More stories

  • in

    A tool for predicting the future

    Whether someone is trying to predict tomorrow’s weather, forecast future stock prices, identify missed opportunities for sales in retail, or estimate a patient’s risk of developing a disease, they will likely need to interpret time-series data, which are a collection of observations recorded over time.

    Making predictions using time-series data typically requires several data-processing steps and the use of complex machine-learning algorithms, which have such a steep learning curve they aren’t readily accessible to nonexperts.

    To make these powerful tools more user-friendly, MIT researchers developed a system that directly integrates prediction functionality on top of an existing time-series database. Their simplified interface, which they call tspDB (time series predict database), does all the complex modeling behind the scenes so a nonexpert can easily generate a prediction in only a few seconds.

    The new system is more accurate and more efficient than state-of-the-art deep learning methods when performing two tasks: predicting future values and filling in missing data points.

    One reason tspDB is so successful is that it incorporates a novel time-series-prediction algorithm, explains electrical engineering and computer science (EECS) graduate student Abdullah Alomar, an author of a recent research paper in which he and his co-authors describe the algorithm. This algorithm is especially effective at making predictions on multivariate time-series data, which are data that have more than one time-dependent variable. In a weather database, for instance, temperature, dew point, and cloud cover each depend on their past values.

    The algorithm also estimates the volatility of a multivariate time series to provide the user with a confidence level for its predictions.

    “Even as the time-series data becomes more and more complex, this algorithm can effectively capture any time-series structure out there. It feels like we have found the right lens to look at the model complexity of time-series data,” says senior author Devavrat Shah, the Andrew and Erna Viterbi Professor in EECS and a member of the Institute for Data, Systems, and Society and of the Laboratory for Information and Decision Systems.

    Joining Alomar and Shah on the paper is lead author Anish Agrawal, a former EECS graduate student who is currently a postdoc at the Simons Institute at the University of California at Berkeley. The research will be presented at the ACM SIGMETRICS conference.

    Adapting a new algorithm

    Shah and his collaborators have been working on the problem of interpreting time-series data for years, adapting different algorithms and integrating them into tspDB as they built the interface.

    About four years ago, they learned about a particularly powerful classical algorithm, called singular spectrum analysis (SSA), that imputes and forecasts single time series. Imputation is the process of replacing missing values or correcting past values. While this algorithm required manual parameter selection, the researchers suspected it could enable their interface to make effective predictions using time series data. In earlier work, they removed this need to manually intervene for algorithmic implementation.  

    The algorithm for single time series transformed it into a matrix and utilized matrix estimation procedures. The key intellectual challenge was how to adapt it to utilize multiple time series.  After a few years of struggle, they realized the answer was something very simple: “Stack” the matrices for each individual time series, treat it as a one big matrix, and then apply the single time-series algorithm on it.

    This utilizes information across multiple time series naturally — both across the time series and across time, which they describe in their new paper.

    This recent publication also discusses interesting alternatives, where instead of transforming the multivariate time series into a big matrix, it is viewed as a three-dimensional tensor. A tensor is a multi-dimensional array, or grid, of numbers. This established a promising connection between the classical field of time series analysis and the growing field of tensor estimation, Alomar says.

    “The variant of mSSA that we introduced actually captures all of that beautifully. So, not only does it provide the most likely estimation, but a time-varying confidence interval, as well,” Shah says.

    The simpler, the better

    They tested the adapted mSSA against other state-of-the-art algorithms, including deep-learning methods, on real-world time-series datasets with inputs drawn from the electricity grid, traffic patterns, and financial markets.

    Their algorithm outperformed all the others on imputation and it outperformed all but one of the other algorithms when it came to forecasting future values. The researchers also demonstrated that their tweaked version of mSSA can be applied to any kind of time-series data.

    “One reason I think this works so well is that the model captures a lot of time series dynamics, but at the end of the day, it is still a simple model. When you are working with something simple like this, instead of a neural network that can easily overfit the data, you can actually perform better,” Alomar says.

    The impressive performance of mSSA is what makes tspDB so effective, Shah explains. Now, their goal is to make this algorithm accessible to everyone.

    One a user installs tspDB on top of an existing database, they can run a prediction query with just a few keystrokes in about 0.9 milliseconds, as compared to 0.5 milliseconds for a standard search query. The confidence intervals are also designed to help nonexperts to make a more informed decision by incorporating the degree of uncertainty of the predictions into their decision making.

    For instance, the system could enable a nonexpert to predict future stock prices with high accuracy in just a few minutes, even if the time-series dataset contains missing values.

    Now that the researchers have shown why mSSA works so well, they are targeting new algorithms that can be incorporated into tspDB. One of these algorithms utilizes the same model to automatically enable change point detection, so if the user believes their time series will change its behavior at some point, the system will automatically detect that change and incorporate that into its predictions.

    They also want to continue gathering feedback from current tspDB users to see how they can improve the system’s functionality and user-friendliness, Shah says.

