More stories

  • in

    Coordinating climate and air-quality policies to improve public health

    As America’s largest investment to fight climate change, the Inflation Reduction Act positions the country to reduce its greenhouse gas emissions by an estimated 40 percent below 2005 levels by 2030. But as it edges the United States closer to achieving its international climate commitment, the legislation is also expected to yield significant — and more immediate — improvements in the nation’s health. If successful in accelerating the transition from fossil fuels to clean energy alternatives, the IRA will sharply reduce atmospheric concentrations of fine particulates known to exacerbate respiratory and cardiovascular disease and cause premature deaths, along with other air pollutants that degrade human health. One recent study shows that eliminating air pollution from fossil fuels in the contiguous United States would prevent more than 50,000 premature deaths and avoid more than $600 billion in health costs each year.

    While national climate policies such as those advanced by the IRA can simultaneously help mitigate climate change and improve air quality, their results may vary widely when it comes to improving public health. That’s because the potential health benefits associated with air quality improvements are much greater in some regions and economic sectors than in others. Those benefits can be maximized, however, through a prudent combination of climate and air-quality policies.

    Several past studies have evaluated the likely health impacts of various policy combinations, but their usefulness has been limited due to a reliance on a small set of standard policy scenarios. More versatile tools are needed to model a wide range of climate and air-quality policy combinations and assess their collective effects on air quality and human health. Now researchers at the MIT Joint Program on the Science and Policy of Global Change and MIT Institute for Data, Systems and Society (IDSS) have developed a publicly available, flexible scenario tool that does just that.

    In a study published in the journal Geoscientific Model Development, the MIT team introduces its Tool for Air Pollution Scenarios (TAPS), which can be used to estimate the likely air-quality and health outcomes of a wide range of climate and air-quality policies at the regional, sectoral, and fuel-based level. 

    “This tool can help integrate the siloed sustainability issues of air pollution and climate action,” says the study’s lead author William Atkinson, who recently served as a Biogen Graduate Fellow and research assistant at the IDSS Technology and Policy Program’s (TPP) Research to Policy Engagement Initiative. “Climate action does not guarantee a clean air future, and vice versa — but the issues have similar sources that imply shared solutions if done right.”

    The study’s initial application of TAPS shows that with current air-quality policies and near-term Paris Agreement climate pledges alone, short-term pollution reductions give way to long-term increases — given the expected growth of emissions-intensive industrial and agricultural processes in developing regions. More ambitious climate and air-quality policies could be complementary, each reducing different pollutants substantially to give tremendous near- and long-term health benefits worldwide.

    “The significance of this work is that we can more confidently identify the long-term emission reduction strategies that also support air quality improvements,” says MIT Joint Program Deputy Director C. Adam Schlosser, a co-author of the study. “This is a win-win for setting climate targets that are also healthy targets.”

    TAPS projects air quality and health outcomes based on three integrated components: a recent global inventory of detailed emissions resulting from human activities (e.g., fossil fuel combustion, land-use change, industrial processes); multiple scenarios of emissions-generating human activities between now and the year 2100, produced by the MIT Economic Projection and Policy Analysis model; and emissions intensity (emissions per unit of activity) scenarios based on recent data from the Greenhouse Gas and Air Pollution Interactions and Synergies model.

    “We see the climate crisis as a health crisis, and believe that evidence-based approaches are key to making the most of this historic investment in the future, particularly for vulnerable communities,” says Johanna Jobin, global head of corporate reputation and responsibility at Biogen. “The scientific community has spoken with unanimity and alarm that not all climate-related actions deliver equal health benefits. We’re proud of our collaboration with the MIT Joint Program to develop this tool that can be used to bridge research-to-policy gaps, support policy decisions to promote health among vulnerable communities, and train the next generation of scientists and leaders for far-reaching impact.”

    The tool can inform decision-makers about a wide range of climate and air-quality policies. Policy scenarios can be applied to specific regions, sectors, or fuels to investigate policy combinations at a more granular level, or to target short-term actions with high-impact benefits.

    TAPS could be further developed to account for additional emissions sources and trends.

    “Our new tool could be used to examine a large range of both climate and air quality scenarios. As the framework is expanded, we can add detail for specific regions, as well as additional pollutants such as air toxics,” says study supervising co-author Noelle Selin, professor at IDSS and the MIT Department of Earth, Atmospheric and Planetary Sciences, and director of TPP.    

