systemic Racism, Adam was introduced to OPO stakeholders looking to collaborate. “It’s this opportunity to impact not only health-care efficiency, but also health-care equity, that really got me interested in this research,” says Adam.

    Play video

    MIT Initiative on Combatting Systemic Racism – HealthcareVideo: IDSS

    Making an impact

    Creating a database like ORCHID means solving problems in multiple domains, from the technical to the political. Some efforts never overcome the first step: getting data in the first place. Thankfully, several OPOs were already seeking collaborations and looking to improve their performance.

    “We have been lucky to have a strong partnership with the OPOs, and we hope to work together to find important insights to improve efficiency and equity,” says Ghassemi.

    The value of a database like ORCHID is in its potential for generating new insights, especially through quantitative analysis with statistics and computing tools like machine learning. The potential value in ORCHID was recognized with an MIT Prize for Open Data, an MIT Libraries award highlighting the importance and impact of research data that is openly shared.

    “It’s nice that the work got some recognition,” says Adam of the prize. “And it was cool to see some of the other great open data work that’s happening at MIT. I think there’s real impact in releasing publicly available data in an important and understudied domain.”

    All the same, Adam knows that building the database is only the first step.

    “I’m very interested in understanding the bottlenecks in the organ procurement process,” he explains. “As part of my thesis research, I’m exploring this by modeling OPO decision-making using causal inference and structural econometrics.”

    Using insights from this research, Adam also aims to evaluate policy changes that can improve both equity and efficiency in organ procurement. “And we’re hoping to recruit more OPOs, and increase the amount of data we’re releasing,” he says. “The dream state is every OPO joins our collaboration and provides updated data every year.”

    Adam is excited to see how other researchers might use the data to address inefficiencies in organ procurement. “Every organ donor saves between three and four lives,” he says. “So every research project that comes out of this dataset could make a real impact.” More

  • in

    New software enables blind and low-vision users to create interactive, accessible charts

    A growing number of tools enable users to make online data representations, like charts, that are accessible for people who are blind or have low vision. However, most tools require an existing visual chart that can then be converted into an accessible format.

    This creates barriers that prevent blind and low-vision users from building their own custom data representations, and it can limit their ability to explore and analyze important information.

    A team of researchers from MIT and University College London (UCL) wants to change the way people think about accessible data representations.

    They created a software system called Umwelt (which means “environment” in German) that can enable blind and low-vision users to build customized, multimodal data representations without needing an initial visual chart.

    Umwelt, an authoring environment designed for screen-reader users, incorporates an editor that allows someone to upload a dataset and create a customized representation, such as a scatterplot, that can include three modalities: visualization, textual description, and sonification. Sonification involves converting data into nonspeech audio.

    The system, which can represent a variety of data types, includes a viewer that enables a blind or low-vision user to interactively explore a data representation, seamlessly switching between each modality to interact with data in a different way.

    The researchers conducted a study with five expert screen-reader users who found Umwelt to be useful and easy to learn. In addition to offering an interface that empowered them to create data representations — something they said was sorely lacking — the users said Umwelt could facilitate communication between people who rely on different senses.

    “We have to remember that blind and low-vision people aren’t isolated. They exist in these contexts where they want to talk to other people about data,” says Jonathan Zong, an electrical engineering and computer science (EECS) graduate student and lead author of a paper introducing Umwelt. “I am hopeful that Umwelt helps shift the way that researchers think about accessible data analysis. Enabling the full participation of blind and low-vision people in data analysis involves seeing visualization as just one piece of this bigger, multisensory puzzle.”

    Joining Zong on the paper are fellow EECS graduate students Isabella Pedraza Pineros and Mengzhu “Katie” Chen; Daniel Hajas, a UCL researcher who works with the Global Disability Innovation Hub; and senior author Arvind Satyanarayan, associate professor of computer science at MIT who leads the Visualization Group in the Computer Science and Artificial Intelligence Laboratory. The paper will be presented at the ACM Conference on Human Factors in Computing.

    De-centering visualization

    The researchers previously developed interactive interfaces that provide a richer experience for screen reader users as they explore accessible data representations. Through that work, they realized most tools for creating such representations involve converting existing visual charts.

    Aiming to decenter visual representations in data analysis, Zong and Hajas, who lost his sight at age 16, began co-designing Umwelt more than a year ago.

    At the outset, they realized they would need to rethink how to represent the same data using visual, auditory, and textual forms.

    “We had to put a common denominator behind the three modalities. By creating this new language for representations, and making the output and input accessible, the whole is greater than the sum of its parts,” says Hajas.