    “Our interest at the highest level is to make tspDB a success in the form of a broadly utilizable, open-source system. Time-series data are very important, and this is a beautiful concept of actually building prediction functionalities directly into the database. It has never been done before, and so we want to make sure the world uses it,” he says.

    “This work is very interesting for a number of reasons. It provides a practical variant of mSSA which requires no hand tuning, they provide the first known analysis of mSSA, and the authors demonstrate the real-world value of their algorithm by being competitive with or out-performing several known algorithms for imputations and predictions in (multivariate) time series for several real-world data sets,” says Vishal Misra, a professor of computer science at Columbia University who was not involved with this research. “At the heart of it all is the beautiful modeling work where they cleverly exploit correlations across time (within a time series) and space (across time series) to create a low-rank spatiotemporal factor representation of a multivariate time series. Importantly this model connects the field of time series analysis to that of the rapidly evolving topic of tensor completion, and I expect a lot of follow-on research spurred by this paper.” More

  • in

    Study: With masking and distancing in place, NFL stadium openings in 2020 had no impact on local Covid-19 infections

    As with most everything in the world, football looked very different in 2020. As the Covid-19 pandemic unfolded, many National Football League (NFL) games were played in empty stadiums, while other stadiums opened to fans at significantly reduced capacity, with strict safety protocols in place.

    At the time it was unclear what impact such large sporting events would have on Covid-19 case counts, particularly at a time when vaccination against the virus was not widely available.

    Now, MIT engineers have taken a look back at the NFL’s 2020 regular season and found that for this specific period during the pandemic, opening stadiums to fans while requiring face coverings, social distancing, and other measures had no impact on the number of Covid-19 infections in those stadiums’ local counties.

    As they write in a new paper appearing this week in the Proceedings of the National Academy of Sciences, “the benefits of providing a tightly controlled outdoor spectating environment — including masking and distancing requirements — counterbalanced the risks associated with opening.”

    The study concentrates on the NFL’s 2020 regular season (September 2020 to early January 2021), at a time when earlier strains of the virus dominated, before the rise of more transmissible Delta and Omicron variants. Nevertheless, the results may inform decisions on whether and how to hold large outdoor gatherings in the face of future public health crises.

    “These results show that the measures adopted by the NFL were effective in safely opening stadiums,” says study author Anette “Peko” Hosoi, the Neil and Jane Pappalardo Professor of Mechanical Engineering at MIT. “If case counts start to rise again, we know what to do: mask people, put them outside, and distance them from each other.”

    The study’s co-authors are members of MIT’s Institue for Data, Systems, and Society (IDSS), and include Bernardo García Bulle, Dennis Shen, and Devavrat Shah, the Andrew and Erna Viterbi Professor in the Department of Electrical Engineering and Computer Science (EECS).

    Preseason patterns

    Last year a group led by the University of Southern Mississippi compared Covid-19 case counts in the counties of NFL stadiums that allowed fans in, versus those that did not. Their analysis showed that stadiums that opened to large numbers of fans led to “tangible increases” in the local county’s number of Covid-19 cases.

    But there are a number of factors in addition to a stadium’s opening that can affect case counts, including local policies, mandates, and attitudes. As the MIT team writes, “it is not at all obvious that one can attribute the differences in case spikes to the stadiums given the enormous number of confounding factors.”

    To truly isolate the effects of a stadium’s opening, one could imagine tracking Covid cases in a county with an open stadium through the 2020 season, then turning back the clock, closing the stadium, then tracking that same county’s Covid cases through the same season, all things being equal.

    “That’s the perfect experiment, with the exception that you would need a time machine,” Hosoi says.

    As it turns out, the next best thing is synthetic control — a statistical method that is used to determine the effect of an “intervention” (such as the opening of a stadium) compared with the exact same scenario without that intervention.

    In synthetic control, researchers use a weighted combination of groups to construct a “synthetic” version of an actual  scenario. In this case, the actual scenario is a county such as Dallas that hosts an open stadium. A synthetic version would be a county that looks similar to Dallas, only without a stadium. In the context of this study, a county that “looks” like Dallas has a similar preseason pattern of Covid-19 cases.

    To construct a synthetic Dallas, the researchers looked for surrounding counties without stadiums, that had similar Covid-19 trajectories leading up to the 2020 football season. They combined these counties in a way that best fit Dallas’ actual case trajectory. They then used data from the combined counties to calculate the number of Covid cases for this synthetic Dallas through the season, and compared these counts to the real Dallas.

    The team carried out this analysis for every “stadium county.” They determined a county to be a stadium county if more than 10 percent of a stadium’s fans came from that county, which the researchers estimated based on attendance data provided by the NFL.

    “Go outside”

    Of the stadiums included in the study, 13 were closed through the regular season, while 16 opened with reduced capacity and multiple pandemic requirements in place, such as required masking, distanced seating, mobile ticketing, and enhanced cleaning protocols.

