More stories

  • in

    M’Care and MIT students join forces to improve child health in Nigeria

    Through a collaboration between M’Care, a 2021 Health Security and Pandemics Solver team, and students from MIT, the landscape of child health care in Nigeria could undergo a transformative change, wherein the power of data is harnessed to improve child health outcomes in economically disadvantaged communities. 

    M’Care is a mobile application of Promane and Promade Limited, developed by Opeoluwa Ashimi, which gives community health workers in Nigeria real-time diagnostic and treatment support. The application also creates a dashboard that is available to government health officials to help identify disease trends and deploy timely interventions. As part of its work, M’Care is working to mitigate malnutrition by providing micronutrient powder, vitamin A, and zinc to children below the age of 5. To help deepen its impact, Ashimi decided to work with students in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) course 6.S897 (Machine Learning for Healthcare) — instructed by professors Peter Szolovits and Manolis Kellis — to leverage data in order to improve nutrient delivery to children across Nigeria. The collaboration also enabled students to see real-world applications for data analysis in the health care space.

    A meeting of minds: M’Care, MIT, and national health authorities

    “Our primary goal for collaborating with the ML for Health team was to spot the missing link in the continuum of care. With over 1 million cumulative consultations that qualify for a continuum of care evaluation, it was important to spot why patients could be lost to followup, prevent this, and ensure completion of care to successfully address the health needs of our patients,” says Ashimi, founder and CEO of M’Care.

    In May 2023, Ashimi attended a meeting that brought together key national stakeholders, including the representatives of the National Ministry of Health in Nigeria. This gathering served as a platform to discuss the profound impact of M’Care’s and ML for Health team’s collaboration — bolstered by data analysis provided on dosage regimens and a child’s age to enhance continuum of care with its attendant impact on children’s health, particularly in relation to brain development with regards to the use of essential micronutrients. The data analyzed by the students using ML methods that were shared during the meeting provided strong supporting evidence to individualize dosage regimens for children based on their age in months for the ANRIN project — a national nutrition project supported by the World Bank — as well as policy decisions to extend months of coverage for children, redefining health care practices in Nigeria.

    MIT students drive change by harnessing the power of data

    At the heart of this collaboration lies the contribution of MIT students. Armed with their dedication and skill in data analysis and machine learning, they played a pivotal role in helping M’Care analyze their data and prepare for their meeting with the Ministry of Health. Their most significant findings included ways to identify patients at risk of not completing their full course of micronutrient powder and/or vitamin A, and identifying gaps in M’Care’s data, such as postdated delivery dates and community demographics. These findings are already helping M’Care better plan its resources and adjust the scope of its program to ensure more children complete the intervention.

    Darcy Kim, an undergraduate at Wellesley College studying math and computer science, who is cross-registered for the MIT machine learning course, expresses enthusiasm about the practical applications found within the project: “To me, data and math is storytelling, and the story is why I love studying it. … I learned that data exploration involves asking questions about how the data is collected, and that surprising patterns that arise often have a qualitative explanation. Impactful research requires radical collaboration with the people the research intends to help. Otherwise, these qualitative explanations get lost in the numbers.”

    Joyce Luo, a first-year operations research PhD student at the Operations Research Center at MIT, shares similar thoughts about the project: “I learned the importance of understanding the context behind data to figure out what kind of analysis might be most impactful. This involves being in frequent contact with the company or organization who provides the data to learn as much as you can about how the data was collected and the people the analysis could help. Stepping back and looking at the bigger picture, rather than just focusing on accuracy or metrics, is extremely important.”

    Insights to implementation: A new era for micronutrient dosing

    As a direct result of M’Care’s collaboration with MIT, policymakers revamped the dosing scheme for essential micronutrient administration for children in Nigeria to prevent malnutrition. M’Care and MIT’s data analysis unearthed critical insights into the limited frequency of medical visits caused by late-age enrollment. 

    “One big takeaway for me was that the data analysis portion of the project — doing a deep dive into the data; understanding, analyzing, visualizing, and summarizing the data — can be just as important as building the machine learning models. M’Care shared our data analysis with the National Ministry of Health, and the insights from it drove them to change their dosing scheme and schedule for delivering micronutrient powder to young children. This really showed us the value of understanding and knowing your data before modeling,” shares Angela Lin, a second-year PhD student at the Operations Research Center.

    Armed with this knowledge, policymakers are eager to develop an optimized dosing scheme that caters to the unique needs of children in disadvantaged communities, ensuring maximum impact on their brain development and overall well-being.

    Siddharth Srivastava, M’Care’s corporate technology liaison, shares his gratitude for the MIT student’s input. “Collaborating with enthusiastic and driven students was both empowering and inspiring. Each of them brought unique perspectives and technical skills to the table. Their passion for applying machine learning to health care was evident in their unwavering dedication and proactive approach to problem-solving.”

    Forging a path to impact

    The collaboration between M’Care and MIT exemplifies the remarkable achievements that arise when academia, innovative problem-solvers, and policy authorities unite. By merging academic rigor with real-world expertise, this partnership has the potential to revolutionize child health care not only in Nigeria but also in similar contexts worldwide.

    “I believe applying innovative methods of machine learning, data gathering, instrumentation, and planning to real problems in the developing world can be highly effective for those countries and highly motivating for our students. I was happy to have such a project in our class portfolio this year and look forward to future opportunities,” says Peter Szolovits, professor of computer science and engineering at MIT.

    By harnessing the power of data, innovation, and collective expertise, this collaboration between M’Care and MIT has the potential to improve equitable child health care in Nigeria. “It has been so fulfilling to see how our team’s work has been able to create even the smallest positive impact in such a short period of time, and it has been amazing to work with a company like Promane and Promade Limited that is so knowledgeable and caring for the communities that they serve,” shares Elizabeth Whittier, a second-year PhD electrical engineering student at MIT. More

  • in

    System tracks movement of food through global humanitarian supply chain

    Although more than enough food is produced to feed everyone in the world, as many as 828 million people face hunger today. Poverty, social inequity, climate change, natural disasters, and political conflicts all contribute to inhibiting access to food. For decades, the U.S. Agency for International Development (USAID) Bureau for Humanitarian Assistance (BHA) has been a leader in global food assistance, supplying millions of metric tons of food to recipients worldwide. Alleviating hunger — and the conflict and instability hunger causes — is critical to U.S. national security.

