More stories

  • in

    Gaining real-world industry experience through Break Through Tech AI at MIT

    Taking what they learned conceptually about artificial intelligence and machine learning (ML) this year, students from across the Greater Boston area had the opportunity to apply their new skills to real-world industry projects as part of an experiential learning opportunity offered through Break Through Tech AI at MIT.

    Hosted by the MIT Schwarzman College of Computing, Break Through Tech AI is a pilot program that aims to bridge the talent gap for women and underrepresented genders in computing fields by providing skills-based training, industry-relevant portfolios, and mentoring to undergraduate students in regional metropolitan areas in order to position them more competitively for careers in data science, machine learning, and artificial intelligence.

    “Programs like Break Through Tech AI gives us opportunities to connect with other students and other institutions, and allows us to bring MIT’s values of diversity, equity, and inclusion to the learning and application in the spaces that we hold,” says Alana Anderson, assistant dean of diversity, equity, and inclusion for the MIT Schwarzman College of Computing.

    The inaugural cohort of 33 undergraduates from 18 Greater Boston-area schools, including Salem State University, Smith College, and Brandeis University, began the free, 18-month program last summer with an eight-week, online skills-based course to learn the basics of AI and machine learning. Students then split into small groups in the fall to collaborate on six machine learning challenge projects presented to them by MathWorks, MIT-IBM Watson AI Lab, and Replicate. The students dedicated five hours or more each week to meet with their teams, teaching assistants, and project advisors, including convening once a month at MIT, while juggling their regular academic course load with other daily activities and responsibilities.

    The challenges gave the undergraduates the chance to help contribute to actual projects that industry organizations are working on and to put their machine learning skills to the test. Members from each organization also served as project advisors, providing encouragement and guidance to the teams throughout.

    “Students are gaining industry experience by working closely with their project advisors,” says Aude Oliva, director of strategic industry engagement at the MIT Schwarzman College of Computing and the MIT director of the MIT-IBM Watson AI Lab. “These projects will be an add-on to their machine learning portfolio that they can share as a work example when they’re ready to apply for a job in AI.”

    Over the course of 15 weeks, teams delved into large-scale, real-world datasets to train, test, and evaluate machine learning models in a variety of contexts.

    In December, the students celebrated the fruits of their labor at a showcase event held at MIT in which the six teams gave final presentations on their AI projects. The projects not only allowed the students to build up their AI and machine learning experience, it helped to “improve their knowledge base and skills in presenting their work to both technical and nontechnical audiences,” Oliva says.

    For a project on traffic data analysis, students got trained on MATLAB, a programming and numeric computing platform developed by MathWorks, to create a model that enables decision-making in autonomous driving by predicting future vehicle trajectories. “It’s important to realize that AI is not that intelligent. It’s only as smart as you make it and that’s exactly what we tried to do,” said Brandeis University student Srishti Nautiyal as she introduced her team’s project to the audience. With companies already making autonomous vehicles from planes to trucks a reality, Nautiyal, a physics and mathematics major, shared that her team was also highly motivated to consider the ethical issues of the technology in their model for the safety of passengers, drivers, and pedestrians.

    Using census data to train a model can be tricky because they are often messy and full of holes. In a project on algorithmic fairness for the MIT-IBM Watson AI Lab, the hardest task for the team was having to clean up mountains of unorganized data in a way where they could still gain insights from them. The project — which aimed to create demonstration of fairness applied on a real dataset to evaluate and compare effectiveness of different fairness interventions and fair metric learning techniques — could eventually serve as an educational resource for data scientists interested in learning about fairness in AI and using it in their work, as well as to promote the practice of evaluating the ethical implications of machine learning models in industry.

    Other challenge projects included an ML-assisted whiteboard for nontechnical people to interact with ready-made machine learning models, and a sign language recognition model to help disabled people communicate with others. A team that worked on a visual language app set out to include over 50 languages in their model to increase access for the millions of people that are visually impaired throughout the world. According to the team, similar apps on the market currently only offer up to 23 languages. 

    Throughout the semester, students persisted and demonstrated grit in order to cross the finish line on their projects. With the final presentations marking the conclusion of the fall semester, students will return to MIT in the spring to continue their Break Through Tech AI journey to tackle another round of AI projects. This time, the students will work with Google on new machine learning challenges that will enable them to hone their AI skills even further with an eye toward launching a successful career in AI. More

  • in

    MIT Schwarzman College of Computing unveils Break Through Tech AI

    Aimed at driving diversity and inclusion in artificial intelligence, the MIT Stephen A. Schwarzman College of Computing is launching Break Through Tech AI, a new program to bridge the talent gap for women and underrepresented genders in AI positions in industry.

