More stories

  • in

    “We offer another place for knowledge”

    In the Dzaleka Refugee Camp in Malawi, Jospin Hassan didn’t have access to the education opportunities he sought. So, he decided to create his own. 

    Hassan knew the booming fields of data science and artificial intelligence could bring job opportunities to his community and help solve local challenges. After earning a spot in the 2020-21 cohort of the Certificate Program in Computer and Data Science from MIT Refugee Action Hub (ReACT), Hassan started sharing MIT knowledge and skills with other motivated learners in Dzaleka.

    MIT ReACT is now Emerging Talent, part of the Jameel World Education Lab (J-WEL) at MIT Open Learning. Currently serving its fifth cohort of global learners, Emerging Talent’s year-long certificate program incorporates high-quality computer science and data analysis coursework from MITx, professional skill building, experiential learning, apprenticeship work, and opportunities for networking with MIT’s global community of innovators. Hassan’s cohort honed their leadership skills through interactive online workshops with J-WEL and the 10-week online MIT Innovation Leadership Bootcamp. 

    “My biggest takeaway was networking, collaboration, and learning from each other,” Hassan says.

    Today, Hassan’s organization ADAI Circle offers mentorship and education programs for youth and other job seekers in the Dzaleka Refugee Camp. The curriculum encourages hands-on learning and collaboration.

    Launched in 2020, ADAI Circle aims to foster job creation and reduce poverty in Malawi through technology and innovation. In addition to their classes in data science, AI, software development, and hardware design, their Innovation Hub offers internet access to anyone in need. 

    Doing something different in the community

    Hassan first had the idea for his organization in 2018 when he reached a barrier in his own education journey. There were several programs in the Dzaleka Refugee Camp teaching learners how to code websites and mobile apps, but Hassan felt that they were limited in scope. 

    “We had good devices and internet access,” he says, “but I wanted to learn something new.” 

    Teaming up with co-founder Patrick Byamasu, Hassan and Byamasu set their sights on the longevity of AI and how that might create more jobs for people in their community. “The world is changing every day, and data scientists are in a higher demand today in various companies,” Hassan says. “For this reason, I decided to expand and share the knowledge that I acquired with my fellow refugees and the surrounding villages.”

    ADAI Circle draws inspiration from Hassan’s own experience with MIT Emerging Talent coursework, community, and training opportunities. For example, the MIT Bootcamps model is now standard practice for ADAI Circle’s annual hackathon. Hassan first introduced the hackathon to ADAI Circle students as part of his final experiential learning project of the Emerging Talent certificate program. 

    ADAI Circle’s annual hackathon is now an interactive — and effective — way to select students who will most benefit from its programs. The local schools’ curricula, Hassan says, might not provide enough of an academic challenge. “We can’t teach everyone and accommodate everyone because there are a lot of schools,” Hassan says, “but we offer another place for knowledge.” 

    The hackathon helps students develop data science and robotics skills. Before they start coding, students have to convince ADAI Circle teachers that their designs are viable, answering questions like, “What problem are you solving?” and “How will this help the community?” A community-oriented mindset is just as important to the curriculum.

    In addition to the practical skills Hassan gained from Emerging Talent, he leveraged the program’s network to help his community. Thanks to a social media connection Hassan made with the nongovernmental organization Give Internet after one of Emerging Talent’s virtual events, Give Internet brought internet access to ADAI Circle.

    Bridging the AI gap to unmet communities

    In 2023, ADAI Circle connected with another MIT Open Learning program, Responsible AI for Social Empowerment and Education (RAISE), which led to a pilot test of a project-based AI curriculum for middle school students. The Responsible AI for Computational Action (RAICA) curriculum equipped ADAI Circle students with AI skills for chatbots and natural language processing. 

    “I liked that program because it was based on what we’re teaching at the center,” Hassan says, speaking of his organization’s mission of bridging the AI gap to reach unmet communities.

    The RAICA curriculum was designed by education experts at MIT Scheller Teacher Education Program (STEP Lab) and AI experts from MIT Personal Robots group and MIT App Inventor. ADAI Circle teachers gave detailed feedback about the pilot to the RAICA team. During weekly meetings with Glenda Stump, education research scientist for RAICA and J-WEL, and Angela Daniel, teacher development specialist for RAICA, the teachers discussed their experiences, prepared for upcoming lessons, and translated the learning materials in real time. 

    “We are trying to create a curriculum that’s accessible worldwide and to students who typically have little or no access to technology,” says Mary Cate Gustafson-Quiett, curriculum design manager at STEP Lab and project manager for RAICA. “Working with ADAI and students in a refugee camp challenged us to design in more culturally and technologically inclusive ways.”

    Gustafson-Quiett says the curriculum feedback from ADAI Circle helped inform how RAICA delivers teacher development resources to accommodate learning environments with limited internet access. “They also exposed places where our team’s western ideals, specifically around individualism, crept into activities in the lesson and contrasted with their more communal cultural beliefs,” she says.

    Eager to introduce more MIT-developed AI resources, Hassan also shared MIT RAISE’s Day of AI curricula with ADAI Circle teachers. The new ChatGPT module gave students the chance to level up their chatbot programming skills that they gained from the RAICA module. Some of the advanced students are taking initiative to use ChatGPT API to create their own projects in education.

    “We don’t want to tell them what to do, we want them to come up with their own ideas,” Hassan says.

    Although ADAI Circle faces many challenges, Hassan says his team is addressing them one by one. Last year, they didn’t have electricity in their Innovation Hub, but they solved that. This year, they achieved a stable internet connection that’s one of the fastest in Malawi. Next up, they are hoping to secure more devices for their students, create more jobs, and add additional hubs throughout the community. The work is never done, but Hassan is starting to see the impact that ADAI Circle is making. 

    “For those who want to learn data science, let’s let them learn,” Hassan says. More

  • in

    Bridging the gap between preschool policy, practice, and research

    Preschool in the United States has grown dramatically in the past several decades. From 1970 to 2018, preschool enrollment increased from 38 percent to 64 percent of eligible students. Fourteen states are currently discussing preschool expansion, with seven likely to pass some form of universal eligibility within the next calendar year. Amid this expansion, families, policymakers, and practitioners want to better understand preschools’ impacts and the factors driving preschool quality. 

    To address these and other questions, MIT Blueprint Labs recently held a Preschool Research Convening that brought researchers, funders, practitioners, and policymakers to Nashville, Tennessee, to discuss the future of preschool research. Parag Pathak, the Class of 1922 Professor of Economics at MIT and a Blueprint Labs co-founder and director, opened by sharing the goals of the convening: “Our goals for the next two days are to identify pressing, unanswered research questions and connect researchers, practitioners, policymakers, and funders. We also hope to craft a compelling research agenda.”

    Pathak added, “Given preschool expansion nationwide, we believe now is the moment to centralize our efforts and create knowledge to inform pressing decisions. We aim to generate rigorous preschool research that will lead to higher-quality and more equitable preschool.”

    Over 75 participants hailing from universities, early childhood education organizations, school districts, state education departments, and national policy organizations attended the convening, held Nov. 13-14. Through panels, presentations, and conversations, participants discussed essential subjects in the preschool space, built the foundations for valuable partnerships, and formed an actionable and inclusive research agenda.

    Research presented

    Among research works presented was a recent paper by Blueprint Labs affiliate Jesse Bruhn, an assistant professor of economics at Brown University and co-author Emily Emick, also of Brown, reviewing the state of lottery-based preschool research. They found that random evaluations from the past 60 years demonstrate that preschool improves children’s short-run academic outcomes, but those effects fade over time. However, positive impacts re-emerge in the long term through improved outcomes like high school graduation and college enrollment. Limited rigorous research studies children’s behavioral outcomes or the factors that lead to high-quality preschool, though trends from preliminary research suggest that full-day programs, language immersion programs, and specific curricula may benefit children.  

    An earlier Blueprint Labs study that was also presented at the convening is the only recent lottery-based study to provide insight on preschool’s long-term impacts. The work, conducted by Pathak and two others, reveals that enrolling in Boston Public Schools’ universal preschool program boosts children’s likelihood of graduating high school and enrolling in college. Yet, the preschool program had little detectable impact on elementary, middle, and high school state standardized test scores. Students who attended Boston preschool were less likely to be suspended or incarcerated in high school. However, research on preschool’s impacts on behavioral outcomes is limited; it remains an important area for further study. Future work could also fill in other gaps in research, such as access, alternative measures of student success, and variation across geographic contexts and student populations.

    More data sought

    State policy leaders also spoke at the event, including Lisa Roy, executive director of the Colorado Department of Early Childhood, and Sarah Neville-Morgan, deputy superintendent in the Opportunities for All Branch at the California Department of Education. Local practitioners, such as Elsa Holguín, president and CEO of the Denver Preschool Program, and Kristin Spanos, CEO of First 5 Alameda County, as well as national policy leaders including Lauren Hogan, managing director of policy and professional advancement at the National Association for the Education of Young Children, also shared their perspectives. 

    In panel discussions held throughout the kickoff, practitioners, policymakers, and researchers shared their perspectives on pressing questions for future research, including: What practices define high-quality preschool? How does preschool affect family systems and the workforce? How can we expand measures of effectiveness to move beyond traditional assessments? What can we learn from preschool’s differential impacts across time, settings, models, and geographies?

    Panelists also discussed the need for reliable data, sharing that “the absence of data allows the status quo to persist.” Several sessions focused on involving diverse stakeholders in the research process, highlighting the need for transparency, sensitivity to community contexts, and accessible communication about research findings.

    On the second day of the Preschool Research Convening, Pathak shared with attendees, “One of our goals… is to forge connections between all of you in this room and support new partnerships between researchers and practitioners. We hope your conversations are the launching pad for future collaborations.” Jason Sachs, the deputy director of early learning at the Bill and Melinda Gates Foundation and former director of early childhood at Boston Public Schools, provided closing remarks.

    The convening laid the groundwork for a research agenda and new research partnerships that can help answer questions about what works, in what context, for which kids, and under which conditions. Answers to these questions will be fundamental to ensure preschool expands in the most evidence-informed and equitable way possible.

    With this goal in mind, Blueprint Labs aims to create a new Preschool Research Collaborative to equip practitioners, policymakers, funders, and researchers with rigorous, actionable evidence on preschool performance. Pathak states, “We hope this collaborative will foster evidence-based decision-making that improves children’s short- and long-term outcomes.” The connections and research agenda formed at the Preschool Research Convening are the first steps toward achieving that goal. More

  • in

    “MIT can give you ‘superpowers’”

    Speaking at the virtual MITx MicroMasters Program Joint Completion Celebration last summer, Diogo da Silva Branco Magalhães described watching a Spider-Man movie with his 8-year-old son and realizing that his son thought MIT was a fictional entity that existed only in the Marvel universe.

    “I had to tell him that MIT also exists in the real world, and that some of the programs are available online for everyone,” says da Silva Branco Magalhães, who earned his credential in the MicroMasters in Statistics and Data Science program. “You don’t need to be a superhero to participate in an MIT program, but MIT can give you ‘superpowers.’ In my case, the superpower that I was looking to acquire was a better understanding of the key technologies that are shaping the future of transportation.

    Part of MIT Open Learning, the MicroMasters programs have drawn in almost 1.4 million learners, spanning nearly every country in the world. More than 7,500 people have earned their credentials across the MicroMasters programs, including: Statistics and Data Science; Supply Chain Management; Data, Economics, and Design of Policy; Principles of Manufacturing; and Finance. 

    Earning his MicroMasters credential not only gave da Silva Branco Magalhães a strong foundation to tackle more complex transportation problems, but it also opened the door to pursuing an accelerated graduate degree via a Northwestern University online program.

    Learners who earn their MicroMasters credentials gain the opportunity to apply to and continue their studies at a pathway school. The MicroMasters in Statistics and Data Science credential can be applied as credit for a master’s program at more than 30 universities, as well as MIT’s PhD Program in Social and Engineering Systems. Da Silva Branco Magalhães, originally from Portugal and now based in Australia, seized this opportunity and enrolled in Northwestern University’s Master’s in Data Science for MIT MicroMasters Credential Holders. 

    The pathway to an enhanced career

    The pathway model launched in 2016 with the MicroMasters in Supply Chain Management. Now, there are over 50 pathway institutions that offer more than 100 different programs for master’s degrees. With pathway institutions located around the world, MicroMasters credential holders can obtain master’s degrees from local residential or virtual programs, at a location convenient to them. They can receive credit for their MicroMasters courses upon acceptance, providing flexibility for online programs and also shortening the time needed on site for residential programs.

    “The pathways expand opportunities for learners, and also help universities attract a broader range of potential students, which can enrich their programs,” says Dana Doyle, senior director for the MicroMasters Program at MIT Open Learning. “This is a tangible way we can achieve our mission of expanding education access.”

    Da Silva Branco Magalhães began the MicroMasters in Statistics and Data Science program in 2020, ultimately completing the program in 2022.

    “After having worked for 20 years in the transportation sector in various roles, I realized I was no longer equipped as a professional to deal with the new technologies that were set to disrupt the mobility sector,” says da Silva Branco Magalhães. “It became clear to me that data and AI were the driving forces behind new products and services such as autonomous vehicles, on-demand transport, or mobility as a service, but I didn’t really understand how data was being used to achieve these outcomes, so I needed to improve my knowledge.”

    July 2023 MicroMasters Program Joint Completion Celebration for SCM, DEDP, PoM, SDS, and FinVideo: MIT Open Learning

    The MicroMasters in Statistics and Data Science was developed by the MIT Institute for Data, Systems, and Society and MITx. Credential holders are required to complete four courses equivalent to graduate-level courses in statistics and data science at MIT and a capstone exam comprising four two-hour proctored exams.

    “The content is world-class,” da Silva Branco Magalhães says of the program. “Even the most complex concepts were explained in a very intuitive way. The exercises and the capstone exam are challenging and stimulating — and MIT-level — which makes this credential highly valuable in the market.”

    Da Silva Branco Magalhães also found the discussion forum very useful, and valued conversations with his colleagues, noting that many of these discussions later continued after completion of the program.

    Gaining analysis and leadership skills

    Now in the Northwestern pathway program, da Silva Branco Magalhães finds that the MicroMasters in Statistics and Data Science program prepared him well for this next step in his studies. The nine-course, accelerated, online master’s program is designed to offer the same depth and rigor of Northwestern’s 12-course MS in Data Science program, aiming to help students build essential analysis and leadership skills that can be directly implemented into the professional realm. Students learn how to make reliable predictions using traditional statistics and machine learning methods.

    Da Silva Branco Magalhães says he has appreciated the remote nature of the Northwestern program, as he started it in France and then completed the first three courses in Australia. He also values the high number of elective courses, allowing students to design the master’s program according to personal preferences and interests.

    “I want to be prepared to meet the challenges and seize the opportunities that AI and data science technologies will bring to the professional realm,” he says. “With this credential, there are no limits to what you can achieve in the field of data science.” More

  • in

    Learning how to learn

    Suppose you need to be on today’s only ferry to Martha’s Vineyard, which leaves at 2 p.m. It takes about 30 minutes (on average) to drive from where you are to the terminal. What time should you leave?

    This is one of many common real-life examples used by Richard “Dick” Larson, a post-tenure professor in the MIT Institute for Data, Systems, and Society (IDSS), to explore exemplary problem-solving in his new book “Model Thinking for Everyday Life: How to Make Smarter Decisions.”

    Larson’s book synthesizes a lifelong career as an MIT professor and researcher, highlighting crucial skills underpinning all empirical, rational, and critical thinking. “Critical thinkers are energetic detectives … always seeking the facts,” he says. “Additional facts may surface that can result in modified conclusions … A critical thinker is aware of the pitfalls of human intuition.”

    For Larson, “model” thinking means not only thinking aided by conceptual and/or mathematical models, but a broader mode of critical thought that is informed by STEM concepts and worthy of emulation.

    In the ferry example, a key concept at play is uncertainty. Accounting for uncertainty is a core challenge faced by systems engineers, operations researchers, and modelers of complex networks — all hats Larson has worn in over half a century at MIT. 

    Uncertainty complicates all prediction and decision-making, and while statistics offers tactics for managing uncertainty, “Model Thinking” is not a math textbook. There are equations for the math-curious, but it doesn’t take a degree from MIT to understand that

    an average of 30 minutes would cover a range of times, some shorter, some longer;
    outliers can exist in the data, like the time construction traffic added an additional 30 minutes
    “about 30 minutes” is a prediction based on past experience, not current information (road closures, accidents, etc.); and
    the consequence for missing the ferry is not a delay of hours, but a full day — which might completely disrupt the trip or its purpose.
    And so, without doing much explicit math, you calculate variables, weigh the likelihood of different outcomes against the consequences of failure, and choose a departure time. Larson’s conclusion is one championed by dads everywhere: Leave on the earlier side, just in case. 

    “The world’s most important, invisible profession”

    Throughout Larson’s career at MIT, he has focused on the science of solving problems and making better decisions. “Faced with a new problem, people often lack the ability to frame and formulate it using basic principles,” argues Larson. “Our emphasis is on problem framing and formulation, with mathematics and physics playing supporting roles.”

    This is operations research, which Larson calls “the world’s most important invisible profession.” Formalized as a field during World War II, operations researchers use data and models to try to derive the “physics” of complex systems. The goal is typically optimizing things like scheduling, routing, simulation, prediction, planning, logistics, and queueing, for which Larson is especially well-known. A frequent media expert on the subject, he earned the moniker “Dr. Q” — and his research has led to new approaches for easing congestion in urban traffic, fast-food lines, and banks.

    Larson’s experience with complex systems provides a wealth of examples to draw on, but he is keen to demonstrate that his purview includes everyday decisions, and that “Model Thinking” is a book for everyone. 

    “Everybody uses models, whether they realize it or not,” he says. “If you have a bunch of errands to do, and you try to plan out the order to do them so you don’t have to drive as much, that’s more or less the ‘traveling salesman’ problem, a classic from operations research. Or when someone is shopping for groceries and thinking about how much of each product they need — they’re basically using an inventory management model of their pantry.”

    Larson’s takeaway is that since we all use conceptual models for thinking, planning, and decision-making, then understanding how our minds use models, and learning to use them more intentionally, can lead to clearer thinking, better planning, and smarter decision-making — especially when they are grounded in principles drawn from math and physics.

    Passion for the process

    Teaching STEM principles has long been a mission of Larson’s, who co-founded MIT BLOSSOMS (Blended Learning Open Source Science or Math Studies) with his late wife, Mary Elizabeth Murray. BLOSSOMS provides free, interactive STEM lessons and videos for primary school students around the world. Some of the exercises in “Model Thinking” refer to these videos as well.

    “A child’s educational opportunities shouldn’t be limited by where they were born or the wealth of their parents,” says Larson of the enterprise. 

    It was also Murray who encouraged Larson to write “Model Thinking.” “She saw how excited I was about it,” he says. “I had the choice of writing a textbook on queuing, say, or something else. It didn’t excite me at all.”

    Larson’s passion is for the process, not the answer. Throughout the book, he marks off opportunities for active learning with an icon showing the two tools necessary to complete each task: a sharpened pencil and a blank sheet of paper. 

    “Many of us in the age of instant Google searches have lost the ability — or perhaps the patience — to undertake multistep problems,” he argues.

    Model thinkers, on the other hand, understand and remember solutions better for having thought through the steps, and can better apply what they’ve learned to future problems. Larson’s “homework” is to do critical thinking, not just read about it. By working through thought experiments and scenarios, readers can achieve a deeper understanding of concepts like selection bias, random incidence, and orders of magnitude, all of which can present counterintuitive examples to the uninitiated.

    For Larson, who jokes that he is “an evangelist for models,” there is no better way to learn than by doing — except perhaps to teach. “Teaching a difficult topic is our best way to learn it ourselves, is an unselfish act, and bonds the teacher and learner,” he writes.

    In his long career as an educator and education advocate, Larson says he has always remained a learner himself. His love for learning illuminates every page of “Model Thinking,” which he hopes will provide others with the enjoyment and satisfaction that comes from learning new things and solving complex problems.

    “You will learn how to learn,” Larson says. “And you will enjoy it!” More

  • in

    Learner in Afghanistan reaches beyond barriers to pursue career in data science

    Tahmina S. was a junior studying computer engineering at a top university in Afghanistan when a new government policy banned women from pursuing education. In August 2021, the Taliban prohibited girls from attending school beyond the sixth grade. While women were initially allowed to continue to attend universities, by October 2021, an order from the Ministry of Higher Education declared that all women in Afghanistan were suspended from attending public and private centers of higher education.

    Determined to continue her studies and pursue her ambitions, Tahmina found the MIT Refugee Action Hub (ReACT) and was accepted to its Certificate in Computer Science and Data Science program in 2022.

    “ReACT helped me realize that I can do big things and be a part of big things,” she says.

    MIT ReACT provides education and professional opportunities to learners from refugee and forcibly displaced communities worldwide. ReACT’s core pillars include academic development, human skills development, employment pathways, and network building. Since 2017, ReACT has offered its Certificate in Computer and Data Science (CDS) program free-of-cost to learners wherever they live. In 2022, ReACT welcomed its largest and most diverse cohort to date — 136 learners from 29 countries — including 25 learners from Afghanistan, more than half of whom are women.

    Tahmina was able to select her classes in the program, and especially valued learning Python — which has led to her studying other programming languages and gaining more skills in data science. She’s continuing to take online courses in hopes of completing her undergraduate degree, and someday pursuing a masters degree in computer science and becoming a data scientist.

    “It’s an important and fun career. I really love data,” she says. “If this is my only time for this experience, I will bring to the table what I have, and do my best.”

    In addition to the education ban, Tahmina also faced the challenge of accessing an internet connection, which is expensive where she lives. But she regularly studies between 12 and 14 hours a day to achieve her dreams.

    The ReACT program offers a blend of asynchronous and synchronous learning. Learners complete a curated series of online, rigorous MIT coursework through MITx with the support of teaching assistants and collaborators, and also participate in a series of interactive online workshops in interpersonal skills that are critical to success in education and careers.

    ReACT learners engage with MIT’s global network of experts including MIT staff, faculty, and alumni — as well as collaborators across technology, humanitarian, and government sectors.

    “I loved that experience a lot, it was a huge achievement. I’m grateful ReACT gave me a chance to be a part of that team of amazing people. I’m amazed I completed that program, because it was really challenging.”

    Theory into practice

    Tahmina was one of 10 students from the ReACT cohort accepted to the highly competitive MIT Innovation Leadership Bootcamp program. She worked on a team of five people who initiated a business proposal and took the project through each phase of the development process. Her team’s project was creating an app for finance management for users aged 23-51 — including all the graphic elements and a final presentation. One valuable aspect of the boot camp, Tahmina says, was presenting their project to real investors who then provided business insights and actionable feedback.

    As part of this ReACT cohort, Tahmina also participated in the Global Apprenticeship Program (GAP) pilot, an initiative led by Talanta and with the participation of MIT Open Learning as curriculum provider. The GAP initiative focuses on improving diverse emerging talent job preparedness and exploring how companies can successfully recruit, onboard, and retain this talent through remote, paid internships. Through the GAP pilot, Tahmina received training in professional skills, resume and interview preparation, and was matched with a financial sector firm for a four-month remote internship in data science.

    To prepare Tahmina and other learners for these professional experiences, ReACT trains its cohorts to work with people who have diverse backgrounds, experiences, and challenges. The nonprofit Na’amal offered workshops covering areas such as problem-solving, innovation and ideation, goal-setting, communication, teamwork, and infrastructure and info security. Tahmina was able to access English classes and learn valuable career skills, such as writing a resume.“This was an amazing part for me. There’s a huge difference going from theoretical to practical,” she says. “Not only do you have to have the theoretical experience, you have to have soft skills. You have to communicate everything you learn to other people, because other people in the business might not have that knowledge, so you have to tell the story in a way that they can understand.”

    ReACT wanted the women in the program to be mentored by women who were not only leaders in the tech field, but working in the same geographic region as learners. At the start of the internship, Na’amal connected Tahmina with a mentor, Maha Gad, who is head of talent development at Talabat and lives in Dubai. Tahmina met with Gad at the beginning and end of each month, giving her the opportunity to ask expansive questions. Tahmina says Gad encouraged her to research and plan first, and then worked with her to explore new tools, like Trello.

    Wanting to put her skills to use locally, Tahmina volunteered at the nonprofit Rumie, a community for Afghan women and girls, working as a learning designer, translator, team leader, and social media manager. She currently volunteers at Correspondents of the World as a story ambassador, helping Afghan people share stories, community, and culture — especially telling the stories of Afghan women and the changes they’ve made in the world.

    “It’s been the most beautiful journey of my life that I will never forget,” says Tahmina. “I found ReACT at a time when I had nothing, and I found the most valuable thing.” More

  • in

    Festival of Learning 2023 underscores importance of well-designed learning environments

    During its first in-person gathering since 2020, MIT’s Festival of Learning 2023 explored how the learning sciences can inform the Institute on how to best support students. Co-sponsored by MIT Open Learning and the Office of the Vice Chancellor (OVC), this annual event celebrates teaching and learning innovations with MIT instructors, students, and staff.

    Bror Saxberg SM ’85, PhD ’89, founder of LearningForge LLC and former chief learning officer at Kaplan, Inc., was invited as keynote speaker, with opening remarks by MIT Chancellor Melissa Nobles and Vice President for Open Learning Eric Grimson, and discussion moderated by Senior Associate Dean of Open Learning Christopher Capozzola. This year’s festival focused on how creating well-designed learning environments using learning engineering can increase learning success.

    Play video

    2023 Festival of Learning: Highlights

    Well-designed learning environments are key

    In his keynote speech “Learning Engineering: What We Know, What We Can Do,” Saxberg defined “learning engineering” as the practical application of learning sciences to real-world problems at scale. He said, “High levels can be reached by all learners, given access to well-designed instruction and motivation for enough practice opportunities.”

    Informed by decades of empirical evidence from the field of learning science, Saxberg’s own research, and insights from Kaplan, Inc., Saxberg finds that a hands-on strategy he calls “prepare, practice, perform” delivers better learning outcomes than a traditional “read, write, discuss” approach. Saxberg recommends educators devote at least 60 percent of learning time to hands-on approaches, such as producing, creating, and engaging. Only 20-30 percent of learning time should be spent in the more passive “knowledge acquisition” modes of listening and reading.

    “Here at MIT, a place that relies on data to make informed decisions, learning engineering can provide a framework for us to center in on the learner to identify the challenges associated with learning, and to apply the learning sciences in data-driven ways to improve instructional approaches,” said Nobles. During their opening remarks, Nobles and Grimson both emphasized how learning engineering at MIT is informed by the Institute’s commitment to educating the whole student, which encompasses student well-being and belonging in addition to academic rigor. “What lessons can we take away to change the way we think about education moving forward? This is a chance to iterate,” said Grimson.

    Well-designed learning environments are informed by understanding motivation, considering the connection between long-term and working memory, identifying the range of learners’ prior experience, grounding practice in authentic contexts (i.e., work environments), and using data-driven instructional approaches to iterate and improve.

