More stories

  • in

    The promise and pitfalls of artificial intelligence explored at TEDxMIT event

    Scientists, students, and community members came together last month to discuss the promise and pitfalls of artificial intelligence at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) for the fourth TEDxMIT event held at MIT. 

    Attendees were entertained and challenged as they explored “the good and bad of computing,” explained CSAIL Director Professor Daniela Rus, who organized the event with John Werner, an MIT fellow and managing director of Link Ventures; MIT sophomore Lucy Zhao; and grad student Jessica Karaguesian. “As you listen to the talks today,” Rus told the audience, “consider how our world is made better by AI, and also our intrinsic responsibilities for ensuring that the technology is deployed for the greater good.”

    Rus mentioned some new capabilities that could be enabled by AI: an automated personal assistant that could monitor your sleep phases and wake you at the optimal time, as well as on-body sensors that monitor everything from your posture to your digestive system. “Intelligent assistance can help empower and augment our lives. But these intriguing possibilities should only be pursued if we can simultaneously resolve the challenges that these technologies bring,” said Rus. 

    The next speaker, CSAIL principal investigator and professor of electrical engineering and computer science Manolis Kellis, started off by suggesting what sounded like an unattainable goal — using AI to “put an end to evolution as we know it.” Looking at it from a computer science perspective, he said, what we call evolution is basically a brute force search. “You’re just exploring all of the search space, creating billions of copies of every one of your programs, and just letting them fight against each other. This is just brutal. And it’s also completely slow. It took us billions of years to get here.” Might it be possible, he asked, to speed up evolution and make it less messy?

    The answer, Kellis said, is that we can do better, and that we’re already doing better: “We’re not killing people like Sparta used to, throwing the weaklings off the mountain. We are truly saving diversity.”

    Knowledge, moreover, is now being widely shared, passed on “horizontally” through accessible information sources, he noted, rather than “vertically,” from parent to offspring. “I would like to argue that competition in the human species has been replaced by collaboration. Despite having a fixed cognitive hardware, we have software upgrades that are enabled by culture, by the 20 years that our children spend in school to fill their brains with everything that humanity has learned, regardless of which family came up with it. This is the secret of our great acceleration” — the fact that human advancement in recent centuries has vastly out-clipped evolution’s sluggish pace.

    The next step, Kellis said, is to harness insights about evolution in order to combat an individual’s genetic susceptibility to disease. “Our current approach is simply insufficient,” he added. “We’re treating manifestations of disease, not the causes of disease.” A key element in his lab’s ambitious strategy to transform medicine is to identify “the causal pathways through which genetic predisposition manifests. It’s only by understanding these pathways that we can truly manipulate disease causation and reverse the disease circuitry.” 

    Kellis was followed by Aleksander Madry, MIT professor of electrical engineering and computer science and CSAIL principal investigator, who told the crowd, “progress in AI is happening, and it’s happening fast.” Computer programs can routinely beat humans in games like chess, poker, and Go. So should we be worried about AI surpassing humans? 

    Madry, for one, is not afraid — or at least not yet. And some of that reassurance stems from research that has led him to the following conclusion: Despite its considerable success, AI, especially in the form of machine learning, is lazy. “Think about being lazy as this kind of smart student who doesn’t really want to study for an exam. Instead, what he does is just study all the past years’ exams and just look for patterns. Instead of trying to actually learn, he just tries to pass the test. And this is exactly the same way in which current AI is lazy.”

    A machine-learning model might recognize grazing sheep, for instance, simply by picking out pictures that have green grass in them. If a model is trained to identify fish from photos of anglers proudly displaying their catches, Madry explained, “the model figures out that if there’s a human holding something in the picture, I will just classify it as a fish.” The consequences can be more serious for an AI model intended to pick out malignant tumors. If the model is trained on images containing rulers that indicate the size of tumors, the model may end up selecting only those photos that have rulers in them.

    This leads to Madry’s biggest concerns about AI in its present form. “AI is beating us now,” he noted. “But the way it does it [involves] a little bit of cheating.” He fears that we will apply AI “in some way in which this mismatch between what the model actually does versus what we think it does will have some catastrophic consequences.” People relying on AI, especially in potentially life-or-death situations, need to be much more mindful of its current limitations, Madry cautioned.

    There were 10 speakers altogether, and the last to take the stage was MIT associate professor of electrical engineering and computer science and CSAIL principal investigator Marzyeh Ghassemi, who laid out her vision for how AI could best contribute to general health and well-being. But in order for that to happen, its models must be trained on accurate, diverse, and unbiased medical data.

    It’s important to focus on the data, Ghassemi stressed, because these models are learning from us. “Since our data is human-generated … a neural network is learning how to practice from a doctor. But doctors are human, and humans make mistakes. And if a human makes a mistake, and we train an AI from that, the AI will, too. Garbage in, garbage out. But it’s not like the garbage is distributed equally.”

    She pointed out that many subgroups receive worse care from medical practitioners, and members of these subgroups die from certain conditions at disproportionately high rates. This is an area, Ghassemi said, “where AI can actually help. This is something we can fix.” Her group is developing machine-learning models that are robust, private, and fair. What’s holding them back is neither algorithms nor GPUs. It’s data. Once we collect reliable data from diverse sources, Ghassemi added, we might start reaping the benefits that AI can bring to the realm of health care.

    In addition to CSAIL speakers, there were talks from members across MIT’s Institute for Data, Systems, and Society; the MIT Mobility Initiative; the MIT Media Lab; and the SENSEable City Lab.

    The proceedings concluded on that hopeful note. Rus and Werner then thanked everyone for coming. “Please continue to reflect about the good and bad of computing,” Rus urged. “And we look forward to seeing you back here in May for the next TEDxMIT event.”