    To build Umwelt, they first considered what is unique about the way people use each sense.

    For instance, a sighted user can see the overall pattern of a scatterplot and, at the same time, move their eyes to focus on different data points. But for someone listening to a sonification, the experience is linear since data are converted into tones that must be played back one at a time.

    “If you are only thinking about directly translating visual features into nonvisual features, then you miss out on the unique strengths and weaknesses of each modality,” Zong adds.

    They designed Umwelt to offer flexibility, enabling a user to switch between modalities easily when one would better suit their task at a given time.

    To use the editor, one uploads a dataset to Umwelt, which employs heuristics to automatically creates default representations in each modality.

    If the dataset contains stock prices for companies, Umwelt might generate a multiseries line chart, a textual structure that groups data by ticker symbol and date, and a sonification that uses tone length to represent the price for each date, arranged by ticker symbol.

    The default heuristics are intended to help the user get started.

    “In any kind of creative tool, you have a blank-slate effect where it is hard to know how to begin. That is compounded in a multimodal tool because you have to specify things in three different representations,” Zong says.

    The editor links interactions across modalities, so if a user changes the textual description, that information is adjusted in the corresponding sonification. Someone could utilize the editor to build a multimodal representation, switch to the viewer for an initial exploration, then return to the editor to make adjustments.

    Helping users communicate about data

    To test Umwelt, they created a diverse set of multimodal representations, from scatterplots to multiview charts, to ensure the system could effectively represent different data types. Then they put the tool in the hands of five expert screen reader users.

    Study participants mostly found Umwelt to be useful for creating, exploring, and discussing data representations. One user said Umwelt was like an “enabler” that decreased the time it took them to analyze data. The users agreed that Umwelt could help them communicate about data more easily with sighted colleagues.

    “What stands out about Umwelt is its core philosophy of de-emphasizing the visual in favor of a balanced, multisensory data experience. Often, nonvisual data representations are relegated to the status of secondary considerations, mere add-ons to their visual counterparts. However, visualization is merely one aspect of data representation. I appreciate their efforts in shifting this perception and embracing a more inclusive approach to data science,” says JooYoung Seo, an assistant professor in the School of Information Sciences at the University of Illinois at Urbana-Champagne, who was not involved with this work.

    Moving forward, the researchers plan to create an open-source version of Umwelt that others can build upon. They also want to integrate tactile sensing into the software system as an additional modality, enabling the use of tools like refreshable tactile graphics displays.

    “In addition to its impact on end users, I am hoping that Umwelt can be a platform for asking scientific questions around how people use and perceive multimodal representations, and how we can improve the design beyond this initial step,” says Zong.

    This work was supported, in part, by the National Science Foundation and the MIT Morningside Academy for Design Fellowship. More

  • in

    Q&A: How refusal can be an act of design

    This month in the ACM Journal on Responsible Computing, MIT graduate student Jonathan Zong SM ’20 and co-author J. Nathan Matias SM ’13, PhD ’17 of the Cornell Citizens and Technology Lab examine how the notion of refusal can open new avenues in the field of data ethics. In their open-access report, “Data Refusal From Below: A Framework for Understanding, Evaluating, and Envisioning Refusal as Design,” the pair proposes a framework in four dimensions to map how individuals can say “no” to technology misuses. At the same time, the researchers argue that just like design, refusal is generative, and has the potential to create alternate futures.

    Zong, a PhD candidate in electrical engineering and computer science, 2022-23 MIT Morningside Academy for Design Design Fellow, and member of the MIT Visualization Group, describes his latest work in this Q&A.

    Q: How do you define the concept of “refusal,” and where does it come from?

    A: Refusal was developed in feminist and Indigenous studies. It’s this idea of saying “no,” without being given permission to say “no.” Scholars like Ruha Benjamin write about refusal in the context of surveillance, race, and bioethics, and talk about it as a necessary counterpart to consent. Others, like the authors of the “Feminist Data Manifest-No,” think of refusal as something that can help us commit to building better futures.

    Benjamin illustrates cases where the choice to refuse is not equally possible for everyone, citing examples involving genetic data and refugee screenings in the U.K. The imbalance of power in these situations underscores the broader concept of refusal, extending beyond rejecting specific options to challenging the entire set of choices presented.

    Q: What inspired you to work on the notion of refusal as an act of design?