    Play video

    2023 Festival of Learning: Keynote by Bror Saxberg

    Understand learner motivation

    Saxberg asserted that before developing course structures and teaching approaches known to encourage learning, educators must first examine learner motivation. Motivation doesn’t require enjoyment of the subject or task to spur engagement. Similar to how a well-designed physical training program can change your muscle cells, if a learner starts, persists, and exerts mental effort in a well-designed learning environment, they can change their neurons — they learn. Saxberg described four main barriers to learner motivation, and solutions for each:

    The learner doesn’t see the value of the lesson. Ways to address this include helping the learners find value; leveraging the learner’s expertise in another area to better understand the topic at hand; and making the activity itself enjoyable. “Finding value” could be as simple as explaining the practical applications of this knowledge in their future work in the field, or how this lesson prepares learners for their advanced level courses. 
    Self-efficacy for learners who don’t think they’re capable. Educators can point to parallel experiences with similar goals that students may have already achieved in another context. Alternatively, educators can share stories of professionals who have successfully transitioned from one area of expertise to another. 
    “Something” in the learner’s way, such as not having the time, space, or correct materials. This is an opportunity to demonstrate how a learner can use problem-solving skills to find a solution to their perceived problem. As with the barrier of self-efficacy, educators can assure learners that they are in control of the situation by sharing similar stories of those who’ve encountered the same problem and the solution they devised.
    The learner’s emotional state. This is no small barrier to motivation. If a learner is angry, depressed, scared, or grieving, it will be challenging for them to switch their mindset into learning mode. A wide array of emotions require a wide array of possible solutions, from structured conversation techniques to recommending professional help.
    Consider the cognitive load

    Saxberg has found that learning occurs when we use working memory to problem-solve, but our working memory can only process three to five verbal or conscious thoughts at a time. Long-term memory stores knowledge that can be accessed non-verbally and non-consciously, which is why experts appear to remember information effortlessly. Until a learner develops that expertise, extraneous information in a lesson will occupy space in their working memory, running the risk of distracting the learner from the desired learning outcome.

    To accommodate learners’ finite cognitive load, Saxberg suggested the solution of reevaluating which material is essential, then simplifying the exercise or removing unnecessary material accordingly. “That notion of, ‘what do we really need students to be able to do?’ helps you focus,” said Saxberg.

    Another solution is to leverage the knowledge, skills, and interests learners already bring to the course — these long-term memories can scaffold the new material. “What do you have in your head already, what do you love, what’s easy to draw from long-term memory? That would be the starting point for challenging new skills. It’s not the ending point because you want to use your new skills to then find out new things,” Saxberg said. Finally, consider how your course engages with the syllabi. Do you explain the reasoning behind the course structure? Do you show how the exercises or material will be applied to future courses or the field? Do you share best practices for engaging working memory and learning? By acknowledging and empathizing with the practical challenges that learners face, you can remove a barrier from their cognitive load.

    Ground practice in authentic contexts

    Saxberg stated that few experts read textbooks to learn new information — they discover what they need to know while working in the field, using those relevant facts in context. As such, students will have an easier time remembering facts if they’re practicing in relevant or similar environments to their future work.

    If students can practice classifying problems in real work contexts rather than theoretical practice problems, they can build a framework to classify what’s important. That helps students recognize the type of problem they’re trying to solve before trying to solve the problem itself. With enough hands-on practice and examples of how experts use processes and identify which principles are relevant, learners can holistically learn entire procedures. And that learning continues once learners graduate to the workforce: professionals often meet to exchange knowledge at conferences, charrettes, and other gatherings.

    Enhancing teaching at MIT

    The Festival of Learning furthers the Office of the Chancellor’s mission to advance academic innovation that will foster the growth of MIT students. The festival also aligns with the MIT Open Learning’s Residential Education team’s goal of making MIT education more effective and efficient. Throughout the year, their team offers continuous support to MIT faculty and instructors using digital technologies to augment and transform how they teach.

    “We are doubling down on our commitment to continuous growth in how we teach,” said Nobles. More

  • in

    Empowering Cambridge youth through data activism

    For over 40 years, the Mayor’s Summer Youth Employment Program (MSYEP, or the Mayor’s Program) in Cambridge, Massachusetts, has been providing teenagers with their first work experience, but 2022 brought a new offering. Collaborating with MIT’s Personal Robots research group (PRG) and Responsible AI for Social Empowerment and Education (RAISE) this summer, MSYEP created a STEAM-focused learning site at the Institute. Eleven students joined the program to learn coding and programming skills through the lens of “Data Activism.”

    MSYEP’s partnership with MIT provides an opportunity for Cambridge high schoolers to gain exposure to more pathways for their future careers and education. The Mayor’s Program aims to respect students’ time and show the value of their work, so participants are compensated with an hourly wage as they learn workforce skills at MSYEP worksites. In conjunction with two ongoing research studies at MIT, PRG and RAISE developed the six-week Data Activism curriculum to equip students with critical-thinking skills so they feel prepared to utilize data science to challenge social injustice and empower their community.

    Rohan Kundargi, K-12 Community Outreach Administrator for MIT Office of Government and Community Relations (OGCR), says, “I see this as a model for a new type of partnership between MIT and Cambridge MSYEP. Specifically, an MIT research project that involves students from Cambridge getting paid to learn, research, and develop their own skills!”

    Cross-Cambridge collaboration

    Cambridge’s Office of Workforce Development initially contacted MIT OGCR about hosting a potential MSYEP worksite that taught Cambridge teens how to code. When Kundargi reached out to MIT pK-12 collaborators, MIT PRG’s graduate research assistant Raechel Walker proposed the Data Activism curriculum. Walker defines “data activism” as utilizing data, computing, and art to analyze how power operates in the world, challenge power, and empathize with people who are oppressed.