    The exact theme of the spring 2022 gathering will have something to do with “superpowers.” But — if December’s mind-bending presentations were any indication — the May offering is almost certain to give its attendees plenty to think about. And maybe provide the inspiration for a startup or two. More

  • in

    Tackling hard computational problems

    The notion that some computational problems in math and computer science can be hard should come as no surprise. There is, in fact, an entire class of problems deemed impossible to solve algorithmically. Just below this class lie slightly “easier” problems that are less well-understood — and may be impossible, too.

    David Gamarnik, professor of operations research at the MIT Sloan School of Management and the Institute for Data, Systems, and Society, is focusing his attention on the latter, less-studied category of problems, which are more relevant to the everyday world because they involve randomness — an integral feature of natural systems. He and his colleagues have developed a potent tool for analyzing these problems called the overlap gap property (or OGP). Gamarnik described the new methodology in a recent paper in the Proceedings of the National Academy of Sciences.

    P ≠ NP

    Fifty years ago, the most famous problem in theoretical computer science was formulated. Labeled “P ≠ NP,” it asks if problems involving vast datasets exist for which an answer can be verified relatively quickly, but whose solution — even if worked out on the fastest available computers — would take an absurdly long time.

    The P ≠ NP conjecture is still unproven, yet most computer scientists believe that many familiar problems — including, for instance, the traveling salesman problem — fall into this impossibly hard category. The challenge in the salesman example is to find the shortest route, in terms of distance or time, through N different cities. The task is easily managed when N=4, because there are only six possible routes to consider. But for 30 cities, there are more than 1030 possible routes, and the numbers rise dramatically from there. The biggest difficulty comes in designing an algorithm that quickly solves the problem in all cases, for all integer values of N. Computer scientists are confident, based on algorithmic complexity theory, that no such algorithm exists, thus affirming that P ≠ NP.

    There are many other examples of intractable problems like this. Suppose, for instance, you have a giant table of numbers with thousands of rows and thousands of columns. Can you find, among all possible combinations, the precise arrangement of 10 rows and 10 columns such that its 100 entries will have the highest sum attainable? “We call them optimization tasks,” Gamarnik says, “because you’re always trying to find the biggest or best — the biggest sum of numbers, the best route through cities, and so forth.”

    Computer scientists have long recognized that you can’t create a fast algorithm that can, in all cases, efficiently solve problems like the saga of the traveling salesman. “Such a thing is likely impossible for reasons that are well-understood,” Gamarnik notes. “But in real life, nature doesn’t generate problems from an adversarial perspective. It’s not trying to thwart you with the most challenging, hand-picked problem conceivable.” In fact, people normally encounter problems under more random, less contrived circumstances, and those are the problems the OGP is intended to address.

    Peaks and valleys

    To understand what the OGP is all about, it might first be instructive to see how the idea arose. Since the 1970s, physicists have been studying spin glasses — materials with properties of both liquids and solids that have unusual magnetic behaviors. Research into spin glasses has given rise to a general theory of complex systems that’s relevant to problems in physics, math, computer science, materials science, and other fields. (This work earned Giorgio Parisi a 2021 Nobel Prize in Physics.)

    One vexing issue physicists have wrestled with is trying to predict the energy states, and particularly the lowest energy configurations, of different spin glass structures. The situation is sometimes depicted by a “landscape” of countless mountain peaks separated by valleys, where the goal is to identify the highest peak. In this case, the highest peak actually represents the lowest energy state (though one could flip the picture around and instead look for the deepest hole). This turns out to be an optimization problem similar in form to the traveling salesman’s dilemma, Gamarnik explains: “You’ve got this huge collection of mountains, and the only way to find the highest appears to be by climbing up each one” — a Sisyphean chore comparable to finding a needle in a haystack.

    Physicists have shown that you can simplify this picture, and take a step toward a solution, by slicing the mountains at a certain, predetermined elevation and ignoring everything below that cutoff level. You’d then be left with a collection of peaks protruding above a uniform layer of clouds, with each point on those peaks representing a potential solution to the original problem.

    In a 2014 paper, Gamarnik and his coauthors noticed something that had previously been overlooked. In some cases, they realized, the diameter of each peak will be much smaller than the distances between different peaks. Consequently, if one were to pick any two points on this sprawling landscape — any two possible “solutions” — they would either be very close (if they came from the same peak) or very far apart (if drawn from different peaks). In other words, there would be a telltale “gap” in these distances — either small or large, but nothing in-between. A system in this state, Gamarnik and colleagues proposed, is characterized by the OGP.

    “We discovered that all known problems of a random nature that are algorithmically hard have a version of this property” — namely, that the mountain diameter in the schematic model is much smaller than the space between mountains, Gamarnik asserts. “This provides a more precise measure of algorithmic hardness.”

    Unlocking the secrets of algorithmic complexity

    The emergence of the OGP can help researchers assess the difficulty of creating fast algorithms to tackle particular problems. And it has already enabled them “to mathematically [and] rigorously rule out a large class of algorithms as potential contenders,” Gamarnik says. “We’ve learned, specifically, that stable algorithms — those whose output won’t change much if the input only changes a little — will fail at solving this type of optimization problem.” This negative result applies not only to conventional computers but also to quantum computers and, specifically, to so-called “quantum approximation optimization algorithms” (QAOAs), which some investigators had hoped could solve these same optimization problems. Now, owing to Gamarnik and his co-authors’ findings, those hopes have been moderated by the recognition that many layers of operations would be required for QAOA-type algorithms to succeed, which could be technically challenging.

    “Whether that’s good news or bad news depends on your perspective,” he says. “I think it’s good news in the sense that it helps us unlock the secrets of algorithmic complexity and enhances our knowledge as to what is in the realm of possibility and what is not. It’s bad news in the sense that it tells us that these problems are hard, even if nature produces them, and even if they’re generated in a random way.” The news is not really surprising, he adds. “Many of us expected it all along, but we now we have a more solid basis upon which to make this claim.”