    Break Through Tech AI will provide skills-based training, industry-relevant portfolios, and mentoring to qualified undergraduate students in the Greater Boston area in order to position them more competitively for careers in data science, machine learning, and artificial intelligence. The free, 18-month program will also provide each student with a stipend for participation to lower the barrier for those typically unable to engage in an unpaid, extra-curricular educational opportunity.

    “Helping position students from diverse backgrounds to succeed in fields such as data science, machine learning, and artificial intelligence is critical for our society’s future,” says Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing and Henry Ellis Warren Professor of Electrical Engineering and Computer Science. “We look forward to working with students from across the Greater Boston area to provide them with skills and mentorship to help them find careers in this competitive and growing industry.”

    The college is collaborating with Break Through Tech — a national initiative launched by Cornell Tech in 2016 to increase the number of women and underrepresented groups graduating with degrees in computing — to host and administer the program locally. In addition to Boston, the inaugural artificial intelligence and machine learning program will be offered in two other metropolitan areas — one based in New York hosted by Cornell Tech and another in Los Angeles hosted by the University of California at Los Angeles Samueli School of Engineering.

    “Break Through Tech’s success at diversifying who is pursuing computer science degrees and careers has transformed lives and the industry,” says Judith Spitz, executive director of Break Through Tech. “With our new collaborators, we can apply our impactful model to drive inclusion and diversity in artificial intelligence.”

    The new program will kick off this summer at MIT with an eight-week, skills-based online course and in-person lab experience that teaches industry-relevant tools to build real-world AI solutions. Students will learn how to analyze datasets and use several common machine learning libraries to build, train, and implement their own ML models in a business context.

    Following the summer course, students will be matched with machine-learning challenge projects for which they will convene monthly at MIT and work in teams to build solutions and collaborate with an industry advisor or mentor throughout the academic year, resulting in a portfolio of resume-quality work. The participants will also be paired with young professionals in the field to help build their network, prepare their portfolio, practice for interviews, and cultivate workplace skills.

    “Leveraging the college’s strong partnership with industry, Break Through AI will offer unique opportunities to students that will enhance their portfolio in machine learning and AI,” says Asu Ozdaglar, deputy dean of academics of the MIT Schwarzman College of Computing and head of the Department of Electrical Engineering and Computer Science. Ozdaglar, who will be the MIT faculty director of Break Through Tech AI, adds: “The college is committed to making computing inclusive and accessible for all. We’re thrilled to host this program at MIT for the Greater Boston area and to do what we can to help increase diversity in computing fields.”

    Break Through Tech AI is part of the MIT Schwarzman College of Computing’s focus to advance diversity, equity, and inclusion in computing. The college aims to improve and create programs and activities that broaden participation in computing classes and degree programs, increase the diversity of top faculty candidates in computing fields, and ensure that faculty search and graduate admissions processes have diverse slates of candidates and interviews.

    “By engaging in activities like Break Through Tech AI that work to improve the climate for underrepresented groups, we’re taking an important step toward creating more welcoming environments where all members can innovate and thrive,” says Alana Anderson, assistant dean for diversity, equity and inclusion for the Schwarzman College of Computing. More

  • in

    Transforming the travel experience for the Hong Kong airport

    MIT Hong Kong Innovation Node welcomed 33 students to its flagship program, MIT Entrepreneurship and Maker Skills Integrator (MEMSI). Designed to develop entrepreneurial prowess through exposure to industry-driven challenges, MIT students joined forces with Hong Kong peers in this two-week hybrid bootcamp, developing unique proposals for the Airport Authority of Hong Kong.

    Many airports across the world continue to be affected by the broader impact of Covid-19 with reduced air travel, prompting airlines to cut capacity. The result is a need for new business opportunities to propel economic development. For Hong Kong, the expansion toward non-aeronautical activities to boost regional consumption is therefore crucial, and included as part of the blueprint to transform the city’s airport into an airport city — characterized by capacity expansion, commercial developments, air cargo leadership, an autonomous transport system, connectivity to neighboring cities in mainland China, and evolution into a smart airport guided by sustainable practices. To enhance the customer experience, a key focus is capturing business opportunities at the nexus of digital and physical interactions. 

    These challenges “bring ideas and talent together to tackle real-world problems in the areas of digital service creation for the airport and engaging regional customers to experience the new airport city,” says Charles Sodini, the LeBel Professor of Electrical Engineering at MIT and faculty director at the Node. 

    The new travel standard

    Businesses are exploring new digital technologies, both to drive bookings and to facilitate safe travel. Developments such as Hong Kong airport’s Flight Token, a biometric technology using facial recognition to enable contactless check-ins and boarding at airports, unlock enormous potential that speeds up the departure journey of passengers. Seamless virtual experiences are not going to disappear.

    “What we may see could be a strong rebounce especially for travelers after the travel ban lifts … an opportunity to make travel easier, flying as simple as riding the bus,” says Chris Au Young, general manager of smart airport and general manager of data analytics at the Airport Authority of Hong Kong. 