    The researchers found the trajectory of infections in all stadium counties mirrored that of synthetic counties, showing that the number of infections would have been the same if the stadiums had remained closed. In other words, they found no evidence that NFL stadium openings led to any increase in local Covid case counts.

    To check that their method wasn’t missing any case spikes, they tested it on a known superspreader: the Sturgis Motorcycle Rally, which was held in August of 2020. The analysis successfully picked up an increase in cases in Meade, the host county, compared to a synthetic counterpart, in the two weeks following the rally.

    Surprisingly, the researchers found that several stadium counties’ case counts dipped slightly compared to their synthetic counterparts. In these counties — including Hamilton, Ohio, home of the Cincinnati Bengals — it appeared that opening the stadium to fans was tied to a dip in Covid-19 infections. Hosoi has a guess as to why:

    “These are football communities with dedicated fans. Rather than stay home alone, those fans may have gone to a sports bar or hosted indoor football gatherings if the stadium had not opened,” Hosoi proposes. “Opening the stadium under those circumstances would have been beneficial to the community because it makes people go outside.”

    The team’s analysis also revealed another connection: Counties with similar Covid trajectories also shared similar politics. To illustrate this point, the team mapped the county-wide temporal trajectories of Covid case counts in Ohio in 2020 and found them to be a strong predictor of the state’s 2020 electoral map.

    “That is not a coincidence,” Hosoi notes. “It tells us that local political leanings determined the temporal trajectory of the pandemic.”

    The team plans to apply their analysis to see how other factors may have influenced the pandemic.

    “Covid is a different beast [today],” she says. “Omicron is more transmissive, and more of the population is vaccinated. It’s possible we’d find something different if we ran this analysis on the upcoming season, and I think we probably should try.” More

  • in

    How artificial intelligence can help combat systemic racism

    In 2020, Detroit police arrested a Black man for shoplifting almost $4,000 worth of watches from an upscale boutique. He was handcuffed in front of his family and spent a night in lockup. After some questioning, however, it became clear that they had the wrong man. So why did they arrest him in the first place?

    The reason: a facial recognition algorithm had matched the photo on his driver’s license to grainy security camera footage.

    Facial recognition algorithms — which have repeatedly been demonstrated to be less accurate for people with darker skin — are just one example of how racial bias gets replicated within and perpetuated by emerging technologies.

    “There’s an urgency as AI is used to make really high-stakes decisions,” says MLK Visiting Professor S. Craig Watkins, whose academic home for his time at MIT is the Institute for Data, Systems, and Society (IDSS). “The stakes are higher because new systems can replicate historical biases at scale.”

    Watkins, a professor at the University of Texas at Austin and the founding director of the Institute for Media Innovation​, researches the impacts of media and data-based systems on human behavior, with a specific concentration on issues related to systemic racism. “One of the fundamental questions of the work is: how do we build AI models that deal with systemic inequality more effectively?”

    Play video

    Artificial Intelligence and the Future of Racial Justice | S. Craig Watkins | TEDxMIT

    Ethical AI

    Inequality is perpetuated by technology in many ways across many sectors. One broad domain is health care, where Watkins says inequity shows up in both quality of and access to care. The demand for mental health care, for example, far outstrips the capacity for services in the United States. That demand has been exacerbated by the pandemic, and access to care is harder for communities of color.

    For Watkins, taking the bias out of the algorithm is just one component of building more ethical AI. He works also to develop tools and platforms that can address inequality outside of tech head-on. In the case of mental health access, this entails developing a tool to help mental health providers deliver care more efficiently.

    “We are building a real-time data collection platform that looks at activities and behaviors and tries to identify patterns and contexts in which certain mental states emerge,” says Watkins. “The goal is to provide data-informed insights to care providers in order to deliver higher-impact services.”

    Watkins is no stranger to the privacy concerns such an app would raise. He takes a user-centered approach to the development that is grounded in data ethics. “Data rights are a significant component,” he argues. “You have to give the user complete control over how their data is shared and used and what data a care provider sees. No one else has access.”

    Combating systemic racism

    Here at MIT, Watkins has joined the newly launched Initiative on Combatting Systemic Racism (ICSR), an IDSS research collaboration that brings together faculty and researchers from the MIT Stephen A. Schwarzman College of Computing and beyond. The aim of the ICSR is to develop and harness computational tools that can help effect structural and normative change toward racial equity.

    The ICSR collaboration has separate project teams researching systemic racism in different sectors of society, including health care. Each of these “verticals” addresses different but interconnected issues, from sustainability to employment to gaming. Watkins is a part of two ICSR groups, policing and housing, that aim to better understand the processes that lead to discriminatory practices in both sectors. “Discrimination in housing contributes significantly to the racial wealth gap in the U.S.,” says Watkins.