    But BHA is only one player within a large, complex supply chain in which food gets handed off between more than 100 partner organizations before reaching its final destination. Traditionally, the movement of food through the supply chain has been a black-box operation, with stakeholders largely out of the loop about what happens to the food once it leaves their custody. This lack of direct visibility into operations is due to siloed data repositories, insufficient data sharing among stakeholders, and different data formats that operators must manually sort through and standardize. As a result, accurate, real-time information — such as where food shipments are at any given time, which shipments are affected by delays or food recalls, and when shipments have arrived at their final destination — is lacking. A centralized system capable of tracing food along its entire journey, from manufacture through delivery, would enable a more effective humanitarian response to food-aid needs.

    In 2020, a team from MIT Lincoln Laboratory began engaging with BHA to create an intelligent dashboard for their supply-chain operations. This dashboard brings together the expansive food-aid datasets from BHA’s existing systems into a single platform, with tools for visualizing and analyzing the data. When the team started developing the dashboard, they quickly realized the need for considerably more data than BHA had access to.

    “That’s where traceability comes in, with each handoff partner contributing key pieces of information as food moves through the supply chain,” explains Megan Richardson, a researcher in the laboratory’s Humanitarian Assistance and Disaster Relief Systems Group.

    Richardson and the rest of the team have been working with BHA and their partners to scope, build, and implement such an end-to-end traceability system. This system consists of serialized, unique identifiers (IDs) — akin to fingerprints — that are assigned to individual food items at the time they are produced. These individual IDs remain linked to items as they are aggregated along the supply chain, first domestically and then internationally. For example, individually tagged cans of vegetable oil get packaged into cartons; cartons are placed onto pallets and transported via railway and truck to warehouses; pallets are loaded onto shipping containers at U.S. ports; and pallets are unloaded and cartons are unpackaged overseas.

    With a trace

    Today, visibility at the single-item level doesn’t exist. Most suppliers mark pallets with a lot number (a lot is a batch of items produced in the same run), but this is for internal purposes (i.e., to track issues stemming back to their production supply, like over-enriched ingredients or machinery malfunction), not data sharing. So, organizations know which supplier lot a pallet and carton are associated with, but they can’t track the unique history of an individual carton or item within that pallet. As the lots move further downstream toward their final destination, they are often mixed with lots from other productions, and possibly other commodity types altogether, because of space constraints. On the international side, such mixing and the lack of granularity make it difficult to quickly pull commodities out of the supply chain if food safety concerns arise. Current response times can span several months.

    “Commodities are grouped differently at different stages of the supply chain, so it is logical to track them in those groupings where needed,” Richardson says. “Our item-level granularity serves as a form of Rosetta Stone to enable stakeholders to efficiently communicate throughout these stages. We’re trying to enable a way to track not only the movement of commodities, including through their lot information, but also any problems arising independent of lot, like exposure to high humidity levels in a warehouse. Right now, we have no way to associate commodities with histories that may have resulted in an issue.”

    “You can now track your checked luggage across the world and the fish on your dinner plate,” adds Brice MacLaren, also a researcher in the laboratory’s Humanitarian Assistance and Disaster Relief Systems Group. “So, this technology isn’t new, but it’s new to BHA as they evolve their methodology for commodity tracing. The traceability system needs to be versatile, working across a wide variety of operators who take custody of the commodity along the supply chain and fitting into their existing best practices.”

    As food products make their way through the supply chain, operators at each receiving point would be able to scan these IDs via a Lincoln Laboratory-developed mobile application (app) to indicate a product’s current location and transaction status — for example, that it is en route on a particular shipping container or stored in a certain warehouse. This information would get uploaded to a secure traceability server. By scanning a product, operators would also see its history up until that point.   

    Hitting the mark

    At the laboratory, the team tested the feasibility of their traceability technology, exploring different ways to mark and scan items. In their testing, they considered barcodes and radio-frequency identification (RFID) tags and handheld and fixed scanners. Their analysis revealed 2D barcodes (specifically data matrices) and smartphone-based scanners were the most feasible options in terms of how the technology works and how it fits into existing operations and infrastructure.

    “We needed to come up with a solution that would be practical and sustainable in the field,” MacLaren says. “While scanners can automatically read any RFID tags in close proximity as someone is walking by, they can’t discriminate exactly where the tags are coming from. RFID is expensive, and it’s hard to read commodities in bulk. On the other hand, a phone can scan a barcode on a particular box and tell you that code goes with that box. The challenge then becomes figuring out how to present the codes for people to easily scan without significantly interrupting their usual processes for handling and moving commodities.” 

    As the team learned from partner representatives in Kenya and Djibouti, offloading at the ports is a chaotic, fast operation. At manual warehouses, porters fling bags over their shoulders or stack cartons atop their heads any which way they can and run them to a drop point; at bagging terminals, commodities come down a conveyor belt and land this way or that way. With this variability comes several questions: How many barcodes do you need on an item? Where should they be placed? What size should they be? What will they cost? The laboratory team is considering these questions, keeping in mind that the answers will vary depending on the type of commodity; vegetable oil cartons will have different specifications than, say, 50-kilogram bags of wheat or peas.

    Leaving a mark

    Leveraging results from their testing and insights from international partners, the team has been running a traceability pilot evaluating how their proposed system meshes with real-world domestic and international operations. The current pilot features a domestic component in Houston, Texas, and an international component in Ethiopia, and focuses on tracking individual cartons of vegetable oil and identifying damaged cans. The Ethiopian team with Catholic Relief Services recently received a container filled with pallets of uniquely barcoded cartons of vegetable oil cans (in the next pilot, the cans will be barcoded, too). They are now scanning items and collecting data on product damage by using smartphones with the laboratory-developed mobile traceability app on which they were trained. 

    “The partners in Ethiopia are comparing a couple lid types to determine whether some are more resilient than others,” Richardson says. “With the app — which is designed to scan commodities, collect transaction data, and keep history — the partners can take pictures of damaged cans and see if a trend with the lid type emerges.”

    Next, the team will run a series of pilots with the World Food Program (WFP), the world’s largest humanitarian organization. The first pilot will focus on data connectivity and interoperability, and the team will engage with suppliers to directly print barcodes on individual commodities instead of applying barcode labels to packaging, as they did in the initial feasibility testing. The WFP will provide input on which of their operations are best suited for testing the traceability system, considering factors like the network bandwidth of WFP staff and local partners, the commodity types being distributed, and the country context for scanning. The BHA will likely also prioritize locations for system testing.

    “Our goal is to provide an infrastructure to enable as close to real-time data exchange as possible between all parties, given intermittent power and connectivity in these environments,” MacLaren says.

    In subsequent pilots, the team will try to integrate their approach with existing systems that partners rely on for tracking procurements, inventory, and movement of commodities under their custody so that this information is automatically pushed to the traceability server. The team also hopes to add a capability for real-time alerting of statuses, like the departure and arrival of commodities at a port or the exposure of unclaimed commodities to the elements. Real-time alerts would enable stakeholders to more efficiently respond to food-safety events. Currently, partners are forced to take a conservative approach, pulling out more commodities from the supply chain than are actually suspect, to reduce risk of harm. Both BHA and WHP are interested in testing out a food-safety event during one of the pilots to see how the traceability system works in enabling rapid communication response.

    To implement this technology at scale will require some standardization for marking different commodity types as well as give and take among the partners on best practices for handling commodities. It will also require an understanding of country regulations and partner interactions with subcontractors, government entities, and other stakeholders.

    “Within several years, I think it’s possible for BHA to use our system to mark and trace all their food procured in the United States and sent internationally,” MacLaren says.

    Once collected, the trove of traceability data could be harnessed for other purposes, among them analyzing historical trends, predicting future demand, and assessing the carbon footprint of commodity transport. In the future, a similar traceability system could scale for nonfood items, including medical supplies distributed to disaster victims, resources like generators and water trucks localized in emergency-response scenarios, and vaccines administered during pandemics. Several groups at the laboratory are also interested in such a system to track items such as tools deployed in space or equipment people carry through different operational environments.

    “When we first started this program, colleagues were asking why the laboratory was involved in simple tasks like making a dashboard, marking items with barcodes, and using hand scanners,” MacLaren says. “Our impact here isn’t about the technology; it’s about providing a strategy for coordinated food-aid response and successfully implementing that strategy. Most importantly, it’s about people getting fed.” More

  • in

    Day of AI curriculum meets the moment

    MIT Responsible AI for Social Empowerment and Education (RAISE) recently celebrated the second annual Day of AI with two flagship local events. The Edward M. Kennedy Institute for the U.S. Senate in Boston hosted a human rights and data policy-focused event that was streamed worldwide. Dearborn STEM Academy in Roxbury, Massachusetts, hosted a student workshop in collaboration with Amazon Future Engineer. With over 8,000 registrations across all 50 U.S. states and 108 countries in 2023, participation in Day of AI has more than doubled since its inaugural year.

    Day of AI is a free curriculum of lessons and hands-on activities designed to teach kids of all ages and backgrounds the basics and responsible use of artificial intelligence, designed by researchers at MIT RAISE. This year, resources were available for educators to run at any time and in any increments they chose. The curriculum included five new modules to address timely topics like ChatGPT in School, Teachable Machines, AI and Social Media, Data Science and Me, and more. A collaboration with the International Society for Technology in Education also introduced modules for early elementary students. Educators across the world shared photos, videos, and stories of their students’ engagement, expressing excitement and even relief over the accessible lessons.

    Professor Cynthia Breazeal, director of RAISE, dean for digital learning at MIT, and head of the MIT Media Lab’s Personal Robots research group, said, “It’s been a year of extraordinary advancements in AI, and with that comes necessary conversations and concerns about who and what this technology is for. With our Day of AI events, we want to celebrate the teachers and students who are putting in the work to make sure that AI is for everyone.”

    Reflecting community values and protecting digital citizens

    Play video

    On May 18, 2023, MIT RAISE hosted a global Day of AI celebration featuring a flagship local event focused on human rights and data policy at the Edward M. Kennedy Institute for the U.S. Senate. Students from the Warren Prescott Middle School and New Mission High School heard from speakers the City of Boston, Liberty Mutual, and MIT to discuss the many benefits and challenges of artificial intelligence education. Video: MIT Open Learning

    MIT President Sally Kornbluth welcomed students from Warren Prescott Middle School and New Mission High School to the Day of AI program at the Edward M. Kennedy Institute. Kornbluth reflected on the exciting potential of AI, along with the ethical considerations society needs to be responsible for.

    “AI has the potential to do all kinds of fantastic things, including driving a car, helping us with the climate crisis, improving health care, and designing apps that we can’t even imagine yet. But what we have to make sure it doesn’t do is cause harm to individuals, to communities, to us — society as a whole,” she said.

    This theme resonated with each of the event speakers, whose jobs spanned the sectors of education, government, and business. Yo Deshpande, technologist for the public realm, and Michael Lawrence Evans, program director of new urban mechanics from the Boston Mayor’s Office, shared how Boston thinks about using AI to improve city life in ways that are “equitable, accessible, and delightful.” Deshpande said, “We have the opportunity to explore not only how AI works, but how using AI can line up with our values, the way we want to be in the world, and the way we want to be in our community.”

    Adam L’Italien, chief innovation officer at Liberty Mutual Insurance (one of Day of AI’s founding sponsors), compared our present moment with AI technologies to the early days of personal computers and internet connection. “Exposure to emerging technologies can accelerate progress in the world and in your own lives,” L’Italien said, while recognizing that the AI development process needs to be inclusive and mitigate biases.

    Human policies for artificial intelligence

    So how does society address these human rights concerns about AI? Marc Aidinoff ’21, former White House Office of Science and Technology Policy chief of staff, led a discussion on how government policy can influence the parameters of how technology is developed and used, like the Blueprint for an AI Bill of Rights. Aidinoff said, “The work of building the world you want to see is far harder than building the technical AI system … How do you work with other people and create a collective vision for what we want to do?” Warren Prescott Middle School students described how AI could be used to solve problems that humans couldn’t. But they also shared their concerns that AI could affect data privacy, learning deficits, social media addiction, job displacement, and propaganda.

    In a mock U.S. Senate trial activity designed by Daniella DiPaola, PhD student at the MIT Media Lab, the middle schoolers investigated what rights might be undermined by AI in schools, hospitals, law enforcement, and corporations. Meanwhile, New Mission High School students workshopped the ideas behind bill S.2314, the Social Media Addiction Reduction Technology (SMART) Act, in an activity designed by Raechel Walker, graduate research assistant in the Personal Robots Group, and Matt Taylor, research assistant at the Media Lab. They discussed what level of control could or should be introduced at the parental, educational, and governmental levels to reduce the risks of internet addiction.

    “Alexa, how do I program AI?”

    Play video

    The 2023 Day of AI celebration featured a flagship local event at the Dearborn STEM Academy in Roxbury in collaboration with Amazon Future Engineer. Students participated in a hands-on activity using MIT App Inventor as part of Day of AI’s Alexa lesson. Video: MIT Open Learning

    At Dearborn STEM Academy, Amazon Future Engineer helped students work through the Intro to Voice AI curriculum module in real-time. Students used MIT App Inventor to code basic commands for Alexa. In an interview with WCVB, Principal Darlene Marcano said, “It’s important that we expose our students to as many different experiences as possible. The students that are participating are on track to be future computer scientists and engineers.”

    Breazeal told Dearborn students, “We want you to have an informed voice about how you want AI to be used in society. We want you to feel empowered that you can shape the world. You can make things with AI to help make a better world and a better community.”

    Rohit Prasad ’08, senior vice president and head scientist for Alexa at Amazon, and Victor Reinoso ’97, global director of philanthropic education initiatives at Amazon, also joined the event. “Amazon and MIT share a commitment to helping students discover a world of possibilities through STEM and AI education,” said Reinoso. “There’s a lot of current excitement around the technological revolution with generative AI and large language models, so we’re excited to help students explore careers of the future and navigate the pathways available to them.” To highlight their continued investment in the local community and the school program, Amazon donated a $25,000 Innovation and Early College Pathways Program Grant to the Boston Public School system.

    Day of AI down under

    Not only was the Day of AI program widely adopted across the globe, Australian educators were inspired to adapt their own regionally specific curriculum. An estimated 161,000 AI professionals will be needed in Australia by 2030, according to the National Artificial Intelligence Center in the Commonwealth Scientific and Industrial Research Organization (CSIRO), an Australian government agency and Day of AI Australia project partner. CSIRO worked with the University of New South Wales to develop supplementary educational resources on AI ethics and machine learning. Day of AI Australia reached 85,000 students at 400-plus secondary schools this year, sparking curiosity in the next generation of AI experts.

    The interest in AI is accelerating as fast as the technology is being developed. Day of AI offers a unique opportunity for K-12 students to shape our world’s digital future and their own.

    “I hope that some of you will decide to be part of this bigger effort to help us figure out the best possible answers to questions that are raised by AI,” Kornbluth told students at the Edward M. Kennedy Institute. “We’re counting on you, the next generation, to learn how AI works and help make sure it’s for everyone.” More

  • in

    Learner in Afghanistan reaches beyond barriers to pursue career in data science

    Tahmina S. was a junior studying computer engineering at a top university in Afghanistan when a new government policy banned women from pursuing education. In August 2021, the Taliban prohibited girls from attending school beyond the sixth grade. While women were initially allowed to continue to attend universities, by October 2021, an order from the Ministry of Higher Education declared that all women in Afghanistan were suspended from attending public and private centers of higher education.

    Determined to continue her studies and pursue her ambitions, Tahmina found the MIT Refugee Action Hub (ReACT) and was accepted to its Certificate in Computer Science and Data Science program in 2022.

    “ReACT helped me realize that I can do big things and be a part of big things,” she says.

    MIT ReACT provides education and professional opportunities to learners from refugee and forcibly displaced communities worldwide. ReACT’s core pillars include academic development, human skills development, employment pathways, and network building. Since 2017, ReACT has offered its Certificate in Computer and Data Science (CDS) program free-of-cost to learners wherever they live. In 2022, ReACT welcomed its largest and most diverse cohort to date — 136 learners from 29 countries — including 25 learners from Afghanistan, more than half of whom are women.

    Tahmina was able to select her classes in the program, and especially valued learning Python — which has led to her studying other programming languages and gaining more skills in data science. She’s continuing to take online courses in hopes of completing her undergraduate degree, and someday pursuing a masters degree in computer science and becoming a data scientist.

    “It’s an important and fun career. I really love data,” she says. “If this is my only time for this experience, I will bring to the table what I have, and do my best.”

    In addition to the education ban, Tahmina also faced the challenge of accessing an internet connection, which is expensive where she lives. But she regularly studies between 12 and 14 hours a day to achieve her dreams.

    The ReACT program offers a blend of asynchronous and synchronous learning. Learners complete a curated series of online, rigorous MIT coursework through MITx with the support of teaching assistants and collaborators, and also participate in a series of interactive online workshops in interpersonal skills that are critical to success in education and careers.

    ReACT learners engage with MIT’s global network of experts including MIT staff, faculty, and alumni — as well as collaborators across technology, humanitarian, and government sectors.

    “I loved that experience a lot, it was a huge achievement. I’m grateful ReACT gave me a chance to be a part of that team of amazing people. I’m amazed I completed that program, because it was really challenging.”

    Theory into practice

    Tahmina was one of 10 students from the ReACT cohort accepted to the highly competitive MIT Innovation Leadership Bootcamp program. She worked on a team of five people who initiated a business proposal and took the project through each phase of the development process. Her team’s project was creating an app for finance management for users aged 23-51 — including all the graphic elements and a final presentation. One valuable aspect of the boot camp, Tahmina says, was presenting their project to real investors who then provided business insights and actionable feedback.

    As part of this ReACT cohort, Tahmina also participated in the Global Apprenticeship Program (GAP) pilot, an initiative led by Talanta and with the participation of MIT Open Learning as curriculum provider. The GAP initiative focuses on improving diverse emerging talent job preparedness and exploring how companies can successfully recruit, onboard, and retain this talent through remote, paid internships. Through the GAP pilot, Tahmina received training in professional skills, resume and interview preparation, and was matched with a financial sector firm for a four-month remote internship in data science.

    To prepare Tahmina and other learners for these professional experiences, ReACT trains its cohorts to work with people who have diverse backgrounds, experiences, and challenges. The nonprofit Na’amal offered workshops covering areas such as problem-solving, innovation and ideation, goal-setting, communication, teamwork, and infrastructure and info security. Tahmina was able to access English classes and learn valuable career skills, such as writing a resume.“This was an amazing part for me. There’s a huge difference going from theoretical to practical,” she says. “Not only do you have to have the theoretical experience, you have to have soft skills. You have to communicate everything you learn to other people, because other people in the business might not have that knowledge, so you have to tell the story in a way that they can understand.”

    ReACT wanted the women in the program to be mentored by women who were not only leaders in the tech field, but working in the same geographic region as learners. At the start of the internship, Na’amal connected Tahmina with a mentor, Maha Gad, who is head of talent development at Talabat and lives in Dubai. Tahmina met with Gad at the beginning and end of each month, giving her the opportunity to ask expansive questions. Tahmina says Gad encouraged her to research and plan first, and then worked with her to explore new tools, like Trello.

    Wanting to put her skills to use locally, Tahmina volunteered at the nonprofit Rumie, a community for Afghan women and girls, working as a learning designer, translator, team leader, and social media manager. She currently volunteers at Correspondents of the World as a story ambassador, helping Afghan people share stories, community, and culture — especially telling the stories of Afghan women and the changes they’ve made in the world.

    “It’s been the most beautiful journey of my life that I will never forget,” says Tahmina. “I found ReACT at a time when I had nothing, and I found the most valuable thing.” More

  • in

    New leadership at MIT’s Center for Biomedical Innovation

    As it continues in its mission to improve global health through the development and implementation of biomedical innovation, the MIT Center for Biomedical Innovation (CBI) today announced changes to its leadership team: Stacy Springs has been named executive director, and Professor Richard Braatz has joined as the center’s new associate faculty director.

    The change in leadership comes at a time of rapid development in new therapeutic modalities, growing concern over global access to biologic medicines and healthy food, and widespread interest in applying computational tools and multi-disciplinary approaches to address long-standing biomedical challenges.

    “This marks an exciting new chapter for the CBI,” says faculty director Anthony J. Sinskey, professor of biology, who cofounded CBI in 2005. “As I look back at almost 20 years of CBI history, I see an exponential growth in our activities, educational offerings, and impact.”

    The center’s collaborative research model accelerates innovation in biotechnology and biomedical research, drawing on the expertise of faculty and researchers in MIT’s schools of Engineering and Science, the MIT Schwarzman College of Computing, and the MIT Sloan School of Management.

    Springs steps into the role of executive director having previously served as senior director of programs for CBI and as executive director of CBI’s Biomanufacturing Program and its Consortium on Adventitious Agent Contamination in Biomanufacturing (CAACB). She succeeds Gigi Hirsch, who founded the NEW Drug Development ParadIGmS (NEWDIGS) Initiative at CBI in 2009. Hirsch and NEWDIGS have now moved to Tufts Medical Center, establishing a headquarters at the new Center for Biomedical System Design within the Institute for Clinical Research and Health Policy Studies there.

    Braatz, a chemical engineer whose work is informed by mathematical modeling and computational techniques, conducts research in process data analytics, design, and control of advanced manufacturing systems.

    “It’s been great to interact with faculty from across the Institute who have complementary expertise,” says Braatz, the Edwin R. Gilliland Professor in the Department of Chemical Engineering. “Participating in CBI’s workshops has led to fruitful partnerships with companies in tackling industry-wide challenges.”

    CBI is housed under the Institute for Data Systems and Society and, specifically, the Sociotechnical Systems Research Center in the MIT Schwarzman College of Computing. CBI is home to two biomanufacturing consortia: the CAACB and the Biomanufacturing Consortium (BioMAN). Through these precompetitive collaborations, CBI researchers work with biomanufacturers and regulators to advance shared interests in biomanufacturing.

    In addition, CBI researchers are engaged in several sponsored research programs focused on integrated continuous biomanufacturing capabilities for monoclonal antibodies and vaccines, analytical technologies to measure quality and safety attributes of a variety of biologics, including gene and cell therapies, and rapid-cycle development of virus-like particle vaccines for SARS-CoV-2.

    In another significant initiative, CBI researchers are applying data analytics strategies to biomanufacturing problems. “In our smart data analytics project, we are creating new decision support tools and algorithms for biomanufacturing process control and plant-level decision-making. Further, we are leveraging machine learning and natural language processing to improve post-market surveillance studies,” says Springs.

    CBI is also working on advanced manufacturing for cell and gene therapies, among other new modalities, and is a part of the Singapore-MIT Alliance for Research and Technology – Critical Analytics for Manufacturing Personalized-Medicine (SMART CAMP). SMART CAMP is an international research effort focused on developing the analytical tools and biological understanding of critical quality attributes that will enable the manufacture and delivery of improved cell therapies to patients.

    “This is a crucial time for biomanufacturing and for innovation across the health-care value chain. The collaborative efforts of MIT researchers and consortia members will drive fundamental discovery and inform much-needed progress in industry,” says MIT Vice President for Research Maria Zuber.

    “CBI has a track record of engaging with health-care ecosystem challenges. I am confident that under the new leadership, it will continue to inspire MIT, the United States, and the entire world to improve the health of all people,” adds Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing. More

  • in

    Transforming the travel experience for the Hong Kong airport

    MIT Hong Kong Innovation Node welcomed 33 students to its flagship program, MIT Entrepreneurship and Maker Skills Integrator (MEMSI). Designed to develop entrepreneurial prowess through exposure to industry-driven challenges, MIT students joined forces with Hong Kong peers in this two-week hybrid bootcamp, developing unique proposals for the Airport Authority of Hong Kong.

    Many airports across the world continue to be affected by the broader impact of Covid-19 with reduced air travel, prompting airlines to cut capacity. The result is a need for new business opportunities to propel economic development. For Hong Kong, the expansion toward non-aeronautical activities to boost regional consumption is therefore crucial, and included as part of the blueprint to transform the city’s airport into an airport city — characterized by capacity expansion, commercial developments, air cargo leadership, an autonomous transport system, connectivity to neighboring cities in mainland China, and evolution into a smart airport guided by sustainable practices. To enhance the customer experience, a key focus is capturing business opportunities at the nexus of digital and physical interactions. 

    These challenges “bring ideas and talent together to tackle real-world problems in the areas of digital service creation for the airport and engaging regional customers to experience the new airport city,” says Charles Sodini, the LeBel Professor of Electrical Engineering at MIT and faculty director at the Node. 

    The new travel standard

    Businesses are exploring new digital technologies, both to drive bookings and to facilitate safe travel. Developments such as Hong Kong airport’s Flight Token, a biometric technology using facial recognition to enable contactless check-ins and boarding at airports, unlock enormous potential that speeds up the departure journey of passengers. Seamless virtual experiences are not going to disappear.

    “What we may see could be a strong rebounce especially for travelers after the travel ban lifts … an opportunity to make travel easier, flying as simple as riding the bus,” says Chris Au Young, general manager of smart airport and general manager of data analytics at the Airport Authority of Hong Kong. 

    The passenger experience of the future will be “enabled by mobile technology, internet of things, and digital platforms,” he explains, adding that in the aviation community, “international organizations have already stipulated that biometric technology will be the new standard for the future … the next question is how this can be connected across airports.”  

    This extends further beyond travel, where Au Young illustrates, “If you go to a concert at Asia World Expo, which is the airport’s new arena in the future, you might just simply show your face rather than queue up in a long line waiting to show your tickets.”

    Accelerating the learning curve with industry support

    Working closely with industry mentors involved in the airport city’s development, students dived deep into discussions on the future of adapted travel, interviewed and surveyed travelers, and plowed through a range of airport data to uncover business insights.

    “With the large amount of data provided, my teammates and I worked hard to identify modeling opportunities that were both theoretically feasible and valuable in a business sense,” says Sean Mann, a junior at MIT studying computer science.

    Mann and his team applied geolocation data to inform machine learning predictions on a passenger’s journey once they enter the airside area. Coupled with biometric technology, passengers can receive personalized recommendations with improved accuracy via the airport’s bespoke passenger app, powered by data collected through thousands of iBeacons dispersed across the vicinity. Armed with these insights, the aim is to enhance the user experience by driving meaningful footfall to retail shops, restaurants, and other airport amenities.

    The support of industry partners inspired his team “with their deep understanding of the aviation industry,” he added. “In a short period of two weeks, we built a proof-of-concept and a rudimentary business plan — the latter of which was very new to me.”

    Collaborating across time zones, Rumen Dangovski, a PhD candidate in electrical engineering and computer science at MIT, joined MEMSI from his home in Bulgaria. For him, learning “how to continually revisit ideas to discover important problems and meaningful solutions for a large and complex real-world system” was a key takeaway. The iterative process helped his team overcome the obstacle of narrowing down the scope of their proposal, with the help of industry mentors and advisors. 

    “Without the feedback from industry partners, we would not have been able to formulate a concrete solution that is actually helpful to the airport,” says Dangovski.  

    Beyond valuable mentorship, he adds, “there was incredible energy in our team, consisting of diverse talent, grit, discipline and organization. I was positively surprised how MEMSI can form quickly and give continual support to our team. The overall experience was very fun.“

    A sustainable future

    Mrigi Munjal, a PhD candidate studying materials science and engineering at MIT, had just taken a long-haul flight from Boston to Delhi prior to the program, and “was beginning to fully appreciate the scale of carbon emissions from aviation.” For her, “that one journey basically overshadowed all of my conscious pro-sustainability lifestyle changes,” she says.

    Knowing that international flights constitute the largest part of an individual’s carbon footprint, Munjal and her team wanted “to make flying more sustainable with an idea that is economically viable for all of the stakeholders involved.” 

    They proposed a carbon offset API that integrates into an airline’s ticket payment system, empowering individuals to take action to offset their carbon footprint, track their personal carbon history, and pick and monitor green projects. The advocacy extends to a digital display of interactive art featured in physical installations across the airport city. The intent is to raise community awareness about one’s impact on the environment and making carbon offsetting accessible. 

    Shaping the travel narrative

    Six teams of students created innovative solutions for the Hong Kong airport which they presented in hybrid format to a panel of judges on Showcase Day. The diverse ideas included an app-based airport retail recommendations supported by iBeacons; a platform that empowers customers to offset their carbon footprint; an app that connects fellow travelers for social and incentive-driven retail experiences; a travel membership exchange platform offering added flexibility to earn and redeem loyalty rewards; an interactive and gamified location-based retail experience using augmented reality; and a digital companion avatar to increase adoption of the airport’s Flight Token and improve airside passenger experience.

    Among the judges was Julian Lee ’97, former president of the MIT Club of Hong Kong and current executive director of finance at the Airport Authority of Hong Kong, who commended the students for demonstrably having “worked very thoroughly and thinking through the specific challenges,” addressing the real pain points that the airport is experiencing.

    “The ideas were very thoughtful and very unique to us. Some of you defined transit passengers as a sub-segment of the market that works. It only happens at the airport and you’ve been able to leverage this transit time in between,” remarked Lee. 

    Strong solutions include an implementation plan to see a path for execution and a viable future. Among the solutions proposed, Au Young was impressed by teams for “paying a lot of attention to the business model … a very important aspect in all the ideas generated.”  

    Addressing the students, Au Young says, “What we love is the way you reinvent the airport business and partnerships, presenting a new way of attracting people to engage more in new services and experiences — not just returning for a flight or just shopping with us, but innovating beyond the airport and using emerging technologies, using location data, using the retailer’s capability and adding some social activities in your solutions.”

    Despite today’s rapidly evolving travel industry, what remains unchanged is a focus on the customer. In the end, “it’s still about the passengers,” added Au Young.  More

  • in

    MIT ReACT welcomes first Afghan cohort to its largest-yet certificate program

    Through the championing support of the faculty and leadership of the MIT Afghan Working Group convened last September by Provost Martin Schmidt and chaired by Associate Provost for International Activities Richard Lester, MIT has come together to support displaced Afghan learners and scholars in a time of crisis. The MIT Refugee Action Hub (ReACT) has opened opportunities for 25 talented Afghan learners to participate in the hub’s certificate program in computer and data science (CDS), now in its fourth year, welcoming its largest and most diverse cohort to date — 136 learners from 29 countries.

    ”Even in the face of extreme disruption, education and scholarship must continue, and MIT is committed to providing resources and safe forums for displaced scholars,” says Lester. “We greatly appreciate MIT ReACT’s work to create learning opportunities for Afghan students whose lives have been upended by the crisis in their homeland.”

    Currently, more than 3.5 million Afghans are internally displaced, while 2.5 million are registered refugees residing in other parts of the world. With millions in Afghanistan facing famine, poverty, and civil unrest in what has become the world’s largest humanitarian crisis, the United Nations predicts the number of Afghans forced to flee their homes will continue to rise. 

    “Forced displacement is on the rise, fueled not only by constant political, economical, and social turmoil worldwide, but also by the ongoing climate change crisis, which threatens costly disruptions to society and has potential to create unprecedented displacement internationally,” says associate professor of civil and environmental engineering and ReACT’s faculty founder Admir Masic. During the orientation for the new CDS cohort in January, Masic emphasized the great need for educational programs like ReACT’s that address the specific challenges refugees and displaced learners face.

    A former Bosnian refugee, Masic spent his teenage years in Croatia, where educational opportunities were limited for young people with refugee status. His experience motivated him to found ReACT, which launched in 2017. Housed within Open Learning, ReACT is an MIT-wide effort to deliver global education and professional development programs to underserved communities, including refugees and migrants. ReACT’s signature program, CDS is a year-long, online program that combines MITx courses in programming and data science, personal and professional development workshops including MIT Bootcamps, and opportunities for practical experience.

    ReACT’s group of 25 learners from Afghanistan, 52 percent of whom are women, joins the larger CDS cohort in the program. They will receive support from their new colleagues as well as members of ReACT’s mentor and alumni network. While the majority of the group are residing around the world, including in Europe, North America, and neighboring countries, several still remain in Afghanistan. With the support of the Afghan Working Group, ReACT is working to connect with communities from the region to provide safe and inclusive learning environments for the cohort. ​​

    Building community and confidence

    Selected from more than 1,000 applicants, the new CDS cohort reflected on their personal and professional goals during a weeklong orientation.

    “I am here because I want to change my career and learn basics in this field to then obtain networks that I wouldn’t have got if it weren’t for this program,” said Samiullah Ajmal, who is joining the program from Afghanistan.

    Interactive workshops on topics such as leadership development and virtual networking rounded out the week’s events. Members of ReACT’s greater community — which has grown in recent years to include a network of external collaborators including nonprofits, philanthropic supporters, universities, and alumni — helped facilitate these workshops and other orientation activities.

    For instance, Na’amal, a social enterprise that connects refugees to remote work opportunities, introduced the CDS learners to strategies for making career connections remotely. “We build confidence while doing,” says Susan Mulholland, a leadership and development coach with Na’amal who led the networking workshop.

    Along with the CDS program’s cohort-based model, ReACT also uses platforms that encourage regular communication between participants and with the larger ReACT network — making connections a critical component of the program.

    “I not only want to meet new people and make connections for my professional career, but I also want to test my communication and social skills,” says Pablo Andrés Uribe, a learner who lives in Colombia, describing ReACT’s emphasis on community-building. 

    Over the last two years, ReACT has expanded its geographic presence, growing from a hub in Jordan into a robust global community of many hubs, including in Colombia and Uganda. These regional sites connect talented refugees and displaced learners to internships and employment, startup networks and accelerators, and pathways to formal undergraduate and graduate education.

    This expansion is thanks to the generous support internally from the MIT Office of the Provost and Associate Provost Richard Lester and external organizations including the Western Union Foundation. ReACT will build new hubs this year in Greece, Uruguay, and Afghanistan, as a result of gifts from the Hatsopoulos family and the Pfeffer family.

    Holding space to learn from each other

    In addition to establishing new global hubs, ReACT plans to expand its network of internship and experiential learning opportunities, increasing outreach to new collaborators such as nongovernmental organizations (NGOs), companies, and universities. Jointly with Na’amal and Paper Airplanes, a nonprofit that connects conflict-affected individuals with personal language tutors, ReACT will host the first Migration Summit. Scheduled for April 2022, the month-long global convening invites a broad range of participants, including displaced learners, universities, companies, nonprofits and NGOs, social enterprises, foundations, philanthropists, researchers, policymakers, employers, and governments, to address the key challenges and opportunities for refugee and migrant communities. The theme of the summit is “Education and Workforce Development in Displacement.”

    “The MIT Migration Summit offers a platform to discuss how new educational models, such as those employed in ReACT, can help solve emerging challenges in providing quality education and career opportunities to forcibly displaced and marginalized people around the world,” says Masic. 

    A key goal of the convening is to center the voices of those most directly impacted by displacement, such as ReACT’s learners from Afghanistan and elsewhere, in solution-making. More

  • in

    At UN climate change conference, trying to “keep 1.5 alive”

    After a one-year delay caused by the Covid-19 pandemic, negotiators from nearly 200 countries met this month in Glasgow, Scotland, at COP26, the United Nations climate change conference, to hammer out a new global agreement to reduce greenhouse gas emissions and prepare for climate impacts. A delegation of approximately 20 faculty, staff, and students from MIT was on hand to observe the negotiations, share and conduct research, and launch new initiatives.

    On Saturday, Nov. 13, following two weeks of negotiations in the cavernous Scottish Events Campus, countries’ representatives agreed to the Glasgow Climate Pact. The pact reaffirms the goal of the 2015 Paris Agreement “to pursue efforts” to limit the global average temperature increase to 1.5 degrees Celsius above preindustrial levels, and recognizes that achieving this goal requires “reducing global carbon dioxide emissions by 45 percent by 2030 relative to the 2010 level and to net zero around mid-century.”

    “On issues like the need to reach net-zero emissions, reduce methane pollution, move beyond coal power, and tighten carbon accounting rules, the Glasgow pact represents some meaningful progress, but we still have so much work to do,” says Maria Zuber, MIT’s vice president for research, who led the Institute’s delegation to COP26. “Glasgow showed, once again, what a wicked complex problem climate change is, technically, economically, and politically. But it also underscored the determination of a global community of people committed to addressing it.”

    An “ambition gap”

    Both within the conference venue and at protests that spilled through the streets of Glasgow, one rallying cry was “keep 1.5 alive.” Alok Sharma, who was appointed by the UK government to preside over COP26, said in announcing the Glasgow pact: “We can now say with credibility that we have kept 1.5 degrees alive. But, its pulse is weak and it will only survive if we keep our promises and translate commitments into rapid action.”

    In remarks delivered during the first week of the conference, Sergey Paltsev, deputy director of MIT’s Joint Program on the Science and Policy of Global Change, presented findings from the latest MIT Global Change Outlook, which showed a wide gap between countries’ nationally determined contributions (NDCs) — the UN’s term for greenhouse gas emissions reduction pledges — and the reductions needed to put the world on track to meet the goals of the Paris Agreement and, now, the Glasgow pact.

    Pointing to this ambition gap, Paltsev called on all countries to do more, faster, to cut emissions. “We could dramatically reduce overall climate risk through more ambitious policy measures and investments,” says Paltsev. “We need to employ an integrated approach of moving to zero emissions in energy and industry, together with sustainable development and nature-based solutions, simultaneously improving human well-being and providing biodiversity benefits.”