    This research was supported by the U.S. Environmental Protection Agency and its Science to Achieve Results (STAR) program; Biogen; TPP’s Leading Technology and Policy Initiative; and TPP’s Research to Policy Engagement Initiative. More

  • in

    On the road to cleaner, greener, and faster driving

    No one likes sitting at a red light. But signalized intersections aren’t just a minor nuisance for drivers; vehicles consume fuel and emit greenhouse gases while waiting for the light to change.

    What if motorists could time their trips so they arrive at the intersection when the light is green? While that might be just a lucky break for a human driver, it could be achieved more consistently by an autonomous vehicle that uses artificial intelligence to control its speed.

    In a new study, MIT researchers demonstrate a machine-learning approach that can learn to control a fleet of autonomous vehicles as they approach and travel through a signalized intersection in a way that keeps traffic flowing smoothly.

    Using simulations, they found that their approach reduces fuel consumption and emissions while improving average vehicle speed. The technique gets the best results if all cars on the road are autonomous, but even if only 25 percent use their control algorithm, it still leads to substantial fuel and emissions benefits.

    “This is a really interesting place to intervene. No one’s life is better because they were stuck at an intersection. With a lot of other climate change interventions, there is a quality-of-life difference that is expected, so there is a barrier to entry there. Here, the barrier is much lower,” says senior author Cathy Wu, the Gilbert W. Winslow Career Development Assistant Professor in the Department of Civil and Environmental Engineering and a member of the Institute for Data, Systems, and Society (IDSS) and the Laboratory for Information and Decision Systems (LIDS).

    The lead author of the study is Vindula Jayawardana, a graduate student in LIDS and the Department of Electrical Engineering and Computer Science. The research will be presented at the European Control Conference.

    Intersection intricacies

    While humans may drive past a green light without giving it much thought, intersections can present billions of different scenarios depending on the number of lanes, how the signals operate, the number of vehicles and their speeds, the presence of pedestrians and cyclists, etc.

    Typical approaches for tackling intersection control problems use mathematical models to solve one simple, ideal intersection. That looks good on paper, but likely won’t hold up in the real world, where traffic patterns are often about as messy as they come.

    Wu and Jayawardana shifted gears and approached the problem using a model-free technique known as deep reinforcement learning. Reinforcement learning is a trial-and-error method where the control algorithm learns to make a sequence of decisions. It is rewarded when it finds a good sequence. With deep reinforcement learning, the algorithm leverages assumptions learned by a neural network to find shortcuts to good sequences, even if there are billions of possibilities.

    This is useful for solving a long-horizon problem like this; the control algorithm must issue upwards of 500 acceleration instructions to a vehicle over an extended time period, Wu explains.

    “And we have to get the sequence right before we know that we have done a good job of mitigating emissions and getting to the intersection at a good speed,” she adds.

    But there’s an additional wrinkle. The researchers want the system to learn a strategy that reduces fuel consumption and limits the impact on travel time. These goals can be conflicting.

    “To reduce travel time, we want the car to go fast, but to reduce emissions, we want the car to slow down or not move at all. Those competing rewards can be very confusing to the learning agent,” Wu says.

    While it is challenging to solve this problem in its full generality, the researchers employed a workaround using a technique known as reward shaping. With reward shaping, they give the system some domain knowledge it is unable to learn on its own. In this case, they penalized the system whenever the vehicle came to a complete stop, so it would learn to avoid that action.

    Traffic tests

    Once they developed an effective control algorithm, they evaluated it using a traffic simulation platform with a single intersection. The control algorithm is applied to a fleet of connected autonomous vehicles, which can communicate with upcoming traffic lights to receive signal phase and timing information and observe their immediate surroundings. The control algorithm tells each vehicle how to accelerate and decelerate.

    Their system didn’t create any stop-and-go traffic as vehicles approached the intersection. (Stop-and-go traffic occurs when cars are forced to come to a complete stop due to stopped traffic ahead). In simulations, more cars made it through in a single green phase, which outperformed a model that simulates human drivers. When compared to other optimization methods also designed to avoid stop-and-go traffic, their technique resulted in larger fuel consumption and emissions reductions. If every vehicle on the road is autonomous, their control system can reduce fuel consumption by 18 percent and carbon dioxide emissions by 25 percent, while boosting travel speeds by 20 percent.