    The policing team examines patterns in how different populations get policed. “There is obviously a significant and charged history to policing and race in America,” says Watkins. “This is an attempt to understand, to identify patterns, and note regional differences.”

    Watkins and the policing team are building models using data that details police interventions, responses, and race, among other variables. The ICSR is a good fit for this kind of research, says Watkins, who notes the interdisciplinary focus of both IDSS and the SCC. 

    “Systemic change requires a collaborative model and different expertise,” says Watkins. “We are trying to maximize influence and potential on the computational side, but we won’t get there with computation alone.”

    Opportunities for change

    Models can also predict outcomes, but Watkins is careful to point out that no algorithm alone will solve racial challenges.

    “Models in my view can inform policy and strategy that we as humans have to create. Computational models can inform and generate knowledge, but that doesn’t equate with change.” It takes additional work — and additional expertise in policy and advocacy — to use knowledge and insights to strive toward progress.

    One important lever of change, he argues, will be building a more AI-literate society through access to information and opportunities to understand AI and its impact in a more dynamic way. He hopes to see greater data rights and greater understanding of how societal systems impact our lives.

    “I was inspired by the response of younger people to the murders of George Floyd and Breonna Taylor,” he says. “Their tragic deaths shine a bright light on the real-world implications of structural racism and has forced the broader society to pay more attention to this issue, which creates more opportunities for change.” More

  • in

    Devavrat Shah appointed faculty director of the Deshpande Center

    Devavrat Shah, the Andrew (1956) and Erna Viterbi Professor in the Department of Electrical Engineering and Computer Science and the Institute for Data, Systems, and Society, has been named faculty director of the MIT Deshpande Center for Technological Innovations. The new role took effect on Feb. 1.

    Shah replaces Tim Swager, the John D. MacArthur Professor of Chemistry, who has held the position of faculty director since 2014. Working alongside Executive Director to the Deshpande Center Leon Sandler, Swager helped the Deshpande Center build an inclusive environment where innovation and entrepreneurship could thrive. By examining new models for directing, seeding, and fostering the commercialization of inventions and technology, Swager helped students and faculty breathe life into research, propelling it out of the lab and into the world as successful ventures.

    The MIT Deshpande Center for Technological Innovations is an interdepartmental center working to empower MIT’s most talented students and faculty by helping them bring new innovative technologies from the lab to the marketplace in the form of breakthrough products and new companies. Desh Deshpande founded the center with his wife, in 2002.

    “Professor Shah’s deep entrepreneurial experience coupled with his research on large complex networks will be tremendous assets to the center,” says Deshpande. “Devavrat is an impactful educator and inspiring mentor who will play a key role in the center’s mission to foster innovation and accelerate the impact of new discoveries.”

    Shah joined the Department of Electrical Engineering and Computer Science in 2005. With research focusing on statistical inference and stochastic networks, his research contributions span a variety of areas including resource allocation in communications networks, inference and learning on graphical models, algorithms for social data processing including ranking, recommendations and crowdsourcing, and more recently, causal inference using observational and experimental data.  

    While Shah’s work spans a range of areas across electrical engineering, computer science, and operations research, they are all tied together with the singular focus on developing algorithmic solutions for practical, challenging problems. He’s also authored two books, one on gossip algorithms in 2006 and the other on prediction methods of nearest neighbors in 2018. 

    A highly regarded teacher, Shah has been very active in curriculum development — most notably class 6.438 (Algorithms for Inference) and class 6.401 (Introduction to Statistical Data Analysis) — and has taken a leading role in developing educational programs in the statistics and data science at MIT as part of the Statistics and Data Science Center within the Institute for Data, Systems, and Society.

    “With his experience and contributions as a researcher, educator, and innovator, I have no doubt that Devavrat will excel as the next faculty director of the Deshpande Center and help usher in the next era of innovation for MIT,” says Anantha P. Chandrakasan, dean of the School of Engineering and Vannevar Bush Professor of Electrical Engineering and Computer Science. “I am grateful to Tim for the tremendous work he has done during his eight years as faculty director of the Deshpande Center. His commitment to building an inclusive environment for innovation and entrepreneurship to thrive was particularly impressive.” 

    A practiced entrepreneur, Shah co-founded Celect, Inc. — now part of Nike — in 2013, to help retailers accurately predict demand using omnichannel data. In 2019, he helped start IkigaiLabs, where he serves as CTO, with the mission to build self-driving organizations by enabling data-driven operations with human-in-the-loop with the ease of spreadsheet.

    Among his many achievements and accolades, Shah was named a Kavli Fellow of the National Academy of Science in 2014 and was just recently announced as an Institute of Electrical and Electronics Engineers (IEEE) Fellow for 2022. He’s also received a number of awards for his papers from INFORMS Applied Probability Society, INFORMS Management Science and Operations Management, NeurIPS, ACM Sigmetrics, and IEEE Infocom. His career prizes include the Erlang Prize from INFORMS Applied Probability Society and the Rising Star Award from ACM Sigmetrics. Shah has also received multiple Test of Time paper awards from ACM Sigmetrics and is recognized as a distinguished alumnus of his alma mater, the Indian Institute of Technology Bombay.

    “The Deshpande Center thanks Tim for his years of service as faculty director,” says the center’s executive director, Leon Sandler. “Tim’s commitment to innovation played an integral role in our success, and the center’s programs have thrived under his leadership. I look forward to working with Devavrat in the continuing effort to fulfill the mission of our center.”

    As part of his new post, Shah will work closely with Sandler, who has held the executive director position at the Deshpande Center since 2006. More

  • in

    3 Questions: Fotini Christia on racial equity and data science

    Fotini Christia is the Ford International Professor in the Social Sciences in the Department of Political Science, associate director of the Institute for Data, Systems, and Society (IDSS), and director of the Sociotechnical Systems Research Center (SSRC). Her research interests include issues of conflict and cooperation in the Muslim world, and she has conducted fieldwork in Afghanistan, Bosnia, Iran, the Palestinian Territories, Syria, and Yemen. She has co-organized the IDSS Research Initiative on Combatting Systemic Racism (ICSR), which works to bridge the social sciences, data science, and computation by bringing researchers from these disciplines together to address systemic racism across housing, health care, policing, education, employment, and other sectors of society.

    Q: What is the IDSS/ICSR approach to systemic racism research?

    A: The Research Initiative on Combatting Systemic Racism (ICSR) aims to seed and coordinate cross-disciplinary research to identify and overcome racially discriminatory processes and outcomes across a range of U.S. institutions and policy domains.

    Building off the extensive social science literature on systemic racism, the focus of this research initiative is to use big data to develop and harness computational tools that can help effect structural and normative change toward racial equity.

    The initiative aims to create a visible presence at MIT for cutting-edge computational research with a racial equity lens, across societal domains that will attract and train students and scholars.

    The steering committee for this research initiative is composed of underrepresented minority faculty members from across MIT’s five schools and the MIT Schwarzman College of Computing. Members will serve as close advisors to the initiative as well as share the findings of our work beyond MIT’s campus. MIT Chancellor Melissa Nobles heads this committee.

    Q: What role can data science play in helping to effect change toward racial equity?

    A: Existing work has shown racial discrimination in the job market, in the criminal justice system, as well as in education, health care, and access to housing, among other places. It has also underlined how algorithms could further entrench such bias — be it in training data or in the people who build them. Data science tools can not only help identify, but also contribute to, proposing fixes on racially inequitable outcomes that result from implicit or explicit biases in governing institutional practices in the public and private sector, and more recently from the use of AI and algorithmic methods in decision-making.

    To that effect, this initiative will produce research that explores and collects the relevant big data across domains, while paying attention to the ways such data are collected, and focus on improving and developing data-driven computational tools to address racial disparities in structures and institutions that have reproduced racially discriminatory outcomes in American society.

    The strong correlation between race, class, educational attainment, and various attitudes and behaviors in the American context can make it extremely difficult to rule out the influence of confounding factors. Thus, a key motivation for our research initiative is to highlight the importance of causal analysis using computational methods, and focus on understanding the opportunities of big data and algorithmic decision-making to address racial inequities and promote racial justice — beyond de-biasing algorithms. The intent is to also codify methodologies on equity-informed research practices and produce tools that are clear on the quantifiable expected social costs and benefits, as well as on the downstream effects on systemic racism more broadly.

    Q: What are some ways that the ICSR might conduct or follow-up on research seeking real-world impact or policy change?

    A: This type of research has ethical and societal considerations at its core, especially as they pertain to historically disadvantaged groups in the U.S., and will be coordinated with and communicated to local stakeholders to drive relevant policy decisions. This initiative intends to establish connections to URM [underrepresented minority] researchers and students at underrepresented universities and to directly collaborate with them on these research efforts. To that effect, we are leveraging existing programs such as the MIT Summer Research Program (MSRP).

    To ensure that our research targets the right problems bringing a racial equity lens with an interest to effect policy change, we will also connect with community organizations in minority neighborhoods who often bear the brunt of the direct and indirect effects of systemic racism, as well as with local government offices that work to address inequity in service provision in these communities. Our intent is to directly engage IDSS students with these organizations to help develop and test algorithmic tools for racial equity. More

  • in

    Professors Elchanan Mossel and Rosalind Picard named 2021 ACM Fellows

    The Association for Computing Machinery (ACM) has named MIT professors Elchanan Mossel and Rosalind Picard as fellows for outstanding accomplishments in computing and information technology.

    The ACM Fellows program recognizes wide-ranging and fundamental contributions in areas including algorithms, computer science education, cryptography, data security and privacy, medical informatics, and mobile and networked systems, among many other areas. The accomplishments of the 2021 ACM Fellows underpin important innovations that shape the technologies we use every day.