    That still leaves researchers light-years away from being able to prove the nonexistence of fast algorithms that could solve these optimization problems in random settings. Having such a proof would provide a definitive answer to the P ≠ NP problem. “If we could show that we can’t have an algorithm that works most of the time,” he says, “that would tell us we certainly can’t have an algorithm that works all the time.”

    Predicting how long it will take before the P ≠ NP problem is resolved appears to be an intractable problem in itself. It’s likely there will be many more peaks to climb, and valleys to traverse, before researchers gain a clearer perspective on the situation. More

  • in

    Q&A: Cathy Wu on developing algorithms to safely integrate robots into our world

    Cathy Wu is the Gilbert W. Winslow Assistant Professor of Civil and Environmental Engineering and a member of the MIT Institute for Data, Systems, and Society. As an undergraduate, Wu won MIT’s toughest robotics competition, and as a graduate student took the University of California at Berkeley’s first-ever course on deep reinforcement learning. Now back at MIT, she’s working to improve the flow of robots in Amazon warehouses under the Science Hub, a new collaboration between the tech giant and the MIT Schwarzman College of Computing. Outside of the lab and classroom, Wu can be found running, drawing, pouring lattes at home, and watching YouTube videos on math and infrastructure via 3Blue1Brown and Practical Engineering. She recently took a break from all of that to talk about her work.

    Q: What put you on the path to robotics and self-driving cars?

    A: My parents always wanted a doctor in the family. However, I’m bad at following instructions and became the wrong kind of doctor! Inspired by my physics and computer science classes in high school, I decided to study engineering. I wanted to help as many people as a medical doctor could.

    At MIT, I looked for applications in energy, education, and agriculture, but the self-driving car was the first to grab me. It has yet to let go! Ninety-four percent of serious car crashes are caused by human error and could potentially be prevented by self-driving cars. Autonomous vehicles could also ease traffic congestion, save energy, and improve mobility.

    I first learned about self-driving cars from Seth Teller during his guest lecture for the course Mobile Autonomous Systems Lab (MASLAB), in which MIT undergraduates compete to build the best full-functioning robot from scratch. Our ball-fetching bot, Putzputz, won first place. From there, I took more classes in machine learning, computer vision, and transportation, and joined Teller’s lab. I also competed in several mobility-related hackathons, including one sponsored by Hubway, now known as Blue Bike.

    Q: You’ve explored ways to help humans and autonomous vehicles interact more smoothly. What makes this problem so hard?

    A: Both systems are highly complex, and our classical modeling tools are woefully insufficient. Integrating autonomous vehicles into our existing mobility systems is a huge undertaking. For example, we don’t know whether autonomous vehicles will cut energy use by 40 percent, or double it. We need more powerful tools to cut through the uncertainty. My PhD thesis at Berkeley tried to do this. I developed scalable optimization methods in the areas of robot control, state estimation, and system design. These methods could help decision-makers anticipate future scenarios and design better systems to accommodate both humans and robots.

    Q: How is deep reinforcement learning, combining deep and reinforcement learning algorithms, changing robotics?

    A: I took John Schulman and Pieter Abbeel’s reinforcement learning class at Berkeley in 2015 shortly after Deepmind published their breakthrough paper in Nature. They had trained an agent via deep learning and reinforcement learning to play “Space Invaders” and a suite of Atari games at superhuman levels. That created quite some buzz. A year later, I started to incorporate reinforcement learning into problems involving mixed traffic systems, in which only some cars are automated. I realized that classical control techniques couldn’t handle the complex nonlinear control problems I was formulating.

    Deep RL is now mainstream but it’s by no means pervasive in robotics, which still relies heavily on classical model-based control and planning methods. Deep learning continues to be important for processing raw sensor data like camera images and radio waves, and reinforcement learning is gradually being incorporated. I see traffic systems as gigantic multi-robot systems. I’m excited for an upcoming collaboration with Utah’s Department of Transportation to apply reinforcement learning to coordinate cars with traffic signals, reducing congestion and thus carbon emissions.

    Q: You’ve talked about the MIT course, 6.007 (Signals and Systems), and its impact on you. What about it spoke to you?

    A: The mindset. That problems that look messy can be analyzed with common, and sometimes simple, tools. Signals are transformed by systems in various ways, but what do these abstract terms mean, anyway? A mechanical system can take a signal like gears turning at some speed and transform it into a lever turning at another speed. A digital system can take binary digits and turn them into other binary digits or a string of letters or an image. Financial systems can take news and transform it via millions of trading decisions into stock prices. People take in signals every day through advertisements, job offers, gossip, and so on, and translate them into actions that in turn influence society and other people. This humble class on signals and systems linked mechanical, digital, and societal systems and showed me how foundational tools can cut through the noise.

    Q: In your project with Amazon you’re training warehouse robots to pick up, sort, and deliver goods. What are the technical challenges?

    A: This project involves assigning robots to a given task and routing them there. [Professor] Cynthia Barnhart’s team is focused on task assignment, and mine, on path planning. Both problems are considered combinatorial optimization problems because the solution involves a combination of choices. As the number of tasks and robots increases, the number of possible solutions grows exponentially. It’s called the curse of dimensionality. Both problems are what we call NP Hard; there may not be an efficient algorithm to solve them. Our goal is to devise a shortcut.

    Routing a single robot for a single task isn’t difficult. It’s like using Google Maps to find the shortest path home. It can be solved efficiently with several algorithms, including Dijkstra’s. But warehouses resemble small cities with hundreds of robots. When traffic jams occur, customers can’t get their packages as quickly. Our goal is to develop algorithms that find the most efficient paths for all of the robots.

    Q: Are there other applications?