    “A single intervention having 20 to 25 percent reduction in fuel or emissions is really incredible. But what I find interesting, and was really hoping to see, is this non-linear scaling. If we only control 25 percent of vehicles, that gives us 50 percent of the benefits in terms of fuel and emissions reduction. That means we don’t have to wait until we get to 100 percent autonomous vehicles to get benefits from this approach,” she says.

    Down the road, the researchers want to study interaction effects between multiple intersections. They also plan to explore how different intersection set-ups (number of lanes, signals, timings, etc.) can influence travel time, emissions, and fuel consumption. In addition, they intend to study how their control system could impact safety when autonomous vehicles and human drivers share the road. For instance, even though autonomous vehicles may drive differently than human drivers, slower roadways and roadways with more consistent speeds could improve safety, Wu says.

    While this work is still in its early stages, Wu sees this approach as one that could be more feasibly implemented in the near-term.

    “The aim in this work is to move the needle in sustainable mobility. We want to dream, as well, but these systems are big monsters of inertia. Identifying points of intervention that are small changes to the system but have significant impact is something that gets me up in the morning,” she says.  

    This work was supported, in part, by the MIT-IBM Watson AI Lab. More

  • in

    Ocean vital signs

    Without the ocean, the climate crisis would be even worse than it is. Each year, the ocean absorbs billions of tons of carbon from the atmosphere, preventing warming that greenhouse gas would otherwise cause. Scientists estimate about 25 to 30 percent of all carbon released into the atmosphere by both human and natural sources is absorbed by the ocean.

    “But there’s a lot of uncertainty in that number,” says Ryan Woosley, a marine chemist and a principal research scientist in the Department of Earth, Atmospheric and Planetary Sciences (EAPS) at MIT. Different parts of the ocean take in different amounts of carbon depending on many factors, such as the season and the amount of mixing from storms. Current models of the carbon cycle don’t adequately capture this variation.

    To close the gap, Woosley and a team of other MIT scientists developed a research proposal for the MIT Climate Grand Challenges competition — an Institute-wide campaign to catalyze and fund innovative research addressing the climate crisis. The team’s proposal, “Ocean Vital Signs,” involves sending a fleet of sailing drones to cruise the oceans taking detailed measurements of how much carbon the ocean is really absorbing. Those data would be used to improve the precision of global carbon cycle models and improve researchers’ ability to verify emissions reductions claimed by countries.

    “If we start to enact mitigation strategies—either through removing CO2 from the atmosphere or reducing emissions — we need to know where CO2 is going in order to know how effective they are,” says Woosley. Without more precise models there’s no way to confirm whether observed carbon reductions were thanks to policy and people, or thanks to the ocean.

    “So that’s the trillion-dollar question,” says Woosley. “If countries are spending all this money to reduce emissions, is it enough to matter?”

    In February, the team’s Climate Grand Challenges proposal was named one of 27 finalists out of the almost 100 entries submitted. From among this list of finalists, MIT will announce in April the selection of five flagship projects to receive further funding and support.

    Woosley is leading the team along with Christopher Hill, a principal research engineer in EAPS. The team includes physical and chemical oceanographers, marine microbiologists, biogeochemists, and experts in computational modeling from across the department, in addition to collaborators from the Media Lab and the departments of Mathematics, Aeronautics and Astronautics, and Electrical Engineering and Computer Science.

    Today, data on the flux of carbon dioxide between the air and the oceans are collected in a piecemeal way. Research ships intermittently cruise out to gather data. Some commercial ships are also fitted with sensors. But these present a limited view of the entire ocean, and include biases. For instance, commercial ships usually avoid storms, which can increase the turnover of water exposed to the atmosphere and cause a substantial increase in the amount of carbon absorbed by the ocean.

    “It’s very difficult for us to get to it and measure that,” says Woosley. “But these drones can.”

    If funded, the team’s project would begin by deploying a few drones in a small area to test the technology. The wind-powered drones — made by a California-based company called Saildrone — would autonomously navigate through an area, collecting data on air-sea carbon dioxide flux continuously with solar-powered sensors. This would then scale up to more than 5,000 drone-days’ worth of observations, spread over five years, and in all five ocean basins.

    Those data would be used to feed neural networks to create more precise maps of how much carbon is absorbed by the oceans, shrinking the uncertainties involved in the models. These models would continue to be verified and improved by new data. “The better the models are, the more we can rely on them,” says Woosley. “But we will always need measurements to verify the models.”