    Elchanan Mossel

    Mossel is a professor of mathematics and a member at the Statistics and Data Science Center of the MIT Institute for Data, Systems and Society. His research in discrete functional inequalities, isoperimetry, and hypercontractivity led to the proof that Majority is Stablest and confirmed the optimality of the Goemans-Williamson MAX-CUT algorithm under the unique games conjecture from computational complexity. His work on the reconstruction problem on trees provides optimal algorithms and bounds for phylogenetic reconstruction in molecular biology and has led to sharp results in the analysis of Gibbs samplers from statistical physics and inference problems on graphs. His research has resolved open problems in computational biology, machine learning, social choice theory, and economics.Mossel received a BS from the Open University in Israel in 1992, and MS (1997) and PhD (2000) degrees in mathematics from the Hebrew University of Jerusalem. He was a postdoc at the Microsoft Research Theory Group and a Miller Fellow at University of California at Berkeley. He joined the UC Berkeley faculty in 2003 as a professor of statistics and computer science, and spent leaves as a professor at the Weizmann Institute and at the Wharton School before joining MIT in 2016 as a full professor.

    In 2020, he received the Vannevar Bush Faculty Fellowship of the U.S. Department of Defense. Other distinctions include being named a Simons Investigator in Mathematics in 2019, being selected as a fellow of the AMS, and receiving a Sloan Research Fellowship, NSF CAREER Award, and the Bergmann Memorial Award from the U.S.-Israel Binational Science Foundation.

    “I am honored by this award,” says Mossel. “It makes me realize how fortunate I’ve been, working with creative and generous colleagues, and mentoring brilliant young minds.”

    Rosalind Picard

    Picard is a scientist, engineer, author, and professor of media arts and sciences at the MIT Media Lab. She is recognized as the founder of the field of affective computing, and has carried this research forward as head of the Media Lab’s Affective Computing research group. She is also a founding faculty chair of MIT’s MindHandHeart Initiative, and a faculty member of the MIT Center for Neurobiological Engineering. Picard is an IEEE fellow, and a member of the National Academy of Engineering. 

    Picard’s inventions are in use by thousands of research teams worldwide as well as in numerous products and services. She has co-founded two companies: Affectiva (now part of Smart Eye), providing emotion AI technologies now used by more than 25 percent of the Global Fortune 500, and Empatica, providing wearable sensors and analytics to improve health. Starting from inventions by Picard and her team, Empatica created the first AI-based smart watch cleared by the FDA (in neurology for monitoring seizures), which is now helping to bring potentially lifesaving help for people with epilepsy. 

    “This award makes me think of how blessed I am to work with so many amazing people here at MIT, especially at the Media Lab,” Picard notes. “Whenever any one of us has our contributions recognized, it is also a recognition of how special a place this is.” More

  • in

    When should someone trust an AI assistant’s predictions?

    In a busy hospital, a radiologist is using an artificial intelligence system to help her diagnose medical conditions based on patients’ X-ray images. Using the AI system can help her make faster diagnoses, but how does she know when to trust the AI’s predictions?

    She doesn’t. Instead, she may rely on her expertise, a confidence level provided by the system itself, or an explanation of how the algorithm made its prediction — which may look convincing but still be wrong — to make an estimation.

    To help people better understand when to trust an AI “teammate,” MIT researchers created an onboarding technique that guides humans to develop a more accurate understanding of those situations in which a machine makes correct predictions and those in which it makes incorrect predictions.

    By showing people how the AI complements their abilities, the training technique could help humans make better decisions or come to conclusions faster when working with AI agents.

    “We propose a teaching phase where we gradually introduce the human to this AI model so they can, for themselves, see its weaknesses and strengths,” says Hussein Mozannar, a graduate student in the Social and Engineering Systems doctoral program within the Institute for Data, Systems, and Society (IDSS) who is also a researcher with the Clinical Machine Learning Group of the Computer Science and Artificial Intelligence Laboratory (CSAIL) and the Institute for Medical Engineering and Science. “We do this by mimicking the way the human will interact with the AI in practice, but we intervene to give them feedback to help them understand each interaction they are making with the AI.”

    Mozannar wrote the paper with Arvind Satyanarayan, an assistant professor of computer science who leads the Visualization Group in CSAIL; and senior author David Sontag, an associate professor of electrical engineering and computer science at MIT and leader of the Clinical Machine Learning Group. The research will be presented at the Association for the Advancement of Artificial Intelligence in February.

    Mental models

    This work focuses on the mental models humans build about others. If the radiologist is not sure about a case, she may ask a colleague who is an expert in a certain area. From past experience and her knowledge of this colleague, she has a mental model of his strengths and weaknesses that she uses to assess his advice.