    Finalizing the Paris rulebook

    A key outcome of COP26 (COP stands for “conference of the parties” to the UN Framework Convention on Climate Change, held for the 26th time) was the development of a set of rules to implement Article 6 of the Paris Agreement, which provides a mechanism for countries to receive credit for emissions reductions that they finance outside their borders, and to cooperate by buying and selling emissions reductions on international carbon markets.

    An agreement on this part of the Paris “rulebook” had eluded negotiators in the years since the Paris climate conference, in part because negotiators were concerned about how to prevent double-counting, wherein both buyers and sellers would claim credit for the emissions reductions.

    Michael Mehling, the deputy director of MIT’s Center for Energy and Environmental Policy Research (CEEPR) and an expert on international carbon markets, drew on a recent CEEPR working paper to describe critical negotiation issues under Article 6 during an event at the conference on Nov. 10 with climate negotiators and private sector representatives.

    He cited research that finds that Article 6, by leveraging the cost-efficiency of global carbon markets, could cut in half the cost that countries would incur to achieve their nationally determined contributions. “Which, seen from another angle, means you could double the ambition of these NDCs at no additional cost,” Mehling noted in his talk, adding that, given the persistent ambition gap, “any such opportunity is bitterly needed.”

    Andreas Haupt, a graduate student in the Institute for Data, Systems, and Society, joined MIT’s COP26 delegation to follow Article 6 negotiations. Haupt described the final days of negotiations over Article 6 as a “roller coaster.” Once negotiators reached an agreement, he says, “I felt relieved, but also unsure how strong of an effect the new rules, with all their weaknesses, will have. I am curious and hopeful regarding what will happen in the next year until the next large-scale negotiations in 2022.”

    Nature-based climate solutions

    World leaders also announced new agreements on the sidelines of the formal UN negotiations. One such agreement, a declaration on forests signed by more than 100 countries, commits to “working collectively to halt and reverse forest loss and land degradation by 2030.”

    A team from MIT’s Environmental Solutions Initiative (ESI), which has been working with policymakers and other stakeholders on strategies to protect tropical forests and advance other nature-based climate solutions in Latin America, was at COP26 to discuss their work and make plans for expanding it.

    Marcela Angel, a research associate at ESI, moderated a panel discussion featuring John Fernández, professor of architecture and ESI’s director, focused on protecting and enhancing natural carbon sinks, particularly tropical forests such as the Amazon that are at risk of deforestation, forest degradation, and biodiversity loss.

    “Deforestation and associated land use change remain one of the main sources of greenhouse gas emissions in most Amazonian countries, such as Brazil, Peru, and Colombia,” says Angel. “Our aim is to support these countries, whose nationally determined contributions depend on the effectiveness of policies to prevent deforestation and promote conservation, with an approach based on the integration of targeted technology breakthroughs, deep community engagement, and innovative bioeconomic opportunities for local communities that depend on forests for their livelihoods.”

    Energy access and renewable energy

    Worldwide, an estimated 800 million people lack access to electricity, and billions more have only limited or erratic electrical service. Providing universal access to energy is one of the UN’s sustainable development goals, creating a dual challenge: how to boost energy access without driving up greenhouse gas emissions.

    Rob Stoner, deputy director for science and technology of the MIT Energy Initiative (MITEI), and Ignacio Pérez-Arriaga, a visiting professor at the Sloan School of Management, attended COP26 to share their work as members of the Global Commission to End Energy Poverty, a collaboration between MITEI and the Rockefeller Foundation. It brings together global energy leaders from industry, the development finance community, academia, and civil society to identify ways to overcome barriers to investment in the energy sectors of countries with low energy access.

    The commission’s work helped to motivate the formation, announced at COP26 on Nov. 2, of the Global Energy Alliance for People and Planet, a multibillion-dollar commitment by the Rockefeller and IKEA foundations and Bezos Earth Fund to support access to renewable energy around the world.

    Another MITEI member of the COP26 delegation, Martha Broad, the initiative’s executive director, spoke about MIT research to inform the U.S. goal of scaling offshore wind energy capacity from approximately 30 megawatts today to 30 gigawatts by 2030, including significant new capacity off the coast of New England.

    Broad described research, funded by MITEI member companies, on a coating that can be applied to the blades of wind turbines to prevent icing that would require the turbines’ shutdown; the use of machine learning to inform preventative turbine maintenance; and methodologies for incorporating the effects of climate change into projections of future wind conditions to guide wind farm siting decisions today. She also spoke broadly about the need for public and private support to scale promising innovations.

    “Clearly, both the public sector and the private sector have a role to play in getting these technologies to the point where we can use them in New England, and also where we can deploy them affordably for the developing world,” Broad said at an event sponsored by America Is All In, a coalition of nonprofit and business organizations.

    Food and climate alliance

    Food systems around the world are increasingly at risk from the impacts of climate change. At the same time, these systems, which include all activities from food production to consumption and food waste, are responsible for about one-third of the human-caused greenhouse gas emissions warming the planet.

    At COP26, MIT’s Abdul Latif Jameel Water and Food Systems Lab announced the launch of a new alliance to drive research-based innovation that will make food systems more resilient and sustainable, called the Food and Climate Systems Transformation (FACT) Alliance. With 16 member institutions, the FACT Alliance will better connect researchers to farmers, food businesses, policymakers, and other food systems stakeholders around the world.

    Looking ahead

    By the end of 2022, the Glasgow pact asks countries to revisit their nationally determined contributions and strengthen them to bring them in line with the temperature goals of the Paris Agreement. The pact also “notes with deep regret” the failure of wealthier countries to collectively provide poorer countries $100 billion per year in climate financing that they pledged in 2009 to begin in 2020.

    These and other issues will be on the agenda for COP27, to be held in Sharm El-Sheikh, Egypt, next year.

    “Limiting warming to 1.5 degrees is broadly accepted as a critical goal to avoiding worsening climate consequences, but it’s clear that current national commitments will not get us there,” says ESI’s Fernández. “We will need stronger emissions reductions pledges, especially from the largest greenhouse gas emitters. At the same time, expanding creativity, innovation, and determination from every sector of society, including research universities, to get on with real-world solutions is essential. At Glasgow, MIT was front and center in energy systems, cities, nature-based solutions, and more. The year 2030 is right around the corner so we can’t afford to let up for one minute.” More