    Improved carbon cycle models are relevant beyond climate warming as well. “CO2 is involved in so much of how the world works,” says Woosley. “We’re made of carbon, and all the other organisms and ecosystems are as well. What does the perturbation to the carbon cycle do to these ecosystems?”

    One of the best understood impacts is ocean acidification. Carbon absorbed by the ocean reacts to form an acid. A more acidic ocean can have dire impacts on marine organisms like coral and oysters, whose calcium carbonate shells and skeletons can dissolve in the lower pH. Since the Industrial Revolution, the ocean has become about 30 percent more acidic on average.

    “So while it’s great for us that the oceans have been taking up the CO2, it’s not great for the oceans,” says Woosley. “Knowing how this uptake affects the health of the ocean is important as well.” More

  • in

    MIT Center for Real Estate launches the Asia Real Estate Initiative

    To appreciate the explosive urbanization taking place in Asia, consider this analogy: Every 40 days, a city the equivalent size of Boston is built in Asia. Of the $24.7 trillion real estate investment opportunities predicted by 2030 in emerging cities, $17.8 trillion (72 percent) will be in Asia. While this growth is exciting to the real estate industry, it brings with it the attendant social and environmental issues.

    To promote a sustainable and innovative approach to this growth, leadership at the MIT Center for Real Estate (MIT CRE) recently established the Asia Real Estate Initiative (AREI), which aims to become a platform for industry leaders, entrepreneurs, and the academic community to find solutions to the practical concerns of real estate development across these countries.

    “Behind the creation of this initiative is the understanding that Asia is a living lab for the study of future global urban development,” says Hashim Sarkis, dean of the MIT School of Architecture and Planning.

    An investment in cities of the future

    One of the areas in AREI’s scope of focus is connecting sustainability and technology in real estate.

    “We believe the real estate sector should work cooperatively with the energy, science, and technology sectors to solve the climate challenges,” says Richard Lester, the Institute’s associate provost for international activities. “AREI will engage academics and industry leaders, nongovernment organizations, and civic leaders globally and in Asia, to advance sharing knowledge and research.”

    In its effort to understand how trends and new technologies will impact the future of real estate, AREI has received initial support from a prominent alumnus of MIT CRE who wishes to remain anonymous. The gift will support a cohort of researchers working on innovative technologies applicable to advancing real estate sustainability goals, with a special focus on the global and Asia markets. The call for applications is already under way, with AREI seeking to collaborate with scholars who have backgrounds in economics, finance, urban planning, technology, engineering, and other disciplines.

    “The research on real estate sustainability and technology could transform this industry and help invent global real estate of the future,” says Professor Siqi Zheng, faculty director of MIT CRE and AREI faculty chair. “The pairing of real estate and technology often leads to innovative and differential real estate development strategies such as buildings that are green, smart, and healthy.”

    The initiative arrives at a key time to make a significant impact and cement a leadership role in real estate development across Asia. MIT CRE is positioned to help the industry increase its efficiency and social responsibility, with nearly 40 years of pioneering research in the field. Zheng, an established scholar with expertise on urban growth in fast-urbanizing regions, is the former president of the Asia Real Estate Society and sits on the Board of American Real Estate and Urban Economics Association. Her research has been supported by international institutions including the World Bank, the Asian Development Bank, and the Lincoln Institute of Land Policy.

    “The researchers in AREI are now working on three interrelated themes: the future of real estate and live-work-play dynamics; connecting sustainability and technology in real estate; and innovations in real estate finance and business,” says Zheng.

    The first theme has already yielded a book — “Toward Urban Economic Vibrancy: Patterns and Practices in Asia’s New Cities” — recently published by SA+P Press.

    Engaging thought leaders and global stakeholders

    AREI also plans to collaborate with counterparts in Asia to contribute to research, education, and industry dialogue to meet the challenges of sustainable city-making across the continent and identify areas for innovation. Traditionally, real estate has been a very local business with a lengthy value chain, according to Zhengzhen Tan, director of AREI. Most developers focused their career on one particular product type in one particular regional market. AREI is working to change that dynamic.

    “We want to create a cross-border dialogue within Asia and among Asia, North America, and European leaders to exchange knowledge and practices,” says Tan. “The real estate industry’s learning costs are very high compared to other sectors. Collective learning will reduce the cost of failure and have a significant impact on these global issues.”