    Walker says, “I wanted students to feel empowered to incorporate their own expertise, talents, and interests into every activity. In order for students to fully embrace their academic abilities, they must remain comfortable with bringing their full selves into data activism.”

    As Kundargi and Walker recruited students for the Data Activism learning site, they wanted to make sure the cohort of students — the majority of whom are individuals of color — felt represented at MIT and felt they had the agency for their voice to be heard. “The pioneers in this field are people who look like them,” Walker says, speaking of well-known data activists Timnit Gebru, Rediet Abebe, and Joy Buolamwini.

    When the program began this summer, some of the students were not aware of the ways data science and artificial intelligence exacerbate systemic oppression in society, or some of the tools currently being used to mitigate those societal harms. As a result, Walker says, the students wanted to learn more about discriminatory design in every aspect of life. They were also interested in creating responsible machine learning algorithms and AI fairness metrics.

    A different side of STEAM

    The development and execution of the Data Activism curriculum contributed to Walker’s and postdoc Xiaoxue Du’s respective research at PRG. Walker is studying AI education, specifically creating and teaching data activism curricula for minoritized communities. Du’s research explores processes, assessments, and curriculum design that prepares educators to use, adapt, and integrate AI literacy curricula. Additionally, her research targets how to leverage more opportunities for students with diverse learning needs.

    The Data Activism curriculum utilizes a “libertatory computing” framework, a term Walker coined in her position paper with Professor Cynthia Breazeal, director of MIT RAISE, dean for digital learning, and head of PRG, and Eman Sherif, a then-undergraduate researcher from University of California at San Diego, titled “Liberty Computing for African American Students.” This framework ensures that students, especially minoritized students, acquire a sound racial identity, critical consciousness, collective obligation, liberation centered academic/achievement identity, as well as the activism skills to use computing to transform a multi-layered system of barriers in which racism persists. Walker says, “We encouraged students to demonstrate competency in every pillar because all of the pillars are interconnected and build upon each other.”

    Walker developed a series of interactive coding and project-based activities that focused on understanding systemic racism, utilizing data science to analyze systemic oppression, data drawing, responsible machine learning, how racism can be embedded into AI, and different AI fairness metrics.

    This was the students’ first time learning how to create data visualizations using the programming language Python and the data analysis tool Pandas. In one project meant to examine how different systems of oppression can affect different aspects of students’ own identities, students created datasets with data from their respective intersectional identities. Another activity highlighted African American achievements, where students analyzed two datasets about African American scientists, activists, artists, scholars, and athletes. Using the data visualizations, students then created zines about the African Americans who inspired them.

    RAISE hired Olivia Dias, Sophia Brady, Lina Henriquez, and Zeynep Yalcin through the MIT Undergraduate Research Opportunity Program (UROP) and PRG hired freelancer Matt Taylor to work with Walker on developing the curriculum and designing interdisciplinary experience projects. Walker and the four undergraduate researchers constructed an intersectional data analysis activity about different examples of systemic oppression. PRG also hired three high school students to test activities and offer insights about making the curriculum engaging for program participants. Throughout the program, the Data Activism team taught students in small groups, continually asked students how to improve each activity, and structured each lesson based on the students’ interests. Walker says Dias, Brady, Henriquez, and Yalcin were invaluable to cultivating a supportive classroom environment and helping students complete their projects.

    Cambridge Rindge and Latin School senior Nina works on her rubber block stamp that depicts the importance of representation in media and greater representation in the tech industry.

    Photo: Katherine Ouellette

    Previous item
    Next item

    Student Nina says, “It’s opened my eyes to a different side of STEM. I didn’t know what ‘data’ meant before this program, or how intersectionality can affect AI and data.” Before MSYEP, Nina took Intro to Computer Science and AP Computer Science, but she has been coding since Girls Who Code first sparked her interest in middle school. “The community was really nice. I could talk with other girls. I saw there needs to be more women in STEM, especially in coding.” Now she’s interested in applying to colleges with strong computer science programs so she can pursue a coding-related career.

    From MSYEP to the mayor’s office

    Mayor Sumbul Siddiqui visited the Data Activism learning site on Aug. 9, accompanied by Breazeal. A graduate of MSYEP herself, Siddiqui says, “Through hands-on learning through computer programming, Cambridge high school students have the unique opportunity to see themselves as data scientists. Students were able learn ways to combat discrimination that occurs through artificial intelligence.” In an Instagram post, Siddiqui also said, “I had a blast visiting the students and learning about their projects.”

    Students worked on an activity that asked them to envision how data science might be used to support marginalized communities. They transformed their answers into block-printed T-shirt designs, carving pictures of their hopes into rubber block stamps. Some students focused on the importance of data privacy, like Jacob T., who drew a birdcage to represent data stored and locked away by third party apps. He says, “I want to open that cage and restore my data to myself and see what can be done with it.”

    The subject of Cambridge Community Charter School student Jacob T.’s project was the importance of data privacy. For his T-shirt design, he drew a birdcage to represent data stored and locked away by third party apps. (From right to left:) Breazeal, Jacob T. Kiki, Raechel Walker, and Zeynep Yalcin.

    Photo: Katherine Ouellette

    Previous item
    Next item

    Many students wanted to see more representation in both the media they consume and across various professional fields. Nina talked about the importance of representation in media and how that could contribute to greater representation in the tech industry, while Kiki talked about encouraging more women to pursue STEM fields. Jesmin said, “I wanted to show that data science is accessible to everyone, no matter their origin or language you speak. I wrote ‘hello’ in Bangla, Arabic, and English, because I speak all three languages and they all resonate with me.”