    The passenger experience of the future will be “enabled by mobile technology, internet of things, and digital platforms,” he explains, adding that in the aviation community, “international organizations have already stipulated that biometric technology will be the new standard for the future … the next question is how this can be connected across airports.”  

    This extends further beyond travel, where Au Young illustrates, “If you go to a concert at Asia World Expo, which is the airport’s new arena in the future, you might just simply show your face rather than queue up in a long line waiting to show your tickets.”

    Accelerating the learning curve with industry support

    Working closely with industry mentors involved in the airport city’s development, students dived deep into discussions on the future of adapted travel, interviewed and surveyed travelers, and plowed through a range of airport data to uncover business insights.

    “With the large amount of data provided, my teammates and I worked hard to identify modeling opportunities that were both theoretically feasible and valuable in a business sense,” says Sean Mann, a junior at MIT studying computer science.

    Mann and his team applied geolocation data to inform machine learning predictions on a passenger’s journey once they enter the airside area. Coupled with biometric technology, passengers can receive personalized recommendations with improved accuracy via the airport’s bespoke passenger app, powered by data collected through thousands of iBeacons dispersed across the vicinity. Armed with these insights, the aim is to enhance the user experience by driving meaningful footfall to retail shops, restaurants, and other airport amenities.

    The support of industry partners inspired his team “with their deep understanding of the aviation industry,” he added. “In a short period of two weeks, we built a proof-of-concept and a rudimentary business plan — the latter of which was very new to me.”

    Collaborating across time zones, Rumen Dangovski, a PhD candidate in electrical engineering and computer science at MIT, joined MEMSI from his home in Bulgaria. For him, learning “how to continually revisit ideas to discover important problems and meaningful solutions for a large and complex real-world system” was a key takeaway. The iterative process helped his team overcome the obstacle of narrowing down the scope of their proposal, with the help of industry mentors and advisors. 

    “Without the feedback from industry partners, we would not have been able to formulate a concrete solution that is actually helpful to the airport,” says Dangovski.  

    Beyond valuable mentorship, he adds, “there was incredible energy in our team, consisting of diverse talent, grit, discipline and organization. I was positively surprised how MEMSI can form quickly and give continual support to our team. The overall experience was very fun.“

    A sustainable future

    Mrigi Munjal, a PhD candidate studying materials science and engineering at MIT, had just taken a long-haul flight from Boston to Delhi prior to the program, and “was beginning to fully appreciate the scale of carbon emissions from aviation.” For her, “that one journey basically overshadowed all of my conscious pro-sustainability lifestyle changes,” she says.

    Knowing that international flights constitute the largest part of an individual’s carbon footprint, Munjal and her team wanted “to make flying more sustainable with an idea that is economically viable for all of the stakeholders involved.” 

    They proposed a carbon offset API that integrates into an airline’s ticket payment system, empowering individuals to take action to offset their carbon footprint, track their personal carbon history, and pick and monitor green projects. The advocacy extends to a digital display of interactive art featured in physical installations across the airport city. The intent is to raise community awareness about one’s impact on the environment and making carbon offsetting accessible. 

    Shaping the travel narrative

    Six teams of students created innovative solutions for the Hong Kong airport which they presented in hybrid format to a panel of judges on Showcase Day. The diverse ideas included an app-based airport retail recommendations supported by iBeacons; a platform that empowers customers to offset their carbon footprint; an app that connects fellow travelers for social and incentive-driven retail experiences; a travel membership exchange platform offering added flexibility to earn and redeem loyalty rewards; an interactive and gamified location-based retail experience using augmented reality; and a digital companion avatar to increase adoption of the airport’s Flight Token and improve airside passenger experience.

    Among the judges was Julian Lee ’97, former president of the MIT Club of Hong Kong and current executive director of finance at the Airport Authority of Hong Kong, who commended the students for demonstrably having “worked very thoroughly and thinking through the specific challenges,” addressing the real pain points that the airport is experiencing.

    “The ideas were very thoughtful and very unique to us. Some of you defined transit passengers as a sub-segment of the market that works. It only happens at the airport and you’ve been able to leverage this transit time in between,” remarked Lee. 

    Strong solutions include an implementation plan to see a path for execution and a viable future. Among the solutions proposed, Au Young was impressed by teams for “paying a lot of attention to the business model … a very important aspect in all the ideas generated.”  

    Addressing the students, Au Young says, “What we love is the way you reinvent the airport business and partnerships, presenting a new way of attracting people to engage more in new services and experiences — not just returning for a flight or just shopping with us, but innovating beyond the airport and using emerging technologies, using location data, using the retailer’s capability and adding some social activities in your solutions.”

    Despite today’s rapidly evolving travel industry, what remains unchanged is a focus on the customer. In the end, “it’s still about the passengers,” added Au Young.  More