    The 2021 United Nations Climate Change Conference in Glasgow shed additional light on environmental commitments being made by governments in Asia. With real estate representing 40 percent of global greenhouse gas emissions, the Asian real estate market is undergoing an urgent transformation to deliver on this commitment.

    “One of the most pressing calls is to get to net-zero emissions for real estate development and operation,” says Tan. “Real estate investors and developers are making short- and long-term choices that are locking in environmental footprints for the ‘decisive decade.’ We hope to inspire developers and investors to think differently and get out of their comfort zone.” More

  • in

    Q&A: Can the world change course on climate?

    In this ongoing series on climate issues, MIT faculty, students, and alumni in the humanistic fields share perspectives that are significant for solving climate change and mitigating its myriad social and ecological impacts. Nazli Choucri is a professor of political science and an expert on climate issues, who also focuses on international relations and cyberpolitics. She is the architect and director of the Global System for Sustainable Development, an evolving knowledge networking system centered on sustainability problems and solution strategies. The author and/or editor of 12 books, she is also the founding editor of the MIT Press book series “Global Environmental Accord: Strategies for Sustainability and Institutional Innovation.” Q: The impacts of climate change — including storms, floods, wildfires, and droughts — have the potential to destabilize nations, yet they are not constrained by borders. What international developments most concern you in terms of addressing climate change and its myriad ecological and social impacts?

    A: Climate change is a global issue. By definition, and a long history of practice, countries focus on their own priorities and challenges. Over time, we have seen the gradual development of norms reflecting shared interests, and the institutional arrangements to support and pursue the global good. What concerns me most is that general responses to the climate crisis are being framed in broad terms; the overall pace of change remains perilously slow; and uncertainty remains about operational action and implementation of stated intent. We have just seen the completion of the 26th meeting of states devoted to climate change, the United Nations Climate Change Conference (COP26). In some ways this is positive. Yet, past commitments remain unfulfilled, creating added stress in an already stressful political situation. Industrial countries are uneven in their recognition of, and responses to, climate change. This may signal uncertainty about whether climate matters are sufficiently compelling to call for immediate action. Alternatively, the push for changing course may seem too costly at a time when other imperatives — such as employment, economic growth, or protecting borders — inevitably dominate discourse and decisions. Whatever the cause, the result has been an unwillingness to take strong action. Unfortunately, climate change remains within the domain of “low politics,” although there are signs the issue is making a slow but steady shift to “high politics” — those issues deemed vital to the existence of the state. This means that short-term priorities, such as those noted above, continue to shape national politics and international positions and, by extension, to obscure the existential threat revealed by scientific evidence. As for developing countries, these are overwhelmed by internal challenges, and managing the difficulties of daily life always takes priority over other challenges, however compelling. Long-term thinking is a luxury, but daily bread is a necessity. Non-state actors — including registered nongovernmental organizations, climate organizations, sustainability support groups, activists of various sorts, and in some cases much of civil society — have been left with a large share of the responsibility for educating and convincing diverse constituencies of the consequences of inaction on climate change. But many of these institutions carry their own burdens and struggle to manage current pressures. The international community, through its formal and informal institutions, continues to articulate the perils of climate change and to search for a powerful consensus that can prove effective both in form and in function. The general contours are agreed upon — more or less. But leadership of, for, and by the global collective is elusive and difficult to shape. Most concerning of all is the clear reluctance to address head-on the challenge of planning for changes that we know will occur. The reality that we are all being affected — in different ways and to different degrees — has yet to be sufficiently appreciated by everyone, everywhere. Yet, in many parts of the world, major shifts in climate will create pressures on human settlements, spur forced migrations, or generate social dislocations. Some small island states, for example, may not survive a sea-level surge. Everywhere there is a need to cut emissions, and this means adaptation and/or major changes in economic activity and in lifestyle.The discourse and debate at COP26 reflect all of such persistent features in the international system. So far, the largest achievements center on the common consensus that more must be done to prevent the rise in temperature from creating a global catastrophe. This is not enough, however. Differences remain, and countries have yet to specify what cuts in emissions they are willing to make.Echoes of who is responsible for what remains strong. The thorny matter of the unfulfilled pledge of $100 billion once promised by rich countries to help countries to reduce their emissions remained unresolved. At the same time, however, some important agreements were reached. The United States and China announced they would make greater efforts to cut methane, a powerful greenhouse gas. More than 100 countries agreed to end deforestation. India joined the countries committed to attain zero emissions by 2070. And on matters of finance, countries agreed to a two-year plan to determine how to meet the needs of the most-vulnerable countries. Q: In what ways do you think the tools and insights from political science can advance efforts to address climate change and its impacts?A: I prefer to take a multidisciplinary view of the issues at hand, rather than focus on the tools of political science alone. Disciplinary perspectives can create siloed views and positions that undermine any overall drive toward consensus. The scientific evidence is pointing to, even anticipating, pervasive changes that transcend known and established parameters of social order all across the globe.That said, political science provides important insight, even guidance, for addressing the impacts of climate change in some notable ways. One is understanding the extent to which our formal institutions enable discussion, debate, and decisions about the directions we can take collectively to adapt, adjust, or even depart from the established practices of managing social order.If we consider politics as the allocation of values in terms of who gets what, when, and how, then it becomes clear that the current allocation requires a change in course. Coordination and cooperation across the jurisdictions of sovereign states is foundational for any response to climate change impacts.We have already recognized, and to some extent, developed targets for reducing carbon emissions — a central impact from traditional forms of energy use — and are making notable efforts to shift toward alternatives. This move is an easy one compared to all the work that needs to be done to address climate change. But, in taking this step we have learned quite a bit that might help in creating a necessary consensus for cross-jurisdiction coordination and response.Respecting individuals and protecting life is increasingly recognized as a global value — at least in principle. As we work to change course, new norms will be developed, and political science provides important perspectives on how to establish such norms. We will be faced with demands for institutional design, and these will need to embody our guiding values. For example, having learned to recognize the burdens of inequity, we can establish the value of equity as foundational for our social order both now and as we recognize and address the impacts of climate change.