    Student Jesmin (left) explains the concept of her T-shirt design to Mayor Siddiqui. She wants data science to be accessible to everyone, no matter their origin or language, so she drew a globe and wrote ‘hello’ in the three languages she speaks: Bangla, Arabic, and English.

    Photo: Katherine Ouellette

    Previous item
    Next item

    “Overall, I hope the students continue to use their data activism skills to re-envision a society that supports marginalized groups,” says Walker. “Moreover, I hope they are empowered to become data scientists and understand how their race can be a positive part of their identity.” More

  • in

    Studying learner engagement during the Covid-19 pandemic

    While massive open online classes (MOOCs) have been a significant trend in higher education for many years now, they have gained a new level of attention during the Covid-19 pandemic. Open online courses became a critical resource for a wide audience of new learners during the first stages of the pandemic — including students whose academic programs had shifted online, teachers seeking online resources, and individuals suddenly facing lockdown or unemployment and looking to build new skills.

    Mary Ellen Wiltrout, director of online and blended learning initiatives and lecturer in digital learning in the Department of Biology, and Virginia “Katie” Blackwell, currently an MIT PhD student in biology, published a paper this summer in the European MOOC Stakeholder Summit (EMOOCs 2021) conference proceedings evaluating data for the online course 7.00x (Introduction to Biology). Their research objective was to better understand whether the shift to online learning that occurred during the pandemic led to increased learner engagement in the course.Blackwell participated in this research as part of the Bernard S. and Sophie G. Gould MIT Summer Research Program (MSRP) in Biology, during the uniquely remote MSRPx-Biology 2020 student cohort. She collaborated on the project while working toward her bachelor’s degree in biochemistry and molecular biology from the University of Texas at Dallas, and collaborated on the research while in Texas. She has since applied and been accepted into MIT’s PhD program in biology.

    “MSRP Biology was a transformative experience for me. I learned a lot about the nature of research and the MIT community in a very short period of time and loved every second of the program. Without MSRP, I would never have even considered applying to MIT for my PhD. After MSRP and working with Mary Ellen, MIT biology became my first-choice program and I felt like I had a shot at getting in,” says Blackwell.

    Play video

    Many MOOC platforms experienced increased website traffic in 2020, with 30 new MOOC-based degrees and more than 60 million new learners.

    “We find that the tremendous, lifelong learning opportunities that MOOCs provide are even more important and sought-after when traditional education is disrupted. During the pandemic, people had to be at home more often, and some faced unemployment requiring a career transition,” says Wiltrout.

    Wiltrout and Blackwell wanted to build a deeper understanding of learner profiles rather than looking exclusively at enrollments. They looked at all available data, including: enrollment demographics (i.e., country and “.edu” participants); proportion of learners engaged with videos, problems, and forums; number of individual engagement events with videos, problems, and forums; verification and performance; and the course “track” level — including auditing (for free) and verified (paying and receiving access to additional course content, including access to a comprehensive competency exam). They analyzed data in these areas from five runs of 7.00x in this study, including three pre-pandemic runs of April, July, and November 2019 and two pandemic runs of March and July 2020. 

    The March 2020 run had the same count of verified-track participants as all three pre-pandemic runs combined. The July 2020 run enrolled nearly as many verified-track participants as the March 2020 run. Wiltrout says that introductory biology content may have attracted great attention during the early days and months of the Covid-19 pandemic, as people may have had a new (or renewed) interest in learning about (or reviewing) viruses, RNA, the inner workings of cells, and more.

    Wiltrout and Blackwell found that the enrollment count for the March 2020 run of the course increased at almost triple the rate of the three pre-pandemic runs. During the early days of March 2020, the enrollment metrics appeared similar to enrollment metrics for the April 2019 run — both in rate and count — but the enrollment rate increased sharply around March 15, 2020. The July 2020 run began with more than twice as many learners already enrolled by the first day of the course, but continued with half the enrollment rate of the March 2020 course. In terms of learner demographics, during the pandemic, there was a higher proportion of learners with .edu addresses, indicating that MOOCs were often used by students enrolled in other schools. 

    Viewings of course videos increased at the beginning of the pandemic. During the March 2020 run, both verified-track and certified participants viewed far more unique videos during March 2020 than in the pre-pandemic runs of the course; even auditor-track learners — not aiming for certification — still viewed all videos offered. During the July 2020 run, however, both verified-track and certified participants viewed far fewer unique videos than during all prior runs. The proportion of participants who viewed at least one video decreased in the July 2020 run to 53 percent, from a mean of 64 percent in prior runs. Blackwell and Wiltrout say that this decrease — as well as the overall dip in participation in July 2020 — might be attributed to shifting circumstances for learners that allowed for less time to watch videos and participate in the course, as well as some fatigue from the extra screen time.

    The study found that 4.4 percent of March 2020 participants and 4.5 percent of July 2020 participants engaged through forum posting — which was 1.4 to 3.3 times higher than pre-pandemic proportions of forum posting. The increase in forum engagement may point to a desire for community engagement during a time when many were isolated and sheltering in place.

    “Through the day-to-day work of my research team and also through the engagement of the learners in 7.00x, we can see that there is great potential for meaningful connections in remote experiences,” says Wiltrout. “An increase in participation for an online course may not always remain at the same high level, in the long term, but overall, we’re continuing to see an increase in the number of MOOCs and other online programs offered by all universities and institutions, as well as an increase in online learners.” More