More stories

  • in

    New AI model could streamline operations in a robotic warehouse

    Hundreds of robots zip back and forth across the floor of a colossal robotic warehouse, grabbing items and delivering them to human workers for packing and shipping. Such warehouses are increasingly becoming part of the supply chain in many industries, from e-commerce to automotive production.

    However, getting 800 robots to and from their destinations efficiently while keeping them from crashing into each other is no easy task. It is such a complex problem that even the best path-finding algorithms struggle to keep up with the breakneck pace of e-commerce or manufacturing. 

    In a sense, these robots are like cars trying to navigate a crowded city center. So, a group of MIT researchers who use AI to mitigate traffic congestion applied ideas from that domain to tackle this problem.

    They built a deep-learning model that encodes important information about the warehouse, including the robots, planned paths, tasks, and obstacles, and uses it to predict the best areas of the warehouse to decongest to improve overall efficiency.

    Their technique divides the warehouse robots into groups, so these smaller groups of robots can be decongested faster with traditional algorithms used to coordinate robots. In the end, their method decongests the robots nearly four times faster than a strong random search method.

    In addition to streamlining warehouse operations, this deep learning approach could be used in other complex planning tasks, like computer chip design or pipe routing in large buildings.

    “We devised a new neural network architecture that is actually suitable for real-time operations at the scale and complexity of these warehouses. It can encode hundreds of robots in terms of their trajectories, origins, destinations, and relationships with other robots, and it can do this in an efficient manner that reuses computation across groups of robots,” says Cathy Wu, the Gilbert W. Winslow Career Development Assistant Professor in Civil and Environmental Engineering (CEE), and a member of a member of the Laboratory for Information and Decision Systems (LIDS) and the Institute for Data, Systems, and Society (IDSS).

    Wu, senior author of a paper on this technique, is joined by lead author Zhongxia Yan, a graduate student in electrical engineering and computer science. The work will be presented at the International Conference on Learning Representations.

    Robotic Tetris

    From a bird’s eye view, the floor of a robotic e-commerce warehouse looks a bit like a fast-paced game of “Tetris.”

    When a customer order comes in, a robot travels to an area of the warehouse, grabs the shelf that holds the requested item, and delivers it to a human operator who picks and packs the item. Hundreds of robots do this simultaneously, and if two robots’ paths conflict as they cross the massive warehouse, they might crash.

    Traditional search-based algorithms avoid potential crashes by keeping one robot on its course and replanning a trajectory for the other. But with so many robots and potential collisions, the problem quickly grows exponentially.

    “Because the warehouse is operating online, the robots are replanned about every 100 milliseconds. That means that every second, a robot is replanned 10 times. So, these operations need to be very fast,” Wu says.

    Because time is so critical during replanning, the MIT researchers use machine learning to focus the replanning on the most actionable areas of congestion — where there exists the most potential to reduce the total travel time of robots.

    Wu and Yan built a neural network architecture that considers smaller groups of robots at the same time. For instance, in a warehouse with 800 robots, the network might cut the warehouse floor into smaller groups that contain 40 robots each.

    Then, it predicts which group has the most potential to improve the overall solution if a search-based solver were used to coordinate trajectories of robots in that group.

    An iterative process, the overall algorithm picks the most promising robot group with the neural network, decongests the group with the search-based solver, then picks the next most promising group with the neural network, and so on.

    Considering relationships

    The neural network can reason about groups of robots efficiently because it captures complicated relationships that exist between individual robots. For example, even though one robot may be far away from another initially, their paths could still cross during their trips.

    The technique also streamlines computation by encoding constraints only once, rather than repeating the process for each subproblem. For instance, in a warehouse with 800 robots, decongesting a group of 40 robots requires holding the other 760 robots as constraints. Other approaches require reasoning about all 800 robots once per group in each iteration.

    Instead, the researchers’ approach only requires reasoning about the 800 robots once across all groups in each iteration.

    “The warehouse is one big setting, so a lot of these robot groups will have some shared aspects of the larger problem. We designed our architecture to make use of this common information,” she adds.

    They tested their technique in several simulated environments, including some set up like warehouses, some with random obstacles, and even maze-like settings that emulate building interiors.

    By identifying more effective groups to decongest, their learning-based approach decongests the warehouse up to four times faster than strong, non-learning-based approaches. Even when they factored in the additional computational overhead of running the neural network, their approach still solved the problem 3.5 times faster.

    In the future, the researchers want to derive simple, rule-based insights from their neural model, since the decisions of the neural network can be opaque and difficult to interpret. Simpler, rule-based methods could also be easier to implement and maintain in actual robotic warehouse settings.

    “This approach is based on a novel architecture where convolution and attention mechanisms interact effectively and efficiently. Impressively, this leads to being able to take into account the spatiotemporal component of the constructed paths without the need of problem-specific feature engineering. The results are outstanding: Not only is it possible to improve on state-of-the-art large neighborhood search methods in terms of quality of the solution and speed, but the model generalizes to unseen cases wonderfully,” says Andrea Lodi, the Andrew H. and Ann R. Tisch Professor at Cornell Tech, and who was not involved with this research.

    This work was supported by Amazon and the MIT Amazon Science Hub. More

  • in

    “We offer another place for knowledge”

    In the Dzaleka Refugee Camp in Malawi, Jospin Hassan didn’t have access to the education opportunities he sought. So, he decided to create his own. 

    Hassan knew the booming fields of data science and artificial intelligence could bring job opportunities to his community and help solve local challenges. After earning a spot in the 2020-21 cohort of the Certificate Program in Computer and Data Science from MIT Refugee Action Hub (ReACT), Hassan started sharing MIT knowledge and skills with other motivated learners in Dzaleka.

    MIT ReACT is now Emerging Talent, part of the Jameel World Education Lab (J-WEL) at MIT Open Learning. Currently serving its fifth cohort of global learners, Emerging Talent’s year-long certificate program incorporates high-quality computer science and data analysis coursework from MITx, professional skill building, experiential learning, apprenticeship work, and opportunities for networking with MIT’s global community of innovators. Hassan’s cohort honed their leadership skills through interactive online workshops with J-WEL and the 10-week online MIT Innovation Leadership Bootcamp. 