    Q: You teach a class on “Sustainability Development: Theory and Practice.” Broadly speaking, what are goals of this class? What lessons do you hope students will carry with them into the future?A: The goal of 17.181, my class on sustainability, is to frame as clearly as possible the concept of sustainable development (sustainability) with attention to conceptual, empirical, institutional, and policy issues.The course centers on human activities. Individuals are embedded in complex interactive systems: the social system, the natural environment, and the constructed cyber domain — each with distinct temporal, special, and dynamic features. Sustainability issues intersect with, but cannot be folded into, the impacts of climate change. Sustainability places human beings in social systems at the core of what must be done to respect the imperatives of a highly complex natural environment.We consider sustainability an evolving knowledge domain with attendant policy implications. It is driven by events on the ground, not by revolution in academic or theoretical concerns per se. Overall, sustainable development refers to the process of meeting the needs of current and future generations, without undermining the resilience of the life-supporting properties, the integrity of social systems, or the supports of the human-constructed cyberspace.More specifically, we differentiate among four fundamental dimensions and their necessary conditions:

    (a) ecological systems — exhibiting balance and resilience;(b) economic production and consumption — with equity and efficiency;(c) governance and politics — with participation and responsiveness; and(d) institutional performance — demonstrating adaptation and incorporating feedback.The core proposition is this: If all conditions hold, then the system is (or can be) sustainable. Then, we must examine the critical drivers — people, resources, technology, and their interactions — followed by a review and assessment of evolving policy responses. Then we ask: What are new opportunities?I would like students to carry forward these ideas and issues: what has been deemed “normal” in modern Western societies and in developing societies seeking to emulate the Western model is damaging humans in many ways — all well-known. Yet only recently have alternatives begun to be considered to the traditional economic growth model based on industrialization and high levels of energy use. To make changes, we must first understand the underlying incentives, realities, and choices that shape a whole set of dysfunctional behaviors and outcomes. We then need to delve deep into the driving sources and consequences, and to consider the many ways in which our known “normal” can be adjusted — in theory and in practice. Q: In confronting an issue as formidable as global climate change, what gives you hope?  A: I see a few hopeful signs; among them:The scientific evidence is clear and compelling. We are no longer discussing whether there is climate change, or if we will face major challenges of unprecedented proportions, or even how to bring about an international consensus on the salience of such threats.Climate change has been recognized as a global phenomenon. Imperatives for cooperation are necessary. No one can go it alone. Major efforts have and are being made in world politics to forge action agendas with specific targets.The issue appears to be on the verge of becoming one of “high politics” in the United States.Younger generations are more sensitive to the reality that we are altering the life-supporting properties of our planet. They are generally more educated, skilled, and open to addressing such challenges than their elders.However disappointing the results of COP26 might seem, the global community is moving in the right direction.None of the above points, individually or jointly, translates into an effective response to the known impacts of climate change — let alone the unknown. But, this is what gives me hope.