    A: Yes. The algorithms we test in Amazon warehouses might one day help to ease congestion in real cities. Other potential applications include controlling planes on runways, swarms of drones in the air, and even characters in video games. These algorithms could also be used for other robotic planning tasks like scheduling and routing.

    Q: AI is evolving rapidly. Where do you hope to see the big breakthroughs coming?

    A: I’d like to see deep learning and deep RL used to solve societal problems involving mobility, infrastructure, social media, health care, and education. Deep RL now has a toehold in robotics and industrial applications like chip design, but we still need to be careful in applying it to systems with humans in the loop. Ultimately, we want to design systems for people. Currently, we simply don’t have the right tools.

    Q: What worries you most about AI taking on more and more specialized tasks?

    A: AI has the potential for tremendous good, but it could also help to accelerate the widening gap between the haves and the have-nots. Our political and regulatory systems could help to integrate AI into society and minimize job losses and income inequality, but I worry that they’re not equipped yet to handle the firehose of AI.

    Q: What’s the last great book you read?

    A: “How to Avoid a Climate Disaster,” by Bill Gates. I absolutely loved the way that Gates was able to take an overwhelmingly complex topic and distill it down into words that everyone can understand. His optimism inspires me to keep pushing on applications of AI and robotics to help avoid a climate disaster. More

  • in

    Systems scientists find clues to why false news snowballs on social media

    The spread of misinformation on social media is a pressing societal problem that tech companies and policymakers continue to grapple with, yet those who study this issue still don’t have a deep understanding of why and how false news spreads.

    To shed some light on this murky topic, researchers at MIT developed a theoretical model of a Twitter-like social network to study how news is shared and explore situations where a non-credible news item will spread more widely than the truth. Agents in the model are driven by a desire to persuade others to take on their point of view: The key assumption in the model is that people bother to share something with their followers if they think it is persuasive and likely to move others closer to their mindset. Otherwise they won’t share.

    The researchers found that in such a setting, when a network is highly connected or the views of its members are sharply polarized, news that is likely to be false will spread more widely and travel deeper into the network than news with higher credibility.

    This theoretical work could inform empirical studies of the relationship between news credibility and the size of its spread, which might help social media companies adapt networks to limit the spread of false information.

    “We show that, even if people are rational in how they decide to share the news, this could still lead to the amplification of information with low credibility. With this persuasion motive, no matter how extreme my beliefs are — given that the more extreme they are the more I gain by moving others’ opinions — there is always someone who would amplify [the information],” says senior author Ali Jadbabaie, professor and head of the Department of Civil and Environmental Engineering and a core faculty member of the Institute for Data, Systems, and Society (IDSS) and a principal investigator in the Laboratory for Information and Decision Systems (LIDS).

    Joining Jadbabaie on the paper are first author Chin-Chia Hsu, a graduate student in the Social and Engineering Systems program in IDSS, and Amir Ajorlou, a LIDS research scientist. The research will be presented this week at the IEEE Conference on Decision and Control.

    Pondering persuasion

    This research draws on a 2018 study by Sinan Aral, the David Austin Professor of Management at the MIT Sloan School of Management; Deb Roy, an associate professor of media arts and sciences at the Media Lab; and former postdoc Soroush Vosoughi (now an assistant professor of computer science at Dartmouth University). Their empirical study of data from Twitter found that false news spreads wider, faster, and deeper than real news.

    Jadbabaie and his collaborators wanted to drill down on why this occurs.

    They hypothesized that persuasion might be a strong motive for sharing news — perhaps agents in the network want to persuade others to take on their point of view — and decided to build a theoretical model that would let them explore this possibility.

    In their model, agents have some prior belief about a policy, and their goal is to persuade followers to move their beliefs closer to the agent’s side of the spectrum.

    A news item is initially released to a small, random subgroup of agents, which must decide whether to share this news with their followers. An agent weighs the newsworthiness of the item and its credibility, and updates its belief based on how surprising or convincing the news is. 

    “They will make a cost-benefit analysis to see if, on average, this piece of news will move people closer to what they think or move them away. And we include a nominal cost for sharing. For instance, taking some action, if you are scrolling on social media, you have to stop to do that. Think of that as a cost. Or a reputation cost might come if I share something that is embarrassing. Everyone has this cost, so the more extreme and the more interesting the news is, the more you want to share it,” Jadbabaie says.

    If the news affirms the agent’s perspective and has persuasive power that outweighs the nominal cost, the agent will always share the news. But if an agent thinks the news item is something others may have already seen, the agent is disincentivized to share it.

    Since an agent’s willingness to share news is a product of its perspective and how persuasive the news is, the more extreme an agent’s perspective or the more surprising the news, the more likely the agent will share it.

    The researchers used this model to study how information spreads during a news cascade, which is an unbroken sharing chain that rapidly permeates the network.

    Connectivity and polarization

    The team found that when a network has high connectivity and the news is surprising, the credibility threshold for starting a news cascade is lower. High connectivity means that there are multiple connections between many users in the network.

    Likewise, when the network is largely polarized, there are plenty of agents with extreme views who want to share the news item, starting a news cascade. In both these instances, news with low credibility creates the largest cascades.

    “For any piece of news, there is a natural network speed limit, a range of connectivity, that facilitates good transmission of information where the size of the cascade is maximized by true news. But if you exceed that speed limit, you will get into situations where inaccurate news or news with low credibility has a larger cascade size,” Jadbabaie says.

    If the views of users in the network become more diverse, it is less likely that a poorly credible piece of news will spread more widely than the truth.

    Jadbabaie and his colleagues designed the agents in the network to behave rationally, so the model would better capture actions real humans might take if they want to persuade others.

    “Someone might say that is not why people share, and that is valid. Why people do certain things is a subject of intense debate in cognitive science, social psychology, neuroscience, economics, and political science,” he says. “Depending on your assumptions, you end up getting different results. But I feel like this assumption of persuasion being the motive is a natural assumption.”