    A: In my work on data ethics, I’ve been thinking about how to incorporate processes into research data collection, particularly around consent and opt-out, with a focus on individual autonomy and the idea of giving people choices about the way that their data is used. But when it comes to data privacy, simply making choices available is not enough. Choices can be unequally available, or create no-win situations where all options are bad. This led me to the concept of refusal: questioning the authority of data collectors and challenging their legitimacy.

    The key idea of my work is that refusal is an act of design. I think of refusal as deliberate actions to redesign our socio-technical landscape by exerting some sort of influence. Like design, refusal is generative. Like design, it’s oriented towards creating alternate possibilities and alternate futures. Design is a process of exploring or traversing a space of possibility. Applying a design framework to cases of refusal drawn from scholarly and journalistic sources allowed me to establish a common language for talking about refusal and to imagine refusals that haven’t been explored yet.

    Q: What are the stakes around data privacy and data collection?

    A: The use of data for facial recognition surveillance in the U.S. is a big example we use in the paper. When people do everyday things like post on social media or walk past cameras in public spaces, they might be contributing their data to training facial recognition systems. For instance, a tech company may take photos from a social media site and build facial recognition that they then sell to the government. In the U.S., these systems are disproportionately used by police to surveil communities of color. It is difficult to apply concepts like consent and opt out of these processes, because they happen over time and involve multiple kinds of institutions. It’s also not clear that individual opt-out would do anything to change the overall situation. Refusal then becomes a crucial avenue, at both individual and community levels, to think more broadly of how affected people still exert some kind of voice or agency, without necessarily having an official channel to do so.

    Q: Why do you think these issues are more particularly affecting disempowered communities?

    A: People who are affected by technologies are not always included in the design process for those technologies. Refusal then becomes a meaningful expression of values and priorities for those who were not part of the early design conversations. Actions taken against technologies like face surveillance — be it legal battles against companies, advocacy for stricter regulations, or even direct action like disabling security cameras — may not fit the conventional notion of participating in a design process. And yet, these are the actions available to refusers who may be excluded from other forms of participation.

    I’m particularly inspired by the movement around Indigenous data sovereignty. Organizations like the First Nations Information Governance Centre work towards prioritizing Indigenous communities’ perspectives in data collection, and refuse inadequate representation in official health data from the Canadian government. I think this is a movement that exemplifies the potential of refusal, not only as a way to reject what’s being offered, but also as a means to propose a constructive alternative, very much like design. Refusal is not merely a negation, but a pathway to different futures.

    Q: Can you elaborate on the design framework you propose?

    A: Refusals vary widely across contexts and scales. Developing a framework for refusal is about helping people see actions that are seemingly very different as instances of the same broader idea. Our framework consists of four facets: autonomy, time, power, and cost.

    Consider the case of IBM creating a facial recognition dataset using people’s photos without consent. We saw multiple forms of refusal emerge in response. IBM allowed individuals to opt out by withdrawing their photos. People collectively refused by creating a class-action lawsuit against IBM. Around the same time, many U.S. cities started passing local legislation banning the government use of facial recognition. Evaluating these cases through the framework highlights commonalities and differences. The framework highlights varied approaches to autonomy, like individual opt-out and collective action. Regarding time, opt-outs and lawsuits react to past harm, while legislation might proactively prevent future harm. Power dynamics differ; withdrawing individual photos minimally influences IBM, while legislation could potentially cause longer-term change. And as for cost, individual opt-out seems less demanding, while other approaches require more time and effort, balanced against potential benefits.

    The framework facilitates case description and comparison across these dimensions. I think its generative nature encourages exploration of novel forms of refusal as well. By identifying the characteristics we want to see in future refusal strategies — collective, proactive, powerful, low-cost… — we can aspire to shape future approaches and change the behavior of data collectors. We may not always be able to combine all these criteria, but the framework provides a means to articulate our aspirational goals in this context.

    Q: What impact do you hope this research will have?

    A: I hope to expand the notion of who can participate in design, and whose actions are seen as legitimate expressions of design input. I think a lot of work so far in the conversation around data ethics prioritizes the perspective of computer scientists who are trying to design better systems, at the expense of the perspective of people for whom the systems are not currently working. So, I hope designers and computer scientists can embrace the concept of refusal as a legitimate form of design, and a source of inspiration. There’s a vital conversation happening, one that should influence the design of future systems, even if expressed through unconventional means.

    One of the things I want to underscore in the paper is that design extends beyond software. Taking a socio-technical perspective, the act of designing encompasses software, institutions, relationships, and governance structures surrounding data use. I want people who aren’t software engineers, like policymakers or activists, to view themselves as integral to the technology design process. More