    Humans build the same kinds of mental models when they interact with AI agents, so it is important those models are accurate, Mozannar says. Cognitive science suggests that humans make decisions for complex tasks by remembering past interactions and experiences. So, the researchers designed an onboarding process that provides representative examples of the human and AI working together, which serve as reference points the human can draw on in the future. They began by creating an algorithm that can identify examples that will best teach the human about the AI.

    “We first learn a human expert’s biases and strengths, using observations of their past decisions unguided by AI,” Mozannar says. “We combine our knowledge about the human with what we know about the AI to see where it will be helpful for the human to rely on the AI. Then we obtain cases where we know the human should rely on the AI and similar cases where the human should not rely on the AI.”

    The researchers tested their onboarding technique on a passage-based question answering task: The user receives a written passage and a question whose answer is contained in the passage. The user then has to answer the question and can click a button to “let the AI answer.” The user can’t see the AI answer in advance, however, requiring them to rely on their mental model of the AI. The onboarding process they developed begins by showing these examples to the user, who tries to make a prediction with the help of the AI system. The human may be right or wrong, and the AI may be right or wrong, but in either case, after solving the example, the user sees the correct answer and an explanation for why the AI chose its prediction. To help the user generalize from the example, two contrasting examples are shown that explain why the AI got it right or wrong.

    For instance, perhaps the training question asks which of two plants is native to more continents, based on a convoluted paragraph from a botany textbook. The human can answer on her own or let the AI system answer. Then, she sees two follow-up examples that help her get a better sense of the AI’s abilities. Perhaps the AI is wrong on a follow-up question about fruits but right on a question about geology. In each example, the words the system used to make its prediction are highlighted. Seeing the highlighted words helps the human understand the limits of the AI agent, explains Mozannar.

    To help the user retain what they have learned, the user then writes down the rule she infers from this teaching example, such as “This AI is not good at predicting flowers.” She can then refer to these rules later when working with the agent in practice. These rules also constitute a formalization of the user’s mental model of the AI.

    The impact of teaching

    The researchers tested this teaching technique with three groups of participants. One group went through the entire onboarding technique, another group did not receive the follow-up comparison examples, and the baseline group didn’t receive any teaching but could see the AI’s answer in advance.

    “The participants who received teaching did just as well as the participants who didn’t receive teaching but could see the AI’s answer. So, the conclusion there is they are able to simulate the AI’s answer as well as if they had seen it,” Mozannar says.

    The researchers dug deeper into the data to see the rules individual participants wrote. They found that almost 50 percent of the people who received training wrote accurate lessons of the AI’s abilities. Those who had accurate lessons were right on 63 percent of the examples, whereas those who didn’t have accurate lessons were right on 54 percent. And those who didn’t receive teaching but could see the AI answers were right on 57 percent of the questions.

    “When teaching is successful, it has a significant impact. That is the takeaway here. When we are able to teach participants effectively, they are able to do better than if you actually gave them the answer,” he says.

    But the results also show there is still a gap. Only 50 percent of those who were trained built accurate mental models of the AI, and even those who did were only right 63 percent of the time. Even though they learned accurate lessons, they didn’t always follow their own rules, Mozannar says.

    That is one question that leaves the researchers scratching their heads — even if people know the AI should be right, why won’t they listen to their own mental model? They want to explore this question in the future, as well as refine the onboarding process to reduce the amount of time it takes. They are also interested in running user studies with more complex AI models, particularly in health care settings.

    “When humans collaborate with other humans, we rely heavily on knowing what our collaborators’ strengths and weaknesses are — it helps us know when (and when not) to lean on the other person for assistance. I’m glad to see this research applying that principle to humans and AI,” says Carrie Cai, a staff research scientist in the People + AI Research and Responsible AI groups at Google, who was not involved with this research. “Teaching users about an AI’s strengths and weaknesses is essential to producing positive human-AI joint outcomes.” 

    This research was supported, in part, by the National Science Foundation. More

  • in

    The promise and pitfalls of artificial intelligence explored at TEDxMIT event

    Scientists, students, and community members came together last month to discuss the promise and pitfalls of artificial intelligence at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) for the fourth TEDxMIT event held at MIT. 

    Attendees were entertained and challenged as they explored “the good and bad of computing,” explained CSAIL Director Professor Daniela Rus, who organized the event with John Werner, an MIT fellow and managing director of Link Ventures; MIT sophomore Lucy Zhao; and grad student Jessica Karaguesian. “As you listen to the talks today,” Rus told the audience, “consider how our world is made better by AI, and also our intrinsic responsibilities for ensuring that the technology is deployed for the greater good.”

    Rus mentioned some new capabilities that could be enabled by AI: an automated personal assistant that could monitor your sleep phases and wake you at the optimal time, as well as on-body sensors that monitor everything from your posture to your digestive system. “Intelligent assistance can help empower and augment our lives. But these intriguing possibilities should only be pursued if we can simultaneously resolve the challenges that these technologies bring,” said Rus. 