    Their model also shows how costs can be manipulated to reduce the spread of false information. Agents make a cost-benefit analysis and won’t share news if the cost to do so outweighs the benefit of sharing.

    “We don’t make any policy prescriptions, but one thing this work suggests is that, perhaps, having some cost associated with sharing news is not a bad idea. The reason you get lots of these cascades is because the cost of sharing the news is actually very low,” he says.

    This work was supported by an Army Research Office Multidisciplinary University Research Initiative grant and a Vannevar Bush Fellowship from the Office of the Secretary of Defense. More

  • in

    Q&A: Can the world change course on climate?

    In this ongoing series on climate issues, MIT faculty, students, and alumni in the humanistic fields share perspectives that are significant for solving climate change and mitigating its myriad social and ecological impacts. Nazli Choucri is a professor of political science and an expert on climate issues, who also focuses on international relations and cyberpolitics. She is the architect and director of the Global System for Sustainable Development, an evolving knowledge networking system centered on sustainability problems and solution strategies. The author and/or editor of 12 books, she is also the founding editor of the MIT Press book series “Global Environmental Accord: Strategies for Sustainability and Institutional Innovation.” Q: The impacts of climate change — including storms, floods, wildfires, and droughts — have the potential to destabilize nations, yet they are not constrained by borders. What international developments most concern you in terms of addressing climate change and its myriad ecological and social impacts?

    A: Climate change is a global issue. By definition, and a long history of practice, countries focus on their own priorities and challenges. Over time, we have seen the gradual development of norms reflecting shared interests, and the institutional arrangements to support and pursue the global good. What concerns me most is that general responses to the climate crisis are being framed in broad terms; the overall pace of change remains perilously slow; and uncertainty remains about operational action and implementation of stated intent. We have just seen the completion of the 26th meeting of states devoted to climate change, the United Nations Climate Change Conference (COP26). In some ways this is positive. Yet, past commitments remain unfulfilled, creating added stress in an already stressful political situation. Industrial countries are uneven in their recognition of, and responses to, climate change. This may signal uncertainty about whether climate matters are sufficiently compelling to call for immediate action. Alternatively, the push for changing course may seem too costly at a time when other imperatives — such as employment, economic growth, or protecting borders — inevitably dominate discourse and decisions. Whatever the cause, the result has been an unwillingness to take strong action. Unfortunately, climate change remains within the domain of “low politics,” although there are signs the issue is making a slow but steady shift to “high politics” — those issues deemed vital to the existence of the state. This means that short-term priorities, such as those noted above, continue to shape national politics and international positions and, by extension, to obscure the existential threat revealed by scientific evidence. As for developing countries, these are overwhelmed by internal challenges, and managing the difficulties of daily life always takes priority over other challenges, however compelling. Long-term thinking is a luxury, but daily bread is a necessity. Non-state actors — including registered nongovernmental organizations, climate organizations, sustainability support groups, activists of various sorts, and in some cases much of civil society — have been left with a large share of the responsibility for educating and convincing diverse constituencies of the consequences of inaction on climate change. But many of these institutions carry their own burdens and struggle to manage current pressures. The international community, through its formal and informal institutions, continues to articulate the perils of climate change and to search for a powerful consensus that can prove effective both in form and in function. The general contours are agreed upon — more or less. But leadership of, for, and by the global collective is elusive and difficult to shape. Most concerning of all is the clear reluctance to address head-on the challenge of planning for changes that we know will occur. The reality that we are all being affected — in different ways and to different degrees — has yet to be sufficiently appreciated by everyone, everywhere. Yet, in many parts of the world, major shifts in climate will create pressures on human settlements, spur forced migrations, or generate social dislocations. Some small island states, for example, may not survive a sea-level surge. Everywhere there is a need to cut emissions, and this means adaptation and/or major changes in economic activity and in lifestyle.The discourse and debate at COP26 reflect all of such persistent features in the international system. So far, the largest achievements center on the common consensus that more must be done to prevent the rise in temperature from creating a global catastrophe. This is not enough, however. Differences remain, and countries have yet to specify what cuts in emissions they are willing to make.Echoes of who is responsible for what remains strong. The thorny matter of the unfulfilled pledge of $100 billion once promised by rich countries to help countries to reduce their emissions remained unresolved. At the same time, however, some important agreements were reached. The United States and China announced they would make greater efforts to cut methane, a powerful greenhouse gas. More than 100 countries agreed to end deforestation. India joined the countries committed to attain zero emissions by 2070. And on matters of finance, countries agreed to a two-year plan to determine how to meet the needs of the most-vulnerable countries. Q: In what ways do you think the tools and insights from political science can advance efforts to address climate change and its impacts?A: I prefer to take a multidisciplinary view of the issues at hand, rather than focus on the tools of political science alone. Disciplinary perspectives can create siloed views and positions that undermine any overall drive toward consensus. The scientific evidence is pointing to, even anticipating, pervasive changes that transcend known and established parameters of social order all across the globe.That said, political science provides important insight, even guidance, for addressing the impacts of climate change in some notable ways. One is understanding the extent to which our formal institutions enable discussion, debate, and decisions about the directions we can take collectively to adapt, adjust, or even depart from the established practices of managing social order.If we consider politics as the allocation of values in terms of who gets what, when, and how, then it becomes clear that the current allocation requires a change in course. Coordination and cooperation across the jurisdictions of sovereign states is foundational for any response to climate change impacts.We have already recognized, and to some extent, developed targets for reducing carbon emissions — a central impact from traditional forms of energy use — and are making notable efforts to shift toward alternatives. This move is an easy one compared to all the work that needs to be done to address climate change. But, in taking this step we have learned quite a bit that might help in creating a necessary consensus for cross-jurisdiction coordination and response.Respecting individuals and protecting life is increasingly recognized as a global value — at least in principle. As we work to change course, new norms will be developed, and political science provides important perspectives on how to establish such norms. We will be faced with demands for institutional design, and these will need to embody our guiding values. For example, having learned to recognize the burdens of inequity, we can establish the value of equity as foundational for our social order both now and as we recognize and address the impacts of climate change.

    Q: You teach a class on “Sustainability Development: Theory and Practice.” Broadly speaking, what are goals of this class? What lessons do you hope students will carry with them into the future?A: The goal of 17.181, my class on sustainability, is to frame as clearly as possible the concept of sustainable development (sustainability) with attention to conceptual, empirical, institutional, and policy issues.The course centers on human activities. Individuals are embedded in complex interactive systems: the social system, the natural environment, and the constructed cyber domain — each with distinct temporal, special, and dynamic features. Sustainability issues intersect with, but cannot be folded into, the impacts of climate change. Sustainability places human beings in social systems at the core of what must be done to respect the imperatives of a highly complex natural environment.We consider sustainability an evolving knowledge domain with attendant policy implications. It is driven by events on the ground, not by revolution in academic or theoretical concerns per se. Overall, sustainable development refers to the process of meeting the needs of current and future generations, without undermining the resilience of the life-supporting properties, the integrity of social systems, or the supports of the human-constructed cyberspace.More specifically, we differentiate among four fundamental dimensions and their necessary conditions:

    (a) ecological systems — exhibiting balance and resilience;(b) economic production and consumption — with equity and efficiency;(c) governance and politics — with participation and responsiveness; and(d) institutional performance — demonstrating adaptation and incorporating feedback.The core proposition is this: If all conditions hold, then the system is (or can be) sustainable. Then, we must examine the critical drivers — people, resources, technology, and their interactions — followed by a review and assessment of evolving policy responses. Then we ask: What are new opportunities?I would like students to carry forward these ideas and issues: what has been deemed “normal” in modern Western societies and in developing societies seeking to emulate the Western model is damaging humans in many ways — all well-known. Yet only recently have alternatives begun to be considered to the traditional economic growth model based on industrialization and high levels of energy use. To make changes, we must first understand the underlying incentives, realities, and choices that shape a whole set of dysfunctional behaviors and outcomes. We then need to delve deep into the driving sources and consequences, and to consider the many ways in which our known “normal” can be adjusted — in theory and in practice. Q: In confronting an issue as formidable as global climate change, what gives you hope?  A: I see a few hopeful signs; among them:The scientific evidence is clear and compelling. We are no longer discussing whether there is climate change, or if we will face major challenges of unprecedented proportions, or even how to bring about an international consensus on the salience of such threats.Climate change has been recognized as a global phenomenon. Imperatives for cooperation are necessary. No one can go it alone. Major efforts have and are being made in world politics to forge action agendas with specific targets.The issue appears to be on the verge of becoming one of “high politics” in the United States.Younger generations are more sensitive to the reality that we are altering the life-supporting properties of our planet. They are generally more educated, skilled, and open to addressing such challenges than their elders.However disappointing the results of COP26 might seem, the global community is moving in the right direction.None of the above points, individually or jointly, translates into an effective response to the known impacts of climate change — let alone the unknown. But, this is what gives me hope.

    Interview prepared by MIT SHASS CommunicationsEditorial, design, and series director: Emily HiestandSenior writer: Kathryn O’Neill More

  • in

    Machine learning speeds up vehicle routing

    Waiting for a holiday package to be delivered? There’s a tricky math problem that needs to be solved before the delivery truck pulls up to your door, and MIT researchers have a strategy that could speed up the solution.

    The approach applies to vehicle routing problems such as last-mile delivery, where the goal is to deliver goods from a central depot to multiple cities while keeping travel costs down. While there are algorithms designed to solve this problem for a few hundred cities, these solutions become too slow when applied to a larger set of cities.

    To remedy this, Cathy Wu, the Gilbert W. Winslow Career Development Assistant Professor in Civil and Environmental Engineering and the Institute for Data, Systems, and Society, and her students have come up with a machine-learning strategy that accelerates some of the strongest algorithmic solvers by 10 to 100 times.

    The solver algorithms work by breaking up the problem of delivery into smaller subproblems to solve — say, 200 subproblems for routing vehicles between 2,000 cities. Wu and her colleagues augment this process with a new machine-learning algorithm that identifies the most useful subproblems to solve, instead of solving all the subproblems, to increase the quality of the solution while using orders of magnitude less compute.

    Their approach, which they call “learning-to-delegate,” can be used across a variety of solvers and a variety of similar problems, including scheduling and pathfinding for warehouse robots, the researchers say.

    The work pushes the boundaries on rapidly solving large-scale vehicle routing problems, says Marc Kuo, founder and CEO of Routific, a smart logistics platform for optimizing delivery routes. Some of Routific’s recent algorithmic advances were inspired by Wu’s work, he notes.

    “Most of the academic body of research tends to focus on specialized algorithms for small problems, trying to find better solutions at the cost of processing times. But in the real-world, businesses don’t care about finding better solutions, especially if they take too long for compute,” Kuo explains. “In the world of last-mile logistics, time is money, and you cannot have your entire warehouse operations wait for a slow algorithm to return the routes. An algorithm needs to be hyper-fast for it to be practical.”

    Wu, social and engineering systems doctoral student Sirui Li, and electrical engineering and computer science doctoral student Zhongxia Yan presented their research this week at the 2021 NeurIPS conference.

    Selecting good problems

    Vehicle routing problems are a class of combinatorial problems, which involve using heuristic algorithms to find “good-enough solutions” to the problem. It’s typically not possible to come up with the one “best” answer to these problems, because the number of possible solutions is far too huge.