    “My biggest takeaway was networking, collaboration, and learning from each other,” Hassan says.

    Today, Hassan’s organization ADAI Circle offers mentorship and education programs for youth and other job seekers in the Dzaleka Refugee Camp. The curriculum encourages hands-on learning and collaboration.

    Launched in 2020, ADAI Circle aims to foster job creation and reduce poverty in Malawi through technology and innovation. In addition to their classes in data science, AI, software development, and hardware design, their Innovation Hub offers internet access to anyone in need. 

    Doing something different in the community

    Hassan first had the idea for his organization in 2018 when he reached a barrier in his own education journey. There were several programs in the Dzaleka Refugee Camp teaching learners how to code websites and mobile apps, but Hassan felt that they were limited in scope. 

    “We had good devices and internet access,” he says, “but I wanted to learn something new.” 

    Teaming up with co-founder Patrick Byamasu, Hassan and Byamasu set their sights on the longevity of AI and how that might create more jobs for people in their community. “The world is changing every day, and data scientists are in a higher demand today in various companies,” Hassan says. “For this reason, I decided to expand and share the knowledge that I acquired with my fellow refugees and the surrounding villages.”

    ADAI Circle draws inspiration from Hassan’s own experience with MIT Emerging Talent coursework, community, and training opportunities. For example, the MIT Bootcamps model is now standard practice for ADAI Circle’s annual hackathon. Hassan first introduced the hackathon to ADAI Circle students as part of his final experiential learning project of the Emerging Talent certificate program. 

    ADAI Circle’s annual hackathon is now an interactive — and effective — way to select students who will most benefit from its programs. The local schools’ curricula, Hassan says, might not provide enough of an academic challenge. “We can’t teach everyone and accommodate everyone because there are a lot of schools,” Hassan says, “but we offer another place for knowledge.” 

    The hackathon helps students develop data science and robotics skills. Before they start coding, students have to convince ADAI Circle teachers that their designs are viable, answering questions like, “What problem are you solving?” and “How will this help the community?” A community-oriented mindset is just as important to the curriculum.

    In addition to the practical skills Hassan gained from Emerging Talent, he leveraged the program’s network to help his community. Thanks to a social media connection Hassan made with the nongovernmental organization Give Internet after one of Emerging Talent’s virtual events, Give Internet brought internet access to ADAI Circle.

    Bridging the AI gap to unmet communities

    In 2023, ADAI Circle connected with another MIT Open Learning program, Responsible AI for Social Empowerment and Education (RAISE), which led to a pilot test of a project-based AI curriculum for middle school students. The Responsible AI for Computational Action (RAICA) curriculum equipped ADAI Circle students with AI skills for chatbots and natural language processing. 

    “I liked that program because it was based on what we’re teaching at the center,” Hassan says, speaking of his organization’s mission of bridging the AI gap to reach unmet communities.

    The RAICA curriculum was designed by education experts at MIT Scheller Teacher Education Program (STEP Lab) and AI experts from MIT Personal Robots group and MIT App Inventor. ADAI Circle teachers gave detailed feedback about the pilot to the RAICA team. During weekly meetings with Glenda Stump, education research scientist for RAICA and J-WEL, and Angela Daniel, teacher development specialist for RAICA, the teachers discussed their experiences, prepared for upcoming lessons, and translated the learning materials in real time. 

    “We are trying to create a curriculum that’s accessible worldwide and to students who typically have little or no access to technology,” says Mary Cate Gustafson-Quiett, curriculum design manager at STEP Lab and project manager for RAICA. “Working with ADAI and students in a refugee camp challenged us to design in more culturally and technologically inclusive ways.”

    Gustafson-Quiett says the curriculum feedback from ADAI Circle helped inform how RAICA delivers teacher development resources to accommodate learning environments with limited internet access. “They also exposed places where our team’s western ideals, specifically around individualism, crept into activities in the lesson and contrasted with their more communal cultural beliefs,” she says.

    Eager to introduce more MIT-developed AI resources, Hassan also shared MIT RAISE’s Day of AI curricula with ADAI Circle teachers. The new ChatGPT module gave students the chance to level up their chatbot programming skills that they gained from the RAICA module. Some of the advanced students are taking initiative to use ChatGPT API to create their own projects in education.

    “We don’t want to tell them what to do, we want them to come up with their own ideas,” Hassan says.

    Although ADAI Circle faces many challenges, Hassan says his team is addressing them one by one. Last year, they didn’t have electricity in their Innovation Hub, but they solved that. This year, they achieved a stable internet connection that’s one of the fastest in Malawi. Next up, they are hoping to secure more devices for their students, create more jobs, and add additional hubs throughout the community. The work is never done, but Hassan is starting to see the impact that ADAI Circle is making. 

    “For those who want to learn data science, let’s let them learn,” Hassan says. More

  • in

    Putting AI into the hands of people with problems to solve

    As Media Lab students in 2010, Karthik Dinakar SM ’12, PhD ’17 and Birago Jones SM ’12 teamed up for a class project to build a tool that would help content moderation teams at companies like Twitter (now X) and YouTube. The project generated a huge amount of excitement, and the researchers were invited to give a demonstration at a cyberbullying summit at the White House — they just had to get the thing working.

    The day before the White House event, Dinakar spent hours trying to put together a working demo that could identify concerning posts on Twitter. Around 11 p.m., he called Jones to say he was giving up.

    Then Jones decided to look at the data. It turned out Dinakar’s model was flagging the right types of posts, but the posters were using teenage slang terms and other indirect language that Dinakar didn’t pick up on. The problem wasn’t the model; it was the disconnect between Dinakar and the teens he was trying to help.

    “We realized then, right before we got to the White House, that the people building these models should not be folks who are just machine-learning engineers,” Dinakar says. “They should be people who best understand their data.”

    The insight led the researchers to develop point-and-click tools that allow nonexperts to build machine-learning models. Those tools became the basis for Pienso, which today is helping people build large language models for detecting misinformation, human trafficking, weapons sales, and more, without writing any code.

    “These kinds of applications are important to us because our roots are in cyberbullying and understanding how to use AI for things that really help humanity,” says Jones.

    As for the early version of the system shown at the White House, the founders ended up collaborating with students at nearby schools in Cambridge, Massachusetts, to let them train the models.

    “The models those kids trained were so much better and nuanced than anything I could’ve ever come up with,” Dinakar says. “Birago and I had this big ‘Aha!’ moment where we realized empowering domain experts — which is different from democratizing AI — was the best path forward.”

    A project with purpose

    Jones and Dinakar met as graduate students in the Software Agents research group of the MIT Media Lab. Their work on what became Pienso started in Course 6.864 (Natural Language Processing) and continued until they earned their master’s degrees in 2012.

    It turned out 2010 wasn’t the last time the founders were invited to the White House to demo their project. The work generated a lot of enthusiasm, but the founders worked on Pienso part time until 2016, when Dinakar finished his PhD at MIT and deep learning began to explode in popularity.

    “We’re still connected to many people around campus,” Dinakar says. “The exposure we had at MIT, the melding of human and computer interfaces, widened our understanding. Our philosophy at Pienso couldn’t be possible without the vibrancy of MIT’s campus.”

    The founders also credit MIT’s Industrial Liaison Program (ILP) and Startup Accelerator (STEX) for connecting them to early partners.

    One early partner was SkyUK. The company’s customer success team used Pienso to build models to understand their customer’s most common problems. Today those models are helping to process half a million customer calls a day, and the founders say they have saved the company over £7 million pounds to date by shortening the length of calls into the company’s call center.

    “The difference between democratizing AI and empowering people with AI comes down to who understands the data best — you or a doctor or a journalist or someone who works with customers every day?” Jones says. “Those are the people who should be creating the models. That’s how you get insights out of your data.”

    In 2020, just as Covid-19 outbreaks began in the U.S., government officials contacted the founders to use their tool to better understand the emerging disease. Pienso helped experts in virology and infectious disease set up machine-learning models to mine thousands of research articles about coronaviruses. Dinakar says they later learned the work helped the government identify and strengthen critical supply chains for drugs, including the popular antiviral remdesivir.

    “Those compounds were surfaced by a team that did not know deep learning but was able to use our platform,” Dinakar says.

    Building a better AI future

    Because Pienso can run on internal servers and cloud infrastructure, the founders say it offers an alternative for businesses being forced to donate their data by using services offered by other AI companies.

    “The Pienso interface is a series of web apps stitched together,” Dinakar explains. “You can think of it like an Adobe Photoshop for large language models, but in the web. You can point and import data without writing a line of code. You can refine the data, prepare it for deep learning, analyze it, give it structure if it’s not labeled or annotated, and you can walk away with fine-tuned, large language model in a matter of 25 minutes.”

    Earlier this year, Pienso announced a partnership with GraphCore, which provides a faster, more efficient computing platform for machine learning. The founders say the partnership will further lower barriers to leveraging AI by dramatically reducing latency.

    “If you’re building an interactive AI platform, users aren’t going to have a cup of coffee every time they click a button,” Dinakar says. “It needs to be fast and responsive.”

    The founders believe their solution is enabling a future where more effective AI models are developed for specific use cases by the people who are most familiar with the problems they are trying to solve.

    “No one model can do everything,” Dinakar says. “Everyone’s application is different, their needs are different, their data is different. It’s highly unlikely that one model will do everything for you. It’s about bringing a garden of models together and allowing them to collaborate with each other and orchestrating them in a way that makes sense — and the people doing that orchestration should be the people who understand the data best.” More

  • in

    MIT researchers remotely map crops, field by field

    Crop maps help scientists and policymakers track global food supplies and estimate how they might shift with climate change and growing populations. But getting accurate maps of the types of crops that are grown from farm to farm often requires on-the-ground surveys that only a handful of countries have the resources to maintain.

    Now, MIT engineers have developed a method to quickly and accurately label and map crop types without requiring in-person assessments of every single farm. The team’s method uses a combination of Google Street View images, machine learning, and satellite data to automatically determine the crops grown throughout a region, from one fraction of an acre to the next. 

    The researchers used the technique to automatically generate the first nationwide crop map of Thailand — a smallholder country where small, independent farms make up the predominant form of agriculture. The team created a border-to-border map of Thailand’s four major crops — rice, cassava, sugarcane, and maize — and determined which of the four types was grown, at every 10 meters, and without gaps, across the entire country. The resulting map achieved an accuracy of 93 percent, which the researchers say is comparable to on-the-ground mapping efforts in high-income, big-farm countries.

    The team is applying their mapping technique to other countries such as India, where small farms sustain most of the population but the type of crops grown from farm to farm has historically been poorly recorded.

    “It’s a longstanding gap in knowledge about what is grown around the world,” says Sherrie Wang, the d’Arbeloff Career Development Assistant Professor in MIT’s Department of Mechanical Engineering, and the Institute for Data, Systems, and Society (IDSS). “The final goal is to understand agricultural outcomes like yield, and how to farm more sustainably. One of the key preliminary steps is to map what is even being grown — the more granularly you can map, the more questions you can answer.”

    Wang, along with MIT graduate student Jordi Laguarta Soler and Thomas Friedel of the agtech company PEAT GmbH, will present a paper detailing their mapping method later this month at the AAAI Conference on Artificial Intelligence.

    Ground truth

    Smallholder farms are often run by a single family or farmer, who subsist on the crops and livestock that they raise. It’s estimated that smallholder farms support two-thirds of the world’s rural population and produce 80 percent of the world’s food. Keeping tabs on what is grown and where is essential to tracking and forecasting food supplies around the world. But the majority of these small farms are in low to middle-income countries, where few resources are devoted to keeping track of individual farms’ crop types and yields.

    Crop mapping efforts are mainly carried out in high-income regions such as the United States and Europe, where government agricultural agencies oversee crop surveys and send assessors to farms to label crops from field to field. These “ground truth” labels are then fed into machine-learning models that make connections between the ground labels of actual crops and satellite signals of the same fields. They then label and map wider swaths of farmland that assessors don’t cover but that satellites automatically do.

    “What’s lacking in low- and middle-income countries is this ground label that we can associate with satellite signals,” Laguarta Soler says. “Getting these ground truths to train a model in the first place has been limited in most of the world.”

    The team realized that, while many developing countries do not have the resources to maintain crop surveys, they could potentially use another source of ground data: roadside imagery, captured by services such as Google Street View and Mapillary, which send cars throughout a region to take continuous 360-degree images with dashcams and rooftop cameras.

    In recent years, such services have been able to access low- and middle-income countries. While the goal of these services is not specifically to capture images of crops, the MIT team saw that they could search the roadside images to identify crops.

    Cropped image

    In their new study, the researchers worked with Google Street View (GSV) images taken throughout Thailand — a country that the service has recently imaged fairly thoroughly, and which consists predominantly of smallholder farms.

    Starting with over 200,000 GSV images randomly sampled across Thailand, the team filtered out images that depicted buildings, trees, and general vegetation. About 81,000 images were crop-related. They set aside 2,000 of these, which they sent to an agronomist, who determined and labeled each crop type by eye. They then trained a convolutional neural network to automatically generate crop labels for the other 79,000 images, using various training methods, including iNaturalist — a web-based crowdsourced  biodiversity database, and GPT-4V, a “multimodal large language model” that enables a user to input an image and ask the model to identify what the image is depicting. For each of the 81,000 images, the model generated a label of one of four crops that the image was likely depicting — rice, maize, sugarcane, or cassava.

    The researchers then paired each labeled image with the corresponding satellite data taken of the same location throughout a single growing season. These satellite data include measurements across multiple wavelengths, such as a location’s greenness and its reflectivity (which can be a sign of water). 

    “Each type of crop has a certain signature across these different bands, which changes throughout a growing season,” Laguarta Soler notes.

    The team trained a second model to make associations between a location’s satellite data and its corresponding crop label. They then used this model to process satellite data taken of the rest of the country, where crop labels were not generated or available. From the associations that the model learned, it then assigned crop labels across Thailand, generating a country-wide map of crop types, at a resolution of 10 square meters.

    This first-of-its-kind crop map included locations corresponding to the 2,000 GSV images that the researchers originally set aside, that were labeled by arborists. These human-labeled images were used to validate the map’s labels, and when the team looked to see whether the map’s labels matched the expert, “gold standard” labels, it did so 93 percent of the time.

    “In the U.S., we’re also looking at over 90 percent accuracy, whereas with previous work in India, we’ve only seen 75 percent because ground labels are limited,” Wang says. “Now we can create these labels in a cheap and automated way.”

    The researchers are moving to map crops across India, where roadside images via Google Street View and other services have recently become available.

    “There are over 150 million smallholder farmers in India,” Wang says. “India is covered in agriculture, almost wall-to-wall farms, but very small farms, and historically it’s been very difficult to create maps of India because there are very sparse ground labels.”

    The team is working to generate crop maps in India, which could be used to inform policies having to do with assessing and bolstering yields, as global temperatures and populations rise.

    “What would be interesting would be to create these maps over time,” Wang says. “Then you could start to see trends, and we can try to relate those things to anything like changes in climate and policies.” More

  • in

    Six MIT students selected as spring 2024 MIT-Pillar AI Collective Fellows

    The MIT-Pillar AI Collective has announced six fellows for the spring 2024 semester. With support from the program, the graduate students, who are in their final year of a master’s or PhD program, will conduct research in the areas of AI, machine learning, and data science with the aim of commercializing their innovations.

    Launched by MIT’s School of Engineering and Pillar VC in 2022, the MIT-Pillar AI Collective supports faculty, postdocs, and students conducting research on AI, machine learning, and data science. Supported by a gift from Pillar VC and administered by the MIT Deshpande Center for Technological Innovation, the mission of the program is to advance research toward commercialization.

    The spring 2024 MIT-Pillar AI Collective Fellows are:

    Yasmeen AlFaraj

    Yasmeen AlFaraj is a PhD candidate in chemistry whose interest is in the application of data science and machine learning to soft materials design to enable next-generation, sustainable plastics, rubber, and composite materials. More specifically, she is applying machine learning to the design of novel molecular additives to enable the low-cost manufacturing of chemically deconstructable thermosets and composites. AlFaraj’s work has led to the discovery of scalable, translatable new materials that could address thermoset plastic waste. As a Pillar Fellow, she will pursue bringing this technology to market, initially focusing on wind turbine blade manufacturing and conformal coatings. Through the Deshpande Center for Technological Innovation, AlFaraj serves as a lead for a team developing a spinout focused on recyclable versions of existing high-performance thermosets by incorporating small quantities of a degradable co-monomer. In addition, she participated in the National Science Foundation Innovation Corps program and recently graduated from the Clean Tech Open, where she focused on enhancing her business plan, analyzing potential markets, ensuring a complete IP portfolio, and connecting with potential funders. AlFaraj earned a BS in chemistry from University of California at Berkeley.

    Ruben Castro Ornelas

    Ruben Castro Ornelas is a PhD student in mechanical engineering who is passionate about the future of multipurpose robots and designing the hardware to use them with AI control solutions. Combining his expertise in programming, embedded systems, machine design, reinforcement learning, and AI, he designed a dexterous robotic hand capable of carrying out useful everyday tasks without sacrificing size, durability, complexity, or simulatability. Ornelas’s innovative design holds significant commercial potential in domestic, industrial, and health-care applications because it could be adapted to hold everything from kitchenware to delicate objects. As a Pillar Fellow, he will focus on identifying potential commercial markets, determining the optimal approach for business-to-business sales, and identifying critical advisors. Ornelas served as co-director of StartLabs, an undergraduate entrepreneurship club at MIT, where he earned an BS in mechanical engineering.

    Keeley Erhardt

    Keeley Erhardt is a PhD candidate in media arts and sciences whose research interests lie in the transformative potential of AI in network analysis, particularly for entity correlation and hidden link detection within and across domains. She has designed machine learning algorithms to identify and track temporal correlations and hidden signals in large-scale networks, uncovering online influence campaigns originating from multiple countries. She has similarly demonstrated the use of graph neural networks to identify coordinated cryptocurrency accounts by analyzing financial time series data and transaction dynamics. As a Pillar Fellow, Erhardt will pursue the potential commercial applications of her work, such as detecting fraud, propaganda, money laundering, and other covert activity in the finance, energy, and national security sectors. She has had internships at Google, Facebook, and Apple and held software engineering roles at multiple tech unicorns. Erhardt earned an MEng in electrical engineering and computer science and a BS in computer science, both from MIT.

    Vineet Jagadeesan Nair

    Vineet Jagadeesan Nair is a PhD candidate in mechanical engineering whose research focuses on modeling power grids and designing electricity markets to integrate renewables, batteries, and electric vehicles. He is broadly interested in developing computational tools to tackle climate change. As a Pillar Fellow, Nair will explore the application of machine learning and data science to power systems. Specifically, he will experiment with approaches to improve the accuracy of forecasting electricity demand and supply with high spatial-temporal resolution. In collaboration with Project Tapestry @ Google X, he is also working on fusing physics-informed machine learning with conventional numerical methods to increase the speed and accuracy of high-fidelity simulations. Nair’s work could help realize future grids with high penetrations of renewables and other clean, distributed energy resources. Outside academics, Nair is active in entrepreneurship, most recently helping to organize the 2023 MIT Global Startup Workshop in Greece. He earned an MS in computational science and engineering from MIT, an MPhil in energy technologies from Cambridge University as a Gates Scholar, and a BS in mechanical engineering and a BA in economics from University of California at Berkeley.

    Mahdi Ramadan

    Mahdi Ramadan is a PhD candidate in brain and cognitive sciences whose research interests lie at the intersection of cognitive science, computational modeling, and neural technologies. His work uses novel unsupervised methods for learning and generating interpretable representations of neural dynamics, capitalizing on recent advances in AI, specifically contrastive and geometric deep learning techniques capable of uncovering the latent dynamics underlying neural processes with high fidelity. As a Pillar Fellow, he will leverage these methods to gain a better understanding of dynamical models of muscle signals for generative motor control. By supplementing current spinal prosthetics with generative AI motor models that can streamline, speed up, and correct limb muscle activations in real time, as well as potentially using multimodal vision-language models to infer the patients’ high-level intentions, Ramadan aspires to build truly scalable, accessible, and capable commercial neuroprosthetics. Ramadan’s entrepreneurial experience includes being the co-founder of UltraNeuro, a neurotechnology startup, and co-founder of Presizely, a computer vision startup. He earned a BS in neurobiology from University of Washington.

    Rui (Raymond) Zhou

    Rui (Raymond) Zhou is a PhD candidate in mechanical engineering whose research focuses on multimodal AI for engineering design. As a Pillar Fellow, he will advance models that could enable designers to translate information in any modality or combination of modalities into comprehensive 2D and 3D designs, including parametric data, component visuals, assembly graphs, and sketches. These models could also optimize existing human designs to accomplish goals such as improving ergonomics or reducing drag coefficient. Ultimately, Zhou aims to translate his work into a software-as-a-service platform that redefines product design across various sectors, from automotive to consumer electronics. His efforts have the potential to not only accelerate the design process but also reduce costs, opening the door to unprecedented levels of customization, idea generation, and rapid prototyping. Beyond his academic pursuits, Zhou founded UrsaTech, a startup that integrates AI into education and engineering design. He earned a BS in electrical engineering and computer sciences from University of California at Berkeley. More

  • in

    How symmetry can come to the aid of machine learning

    Behrooz Tahmasebi — an MIT PhD student in the Department of Electrical Engineering and Computer Science (EECS) and an affiliate of the Computer Science and Artificial Intelligence Laboratory (CSAIL) — was taking a mathematics course on differential equations in late 2021 when a glimmer of inspiration struck. In that class, he learned for the first time about Weyl’s law, which had been formulated 110 years earlier by the German mathematician Hermann Weyl. Tahmasebi realized it might have some relevance to the computer science problem he was then wrestling with, even though the connection appeared — on the surface — to be thin, at best. Weyl’s law, he says, provides a formula that measures the complexity of the spectral information, or data, contained within the fundamental frequencies of a drum head or guitar string.

    Tahmasebi was, at the same time, thinking about measuring the complexity of the input data to a neural network, wondering whether that complexity could be reduced by taking into account some of the symmetries inherent to the dataset. Such a reduction, in turn, could facilitate — as well as speed up — machine learning processes.

    Weyl’s law, conceived about a century before the boom in machine learning, had traditionally been applied to very different physical situations — such as those concerning the vibrations of a string or the spectrum of electromagnetic (black-body) radiation given off by a heated object. Nevertheless, Tahmasebi believed that a customized version of that law might help with the machine learning problem he was pursuing. And if the approach panned out, the payoff could be considerable.

    He spoke with his advisor, Stefanie Jegelka — an associate professor in EECS and affiliate of CSAIL and the MIT Institute for Data, Systems, and Society — who believed the idea was definitely worth looking into. As Tahmasebi saw it, Weyl’s law had to do with gauging the complexity of data, and so did this project. But Weyl’s law, in its original form, said nothing about symmetry.

    He and Jegelka have now succeeded in modifying Weyl’s law so that symmetry can be factored into the assessment of a dataset’s complexity. “To the best of my knowledge,” Tahmasebi says, “this is the first time Weyl’s law has been used to determine how machine learning can be enhanced by symmetry.”

    The paper he and Jegelka wrote earned a “Spotlight” designation when it was presented at the December 2023 conference on Neural Information Processing Systems — widely regarded as the world’s top conference on machine learning.

    This work, comments Soledad Villar, an applied mathematician at Johns Hopkins University, “shows that models that satisfy the symmetries of the problem are not only correct but also can produce predictions with smaller errors, using a small amount of training points. [This] is especially important in scientific domains, like computational chemistry, where training data can be scarce.”

    In their paper, Tahmasebi and Jegelka explored the ways in which symmetries, or so-called “invariances,” could benefit machine learning. Suppose, for example, the goal of a particular computer run is to pick out every image that contains the numeral 3. That task can be a lot easier, and go a lot quicker, if the algorithm can identify the 3 regardless of where it is placed in the box — whether it’s exactly in the center or off to the side — and whether it is pointed right-side up, upside down, or oriented at a random angle. An algorithm equipped with the latter capability can take advantage of the symmetries of translation and rotations, meaning that a 3, or any other object, is not changed in itself by altering its position or by rotating it around an arbitrary axis. It is said to be invariant to those shifts. The same logic can be applied to algorithms charged with identifying dogs or cats. A dog is a dog is a dog, one might say, irrespective of how it is embedded within an image. 

    The point of the entire exercise, the authors explain, is to exploit a dataset’s intrinsic symmetries in order to reduce the complexity of machine learning tasks. That, in turn, can lead to a reduction in the amount of data needed for learning. Concretely, the new work answers the question: How many fewer data are needed to train a machine learning model if the data contain symmetries?

    There are two ways of achieving a gain, or benefit, by capitalizing on the symmetries present. The first has to do with the size of the sample to be looked at. Let’s imagine that you are charged, for instance, with analyzing an image that has mirror symmetry — the right side being an exact replica, or mirror image, of the left. In that case, you don’t have to look at every pixel; you can get all the information you need from half of the image — a factor of two improvement. If, on the other hand, the image can be partitioned into 10 identical parts, you can get a factor of 10 improvement. This kind of boosting effect is linear.

    To take another example, imagine you are sifting through a dataset, trying to find sequences of blocks that have seven different colors — black, blue, green, purple, red, white, and yellow. Your job becomes much easier if you don’t care about the order in which the blocks are arranged. If the order mattered, there would be 5,040 different combinations to look for. But if all you care about are sequences of blocks in which all seven colors appear, then you have reduced the number of things — or sequences — you are searching for from 5,040 to just one.

    Tahmasebi and Jegelka discovered that it is possible to achieve a different kind of gain — one that is exponential — that can be reaped for symmetries that operate over many dimensions. This advantage is related to the notion that the complexity of a learning task grows exponentially with the dimensionality of the data space. Making use of a multidimensional symmetry can therefore yield a disproportionately large return. “This is a new contribution that is basically telling us that symmetries of higher dimension are more important because they can give us an exponential gain,” Tahmasebi says. 

    The NeurIPS 2023 paper that he wrote with Jegelka contains two theorems that were proved mathematically. “The first theorem shows that an improvement in sample complexity is achievable with the general algorithm we provide,” Tahmasebi says. The second theorem complements the first, he added, “showing that this is the best possible gain you can get; nothing else is achievable.”

    He and Jegelka have provided a formula that predicts the gain one can obtain from a particular symmetry in a given application. A virtue of this formula is its generality, Tahmasebi notes. “It works for any symmetry and any input space.” It works not only for symmetries that are known today, but it could also be applied in the future to symmetries that are yet to be discovered. The latter prospect is not too farfetched to consider, given that the search for new symmetries has long been a major thrust in physics. That suggests that, as more symmetries are found, the methodology introduced by Tahmasebi and Jegelka should only get better over time.

    According to Haggai Maron, a computer scientist at Technion (the Israel Institute of Technology) and NVIDIA who was not involved in the work, the approach presented in the paper “diverges substantially from related previous works, adopting a geometric perspective and employing tools from differential geometry. This theoretical contribution lends mathematical support to the emerging subfield of ‘Geometric Deep Learning,’ which has applications in graph learning, 3D data, and more. The paper helps establish a theoretical basis to guide further developments in this rapidly expanding research area.” More

  • in

    Creating new skills and new connections with MIT’s Quantitative Methods Workshop

    Starting on New Year’s Day, when many people were still clinging to holiday revelry, scores of students and faculty members from about a dozen partner universities instead flipped open their laptops for MIT’s Quantitative Methods Workshop, a jam-packed, weeklong introduction to how computational and mathematical techniques can be applied to neuroscience and biology research. But don’t think of QMW as a “crash course.” Instead the program’s purpose is to help elevate each participant’s scientific outlook, both through the skills and concepts it imparts and the community it creates.

    “It broadens their horizons, it shows them significant applications they’ve never thought of, and introduces them to people whom as researchers they will come to know and perhaps collaborate with one day,” says Susan L. Epstein, a Hunter College computer science professor and education coordinator of MIT’s Center for Brains, Minds, and Machines, which hosts the program with the departments of Biology and Brain and Cognitive Sciences and The Picower Institute for Learning and Memory. “It is a model of interdisciplinary scholarship.”

    This year 83 undergraduates and faculty members from institutions that primarily serve groups underrepresented in STEM fields took part in the QMW, says organizer Mandana Sassanfar, senior lecturer and director of diversity and science outreach across the four hosting MIT entities. Since the workshop launched in 2010, it has engaged more than 1,000 participants, of whom more than 170 have gone on to participate in MIT Summer Research Programs (such as MSRP-BIO), and 39 have come to MIT for graduate school.

    Individual goals, shared experience

    Undergraduates and faculty in various STEM disciplines often come to QMW to gain an understanding of, or expand their expertise in, computational and mathematical data analysis. Computer science- and statistics-minded participants come to learn more about how such techniques can be applied in life sciences fields. In lectures; in hands-on labs where they used the computer programming language Python to process, analyze, and visualize data; and in less formal settings such as tours and lunches with MIT faculty, participants worked and learned together, and informed each other’s perspectives.

    Brain and Cognitive Sciences Professor Nancy Kanwisher delivers a lecture in MIT’s Building 46 on functional brain imaging to QMW participants.

    Photo: Mandana Sassanfar

    Previous item
    Next item

    And regardless of their field of study, participants made connections with each other and with the MIT students and faculty who taught and spoke over the course of the week.

    Hunter College computer science sophomore Vlad Vostrikov says that while he has already worked with machine learning and other programming concepts, he was interested to “branch out” by seeing how they are used to analyze scientific datasets. He also valued the chance to learn the experiences of the graduate students who teach QMW’s hands-on labs.

    “This was a good way to explore computational biology and neuroscience,” Vostrikov says. “I also really enjoy hearing from the people who teach us. It’s interesting to hear where they come from and what they are doing.”

    Jariatu Kargbo, a biology and chemistry sophomore at University of Maryland Baltimore County, says when she first learned of the QMW she wasn’t sure it was for her. It seemed very computation-focused. But her advisor Holly Willoughby encouraged Kargbo to attend to learn about how programming could be useful in future research — currently she is taking part in research on the retina at UMBC. More than that, Kargbo also realized it would be a good opportunity to make connections at MIT in advance of perhaps applying for MSRP this summer.

    “I thought this would be a great way to meet up with faculty and see what the environment is like here because I’ve never been to MIT before,” Kargbo says. “It’s always good to meet other people in your field and grow your network.”

    QMW is not just for students. It’s also for their professors, who said they can gain valuable professional education for their research and teaching.

    Fayuan Wen, an assistant professor of biology at Howard University, is no stranger to computational biology, having performed big data genetic analyses of sickle cell disease (SCD). But she’s mostly worked with the R programming language and QMW’s focus is on Python. As she looks ahead to projects in which she wants analyze genomic data to help predict disease outcomes in SCD and HIV, she says a QMW session delivered by biology graduate student Hannah Jacobs was perfectly on point.

    “This workshop has the skills I want to have,” Wen says.

    Moreover, Wen says she is looking to start a machine-learning class in the Howard biology department and was inspired by some of the teaching materials she encountered at QMW — for example, online curriculum modules developed by Taylor Baum, an MIT graduate student in electrical engineering and computer science and Picower Institute labs, and Paloma Sánchez-Jáuregui, a coordinator who works with Sassanfar.

    Tiziana Ligorio, a Hunter College computer science doctoral lecturer who together with Epstein teaches a deep machine-learning class at the City University of New York campus, felt similarly. Rather than require a bunch of prerequisites that might drive students away from the class, Ligorio was looking to QMW’s intense but introductory curriculum as a resource for designing a more inclusive way of getting students ready for the class.

    Instructive interactions

    Each day runs from 9 a.m. to 5 p.m., including morning and afternoon lectures and hands-on sessions. Class topics ranged from statistical data analysis and machine learning to brain-computer interfaces, brain imaging, signal processing of neural activity data, and cryogenic electron microscopy.

    “This workshop could not happen without dedicated instructors — grad students, postdocs, and faculty — who volunteer to give lectures, design and teach hands-on computer labs, and meet with students during the very first week of January,” Saassanfar says.

    MIT assistant professor of biology Brady Weissbourd (center) converses with QMW student participants during a lunch break.

    Photo: Mandana Sassanfar

    Previous item
    Next item

    The sessions surround student lunches with MIT faculty members. For example, at midday Jan. 2, assistant professor of biology Brady Weissbourd, an investigator in the Picower Institute, sat down with seven students in one of Building 46’s curved sofas to field questions about his neuroscience research in jellyfish and how he uses quantitative techniques as part of that work. He also described what it’s like to be a professor, and other topics that came to the students’ minds.

    Then the participants all crossed Vassar Street to Building 26’s Room 152, where they formed different but similarly sized groups for the hands-on lab “Machine learning applications to studying the brain,” taught by Baum. She guided the class through Python exercises she developed illustrating “supervised” and “unsupervised” forms of machine learning, including how the latter method can be used to discern what a person is seeing based on magnetic readings of brain activity.

    As students worked through the exercises, tablemates helped each other by supplementing Baum’s instruction. Ligorio, Vostrikov, and Kayla Blincow, assistant professor of biology at the University of the Virgin Islands, for instance, all leapt to their feet to help at their tables.

    Hunter College lecturer of computer science Tiziana Ligorio (standing) explains a Python programming concept to students at her table during a workshop session.

    Photo: David Orenstein

    Previous item
    Next item

    At the end of the class, when Baum asked students what they had learned, they offered a litany of new knowledge. Survey data that Sassanfar and Sánchez-Jáuregui use to anonymously track QMW outcomes, revealed many more such attestations of the value of the sessions. With a prompt asking how one might apply what they’ve learned, one respondent wrote: “Pursue a research career or endeavor in which I apply the concepts of computer science and neuroscience together.”

    Enduring connections

    While some new QMW attendees might only be able to speculate about how they’ll apply their new skills and relationships, Luis Miguel de Jesús Astacio could testify to how attending QMW as an undergraduate back in 2014 figured into a career where he is now a faculty member in physics at the University of Puerto Rico Rio Piedras Campus. After QMW, he returned to MIT that summer as a student in the lab of neuroscientist and Picower Professor Susumu Tonegawa. He came back again in 2016 to the lab of physicist and Francis Friedman Professor Mehran Kardar. What’s endured for the decade has been his connection to Sassanfar. So while he was once a student at QMW, this year he was back with a cohort of undergraduates as a faculty member.

    Michael Aldarondo-Jeffries, director of academic advancement programs at the University of Central Florida, seconded the value of the networking that takes place at QMW. He has brought students for a decade, including four this year. What he’s observed is that as students come together in settings like QMW or UCF’s McNair program, which helps to prepare students for graduate school, they become inspired about a potential future as researchers.

    “The thing that stands out is just the community that’s formed,” he says. “For many of the students, it’s the first time that they’re in a group that understands what they’re moving toward. They don’t have to explain why they’re excited to read papers on a Friday night.”

    Or why they are excited to spend a week including New Year’s Day at MIT learning how to apply quantitative methods to life sciences data. More

  • in

    New hope for early pancreatic cancer intervention via AI-based risk prediction

    The first documented case of pancreatic cancer dates back to the 18th century. Since then, researchers have undertaken a protracted and challenging odyssey to understand the elusive and deadly disease. To date, there is no better cancer treatment than early intervention. Unfortunately, the pancreas, nestled deep within the abdomen, is particularly elusive for early detection. 

    MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) scientists, alongside Limor Appelbaum, a staff scientist in the Department of Radiation Oncology at Beth Israel Deaconess Medical Center (BIDMC), were eager to better identify potential high-risk patients. They set out to develop two machine-learning models for early detection of pancreatic ductal adenocarcinoma (PDAC), the most common form of the cancer. To access a broad and diverse database, the team synced up with a federated network company, using electronic health record data from various institutions across the United States. This vast pool of data helped ensure the models’ reliability and generalizability, making them applicable across a wide range of populations, geographical locations, and demographic groups.

    The two models — the “PRISM” neural network, and the logistic regression model (a statistical technique for probability), outperformed current methods. The team’s comparison showed that while standard screening criteria identify about 10 percent of PDAC cases using a five-times higher relative risk threshold, Prism can detect 35 percent of PDAC cases at this same threshold. 

    Using AI to detect cancer risk is not a new phenomena — algorithms analyze mammograms, CT scans for lung cancer, and assist in the analysis of Pap smear tests and HPV testing, to name a few applications. “The PRISM models stand out for their development and validation on an extensive database of over 5 million patients, surpassing the scale of most prior research in the field,” says Kai Jia, an MIT PhD student in electrical engineering and computer science (EECS), MIT CSAIL affiliate, and first author on an open-access paper in eBioMedicine outlining the new work. “The model uses routine clinical and lab data to make its predictions, and the diversity of the U.S. population is a significant advancement over other PDAC models, which are usually confined to specific geographic regions, like a few health-care centers in the U.S. Additionally, using a unique regularization technique in the training process enhanced the models’ generalizability and interpretability.” 

    “This report outlines a powerful approach to use big data and artificial intelligence algorithms to refine our approach to identifying risk profiles for cancer,” says David Avigan, a Harvard Medical School professor and the cancer center director and chief of hematology and hematologic malignancies at BIDMC, who was not involved in the study. “This approach may lead to novel strategies to identify patients with high risk for malignancy that may benefit from focused screening with the potential for early intervention.” 

    Prismatic perspectives

    The journey toward the development of PRISM began over six years ago, fueled by firsthand experiences with the limitations of current diagnostic practices. “Approximately 80-85 percent of pancreatic cancer patients are diagnosed at advanced stages, where cure is no longer an option,” says senior author Appelbaum, who is also a Harvard Medical School instructor as well as radiation oncologist. “This clinical frustration sparked the idea to delve into the wealth of data available in electronic health records (EHRs).”The CSAIL group’s close collaboration with Appelbaum made it possible to understand the combined medical and machine learning aspects of the problem better, eventually leading to a much more accurate and transparent model. “The hypothesis was that these records contained hidden clues — subtle signs and symptoms that could act as early warning signals of pancreatic cancer,” she adds. “This guided our use of federated EHR networks in developing these models, for a scalable approach for deploying risk prediction tools in health care.”Both PrismNN and PrismLR models analyze EHR data, including patient demographics, diagnoses, medications, and lab results, to assess PDAC risk. PrismNN uses artificial neural networks to detect intricate patterns in data features like age, medical history, and lab results, yielding a risk score for PDAC likelihood. PrismLR uses logistic regression for a simpler analysis, generating a probability score of PDAC based on these features. Together, the models offer a thorough evaluation of different approaches in predicting PDAC risk from the same EHR data.

    One paramount point for gaining the trust of physicians, the team notes, is better understanding how the models work, known in the field as interpretability. The scientists pointed out that while logistic regression models are inherently easier to interpret, recent advancements have made deep neural networks somewhat more transparent. This helped the team to refine the thousands of potentially predictive features derived from EHR of a single patient to approximately 85 critical indicators. These indicators, which include patient age, diabetes diagnosis, and an increased frequency of visits to physicians, are automatically discovered by the model but match physicians’ understanding of risk factors associated with pancreatic cancer. 

    The path forward

    Despite the promise of the PRISM models, as with all research, some parts are still a work in progress. U.S. data alone are the current diet for the models, necessitating testing and adaptation for global use. The path forward, the team notes, includes expanding the model’s applicability to international datasets and integrating additional biomarkers for more refined risk assessment.

    “A subsequent aim for us is to facilitate the models’ implementation in routine health care settings. The vision is to have these models function seamlessly in the background of health care systems, automatically analyzing patient data and alerting physicians to high-risk cases without adding to their workload,” says Jia. “A machine-learning model integrated with the EHR system could empower physicians with early alerts for high-risk patients, potentially enabling interventions well before symptoms manifest. We are eager to deploy our techniques in the real world to help all individuals enjoy longer, healthier lives.” 

    Jia wrote the paper alongside Applebaum and MIT EECS Professor and CSAIL Principal Investigator Martin Rinard, who are both senior authors of the paper. Researchers on the paper were supported during their time at MIT CSAIL, in part, by the Defense Advanced Research Projects Agency, Boeing, the National Science Foundation, and Aarno Labs. TriNetX provided resources for the project, and the Prevent Cancer Foundation also supported the team. More