    The next speaker, CSAIL principal investigator and professor of electrical engineering and computer science Manolis Kellis, started off by suggesting what sounded like an unattainable goal — using AI to “put an end to evolution as we know it.” Looking at it from a computer science perspective, he said, what we call evolution is basically a brute force search. “You’re just exploring all of the search space, creating billions of copies of every one of your programs, and just letting them fight against each other. This is just brutal. And it’s also completely slow. It took us billions of years to get here.” Might it be possible, he asked, to speed up evolution and make it less messy?

    The answer, Kellis said, is that we can do better, and that we’re already doing better: “We’re not killing people like Sparta used to, throwing the weaklings off the mountain. We are truly saving diversity.”

    Knowledge, moreover, is now being widely shared, passed on “horizontally” through accessible information sources, he noted, rather than “vertically,” from parent to offspring. “I would like to argue that competition in the human species has been replaced by collaboration. Despite having a fixed cognitive hardware, we have software upgrades that are enabled by culture, by the 20 years that our children spend in school to fill their brains with everything that humanity has learned, regardless of which family came up with it. This is the secret of our great acceleration” — the fact that human advancement in recent centuries has vastly out-clipped evolution’s sluggish pace.

    The next step, Kellis said, is to harness insights about evolution in order to combat an individual’s genetic susceptibility to disease. “Our current approach is simply insufficient,” he added. “We’re treating manifestations of disease, not the causes of disease.” A key element in his lab’s ambitious strategy to transform medicine is to identify “the causal pathways through which genetic predisposition manifests. It’s only by understanding these pathways that we can truly manipulate disease causation and reverse the disease circuitry.” 

    Kellis was followed by Aleksander Madry, MIT professor of electrical engineering and computer science and CSAIL principal investigator, who told the crowd, “progress in AI is happening, and it’s happening fast.” Computer programs can routinely beat humans in games like chess, poker, and Go. So should we be worried about AI surpassing humans? 

    Madry, for one, is not afraid — or at least not yet. And some of that reassurance stems from research that has led him to the following conclusion: Despite its considerable success, AI, especially in the form of machine learning, is lazy. “Think about being lazy as this kind of smart student who doesn’t really want to study for an exam. Instead, what he does is just study all the past years’ exams and just look for patterns. Instead of trying to actually learn, he just tries to pass the test. And this is exactly the same way in which current AI is lazy.”

    A machine-learning model might recognize grazing sheep, for instance, simply by picking out pictures that have green grass in them. If a model is trained to identify fish from photos of anglers proudly displaying their catches, Madry explained, “the model figures out that if there’s a human holding something in the picture, I will just classify it as a fish.” The consequences can be more serious for an AI model intended to pick out malignant tumors. If the model is trained on images containing rulers that indicate the size of tumors, the model may end up selecting only those photos that have rulers in them.

    This leads to Madry’s biggest concerns about AI in its present form. “AI is beating us now,” he noted. “But the way it does it [involves] a little bit of cheating.” He fears that we will apply AI “in some way in which this mismatch between what the model actually does versus what we think it does will have some catastrophic consequences.” People relying on AI, especially in potentially life-or-death situations, need to be much more mindful of its current limitations, Madry cautioned.

    There were 10 speakers altogether, and the last to take the stage was MIT associate professor of electrical engineering and computer science and CSAIL principal investigator Marzyeh Ghassemi, who laid out her vision for how AI could best contribute to general health and well-being. But in order for that to happen, its models must be trained on accurate, diverse, and unbiased medical data.

    It’s important to focus on the data, Ghassemi stressed, because these models are learning from us. “Since our data is human-generated … a neural network is learning how to practice from a doctor. But doctors are human, and humans make mistakes. And if a human makes a mistake, and we train an AI from that, the AI will, too. Garbage in, garbage out. But it’s not like the garbage is distributed equally.”

    She pointed out that many subgroups receive worse care from medical practitioners, and members of these subgroups die from certain conditions at disproportionately high rates. This is an area, Ghassemi said, “where AI can actually help. This is something we can fix.” Her group is developing machine-learning models that are robust, private, and fair. What’s holding them back is neither algorithms nor GPUs. It’s data. Once we collect reliable data from diverse sources, Ghassemi added, we might start reaping the benefits that AI can bring to the realm of health care.

    In addition to CSAIL speakers, there were talks from members across MIT’s Institute for Data, Systems, and Society; the MIT Mobility Initiative; the MIT Media Lab; and the SENSEable City Lab.

    The proceedings concluded on that hopeful note. Rus and Werner then thanked everyone for coming. “Please continue to reflect about the good and bad of computing,” Rus urged. “And we look forward to seeing you back here in May for the next TEDxMIT event.”

    The exact theme of the spring 2022 gathering will have something to do with “superpowers.” But — if December’s mind-bending presentations were any indication — the May offering is almost certain to give its attendees plenty to think about. And maybe provide the inspiration for a startup or two. More