    “The name of the game for these types of problems is to design efficient algorithms … that are optimal within some factor,” Wu explains. “But the goal is not to find optimal solutions. That’s too hard. Rather, we want to find as good of solutions as possible. Even a 0.5% improvement in solutions can translate to a huge revenue increase for a company.”

    Over the past several decades, researchers have developed a variety of heuristics to yield quick solutions to combinatorial problems. They usually do this by starting with a poor but valid initial solution and then gradually improving the solution — by trying small tweaks to improve the routing between nearby cities, for example. For a large problem like a 2,000-plus city routing challenge, however, this approach just takes too much time.

    More recently, machine-learning methods have been developed to solve the problem, but while faster, they tend to be more inaccurate, even at the scale of a few dozen cities. Wu and her colleagues decided to see if there was a beneficial way to combine the two methods to find speedy but high-quality solutions.

    “For us, this is where machine learning comes in,” Wu says. “Can we predict which of these subproblems, that if we were to solve them, would lead to more improvement in the solution, saving computing time and expense?”

    Traditionally, a large-scale vehicle routing problem heuristic might choose the subproblems to solve in which order either randomly or by applying yet another carefully devised heuristic. In this case, the MIT researchers ran sets of subproblems through a neural network they created to automatically find the subproblems that, when solved, would lead to the greatest gain in quality of the solutions. This process sped up subproblem selection process by 1.5 to 2 times, Wu and colleagues found.

    “We don’t know why these subproblems are better than other subproblems,” Wu notes. “It’s actually an interesting line of future work. If we did have some insights here, these could lead to designing even better algorithms.”

    Surprising speed-up

    Wu and colleagues were surprised by how well the approach worked. In machine learning, the idea of garbage-in, garbage-out applies — that is, the quality of a machine-learning approach relies heavily on the quality of the data. A combinatorial problem is so difficult that even its subproblems can’t be optimally solved. A neural network trained on the “medium-quality” subproblem solutions available as the input data “would typically give medium-quality results,” says Wu. In this case, however, the researchers were able to leverage the medium-quality solutions to achieve high-quality results, significantly faster than state-of-the-art methods.

    For vehicle routing and similar problems, users often must design very specialized algorithms to solve their specific problem. Some of these heuristics have been in development for decades.

    The learning-to-delegate method offers an automatic way to accelerate these heuristics for large problems, no matter what the heuristic or — potentially — what the problem.

    Since the method can work with a variety of solvers, it may be useful for a variety of resource allocation problems, says Wu. “We may unlock new applications that now will be possible because the cost of solving the problem is 10 to 100 times less.”

    The research was supported by MIT Indonesia Seed Fund, U.S. Department of Transportation Dwight David Eisenhower Transportation Fellowship Program, and the MIT-IBM Watson AI Lab. More

  • in

    Community policing in the Global South

    Community policing is meant to combat citizen mistrust of the police force. The concept was developed in the mid-20th century to help officers become part of the communities they are responsible for. The hope was that such presence would create a partnership between citizens and the police force, leading to reduced crime and increased trust. Studies in the 1990s from the United States, United Kingdom, and Australia showed that these goals can be achieved in certain circumstances. Many metropolitan areas in the Global North have since included community policing in their techniques.

    But a recently published study of six different sites in the Global South showed no significant positive effect associated with community policing across a range of countries.

    “We found no reduction in crime or insecurity in these communities, and no increase in trust in the police,” says Fotini Christia, an author of the paper, which was published in Science. Christia is the Ford International Professor in the Social Sciences at MIT and the director of the Sociotechnical Systems Research Center (SSRC) within the Institute for Data, Systems, and Society (IDSS). She was one of three on the steering committee for the research, which also included lead author Graeme Blair at the University of California at Los Angeles and Jeremy Weinstein at Stanford University. Fellow MIT political scientist Lily Tsai was also a co-author on the paper.

    In this study, randomized-control trials of community policing initiatives were implemented at sites in Santa Catarina State, Brazil; Medellín, Colombia; Monrovia, Liberia; Sorsogon Province, Philippines; Ugandan rural areas; and two Punjab Province districts in Pakistan. Each suite of interventions was developed based on the needs of the area but consisted of core elements of community policing such as officer recruitment and training, foot patrols, town hall meetings, and problem-oriented policing. The work was done by a collaboration of several social scientists in the United States and abroad. Major funding for this project was provided by the UK Foreign, Commonwealth and Development Office, awarded through the Evidence in Governance and Politics network.

    The null results were determined after interviewing 18,382 citizens and 874 police officers involved in the experiment over six years.

    The strength of these results lies in the size of the collaboration and the care taken in the research design. Input from researchers representing 22 different departments from universities around the world allowed for a broad diversity of study sites across the Global South. And the study was preregistered to establish a common approach to measurement and indicate exactly which effects the researchers were tracking, to avoid any chance of mining the data to find positive effects.

    “This is a pathbreaking study across a diverse set of sites that provides a new understanding about community policing outside of the Western world” says Christopher Winship, the Diker-Tishman Professor of Sociology at Harvard University, who was not an author on the paper.

    Structural overhaul

    The reasons for the failure of community policing to elicit positive results were as varied as the sites themselves, but an important commonality was difficulties in implementation.

    “We saw three common problems: limited resources, a lack of prioritization of the reform, and rapid rotation of officers,” says Blair. “These challenges lead to weaker implementation of community policing than we’ve seen in ‘success stories’ in the U.S. and may explain why community policing didn’t deliver the same results in these Global South contexts.”

    Citizen attendance at community meetings was variable. And then, resources dedicated to following up on problems identified by citizens were scarce. Police officers in the countries represented in the study are often over-stretched, leaving them unable to adequately follow up on their community policing duties.

    For example, Ugandan police stations averaged one motorbike per whole station, and outposts averaged less than one. At the study sites in Pakistan, fewer than 25 percent of issues that arose in community meetings were followed up on. The police officers tried to push the problems through to other agencies that could assist, but those agencies were also underresourced.            

    There was also significant officer turnover. “In many places, we started with and trained one group of officers and ended with a completely different set of folks,” says Christia.

    In the Philippines, only 25 percent of officers were still in the same post 11 months after the start of the study. Not only is it difficult to train new recruits in the methods of community policing with that rate of turnover, it also makes it extremely difficult to build community respect and familiarity with officers.

    Even in the Global North, the success of community policing can vary. As part of their study, the researchers conducted a review of 43 existing randomized trials conducted since the 1970s to determine the success rate of community policing endeavors already in place.

    They found that in these initiatives, problem-oriented policing reduces crime and likely improves perceptions of safety in a community, but there is mixed-to-negative evidence on the benefits of police presence on crime and perceptions of police. 

    That these initiatives struggle to achieve consistently positive results in countries with better resources indicates there is significant work to be done before success can be achieved in the Global South. Improvements in policing in the Global South may require major structural overhauls of the systems to ensure resource availability, encourage community engagement, and enhance officers’ abilities to follow up on issues of concern.

    “Issues of crime and violence are at the top of the policy agenda in the Global South, and this research demonstrates how universities and government partners can work together to identify the most effective strategies from improving people’s sense of safety,” says Weinstein. “While community policing strategies didn’t deliver the anticipated results on their own, the challenges in implementation point to the need for more systemic reforms that provide the necessary resources and align incentives for police to respond to citizens’ primary concerns.” More

  • in

    The reasons behind lithium-ion batteries’ rapid cost decline

    Lithium-ion batteries, those marvels of lightweight power that have made possible today’s age of handheld electronics and electric vehicles, have plunged in cost since their introduction three decades ago at a rate similar to the drop in solar panel prices, as documented by a study published last March. But what brought about such an astonishing cost decline, of about 97 percent?

    Some of the researchers behind that earlier study have now analyzed what accounted for the extraordinary savings. They found that by far the biggest factor was work on research and development, particularly in chemistry and materials science. This outweighed the gains achieved through economies of scale, though that turned out to be the second-largest category of reductions.

    The new findings are being published today in the journal Energy and Environmental Science, in a paper by MIT postdoc Micah Ziegler, recent graduate student Juhyun Song PhD ’19, and Jessika Trancik, a professor in MIT’s Institute for Data, Systems and Society.

    The findings could be useful for policymakers and planners to help guide spending priorities in order to continue the pathway toward ever-lower costs for this and other crucial energy storage technologies, according to Trancik. Their work suggests that there is still considerable room for further improvement in electrochemical battery technologies, she says.

    The analysis required digging through a variety of sources, since much of the relevant information consists of closely held proprietary business data. “The data collection effort was extensive,” Ziegler says. “We looked at academic articles, industry and government reports, press releases, and specification sheets. We even looked at some legal filings that came out. We had to piece together data from many different sources to get a sense of what was happening.” He says they collected “about 15,000 qualitative and quantitative data points, across 1,000 individual records from approximately 280 references.”

    Data from the earliest times are hardest to access and can have the greatest uncertainties, Trancik says, but by comparing different data sources from the same period they have attempted to account for these uncertainties.

    Overall, she says, “we estimate that the majority of the cost decline, more than 50 percent, came from research-and-development-related activities.” That included both private sector and government-funded research and development, and “the vast majority” of that cost decline within that R&D category came from chemistry and materials research.

    That was an interesting finding, she says, because “there were so many variables that people were working on through very different kinds of efforts,” including the design of the battery cells themselves, their manufacturing systems, supply chains, and so on. “The cost improvement emerged from a diverse set of efforts and many people, and not from the work of only a few individuals.”

    The findings about the importance of investment in R&D were especially significant, Ziegler says, because much of this investment happened after lithium-ion battery technology was commercialized, a stage at which some analysts thought the research contribution would become less significant. Over roughly a 20-year period starting five years after the batteries’ introduction in the early 1990s, he says, “most of the cost reduction still came from R&D. The R&D contribution didn’t end when commercialization began. In fact, it was still the biggest contributor to cost reduction.”

    The study took advantage of an analytical approach that Trancik and her team initially developed to analyze the similarly precipitous drop in costs of silicon solar panels over the last few decades. They also applied the approach to understand the rising costs of nuclear energy. “This is really getting at the fundamental mechanisms of technological change,” she says. “And we can also develop these models looking forward in time, which allows us to uncover the levers that people could use to improve the technology in the future.”

    One advantage of the methodology Trancik and her colleagues have developed, she says, is that it helps to sort out the relative importance of different factors when many variables are changing all at once, which typically happens as a technology improves. “It’s not simply adding up the cost effects of these variables,” she says, “because many of these variables affect many different cost components. There’s this kind of intricate web of dependencies.” But the team’s methodology makes it possible to “look at how that overall cost change can be attributed to those variables, by essentially mapping out that network of dependencies,” she says.

    This can help provide guidance on public spending, private investments, and other incentives. “What are all the things that different decision makers could do?” she asks. “What decisions do they have agency over so that they could improve the technology, which is important in the case of low-carbon technologies, where we’re looking for solutions to climate change and we have limited time and limited resources? The new approach allows us to potentially be a bit more intentional about where we make those investments of time and money.”

    “This paper collects data available in a systematic way to determine changes in the cost components of lithium-ion batteries between 1990-1995 and 2010-2015,” says Laura Diaz Anadon, a professor of climate change policy at Cambridge University, who was not connected to this research. “This period was an important one in the history of the technology, and understanding the evolution of cost components lays the groundwork for future work on mechanisms and could help inform research efforts in other types of batteries.”

    The research was supported by the Alfred P. Sloan Foundation, the Environmental Defense Fund, and the MIT Technology and Policy Program. More