    Interview prepared by MIT SHASS CommunicationsEditorial, design, and series director: Emily HiestandSenior writer: Kathryn O’Neill More

  • in

    Q&A: More-sustainable concrete with machine learning

    As a building material, concrete withstands the test of time. Its use dates back to early civilizations, and today it is the most popular composite choice in the world. However, it’s not without its faults. Production of its key ingredient, cement, contributes 8-9 percent of the global anthropogenic CO2 emissions and 2-3 percent of energy consumption, which is only projected to increase in the coming years. With aging United States infrastructure, the federal government recently passed a milestone bill to revitalize and upgrade it, along with a push to reduce greenhouse gas emissions where possible, putting concrete in the crosshairs for modernization, too.

    Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in the MIT Department of Materials Science and Engineering, and Jie Chen, MIT-IBM Watson AI Lab research scientist and manager, think artificial intelligence can help meet this need by designing and formulating new, more sustainable concrete mixtures, with lower costs and carbon dioxide emissions, while improving material performance and reusing manufacturing byproducts in the material itself. Olivetti’s research improves environmental and economic sustainability of materials, and Chen develops and optimizes machine learning and computational techniques, which he can apply to materials reformulation. Olivetti and Chen, along with their collaborators, have recently teamed up for an MIT-IBM Watson AI Lab project to make concrete more sustainable for the benefit of society, the climate, and the economy.

    Q: What applications does concrete have, and what properties make it a preferred building material?

    Olivetti: Concrete is the dominant building material globally with an annual consumption of 30 billion metric tons. That is over 20 times the next most produced material, steel, and the scale of its use leads to considerable environmental impact, approximately 5-8 percent of global greenhouse gas (GHG) emissions. It can be made locally, has a broad range of structural applications, and is cost-effective. Concrete is a mixture of fine and coarse aggregate, water, cement binder (the glue), and other additives.

    Q: Why isn’t it sustainable, and what research problems are you trying to tackle with this project?

    Olivetti: The community is working on several ways to reduce the impact of this material, including alternative fuels use for heating the cement mixture, increasing energy and materials efficiency and carbon sequestration at production facilities, but one important opportunity is to develop an alternative to the cement binder.

    While cement is 10 percent of the concrete mass, it accounts for 80 percent of the GHG footprint. This impact is derived from the fuel burned to heat and run the chemical reaction required in manufacturing, but also the chemical reaction itself releases CO2 from the calcination of limestone. Therefore, partially replacing the input ingredients to cement (traditionally ordinary Portland cement or OPC) with alternative materials from waste and byproducts can reduce the GHG footprint. But use of these alternatives is not inherently more sustainable because wastes might have to travel long distances, which adds to fuel emissions and cost, or might require pretreatment processes. The optimal way to make use of these alternate materials will be situation-dependent. But because of the vast scale, we also need solutions that account for the huge volumes of concrete needed. This project is trying to develop novel concrete mixtures that will decrease the GHG impact of the cement and concrete, moving away from the trial-and-error processes towards those that are more predictive.

    Chen: If we want to fight climate change and make our environment better, are there alternative ingredients or a reformulation we could use so that less greenhouse gas is emitted? We hope that through this project using machine learning we’ll be able to find a good answer.

    Q: Why is this problem important to address now, at this point in history?

    Olivetti: There is urgent need to address greenhouse gas emissions as aggressively as possible, and the road to doing so isn’t necessarily straightforward for all areas of industry. For transportation and electricity generation, there are paths that have been identified to decarbonize those sectors. We need to move much more aggressively to achieve those in the time needed; further, the technological approaches to achieve that are more clear. However, for tough-to-decarbonize sectors, such as industrial materials production, the pathways to decarbonization are not as mapped out.

    Q: How are you planning to address this problem to produce better concrete?

    Olivetti: The goal is to predict mixtures that will both meet performance criteria, such as strength and durability, with those that also balance economic and environmental impact. A key to this is to use industrial wastes in blended cements and concretes. To do this, we need to understand the glass and mineral reactivity of constituent materials. This reactivity not only determines the limit of the possible use in cement systems but also controls concrete processing, and the development of strength and pore structure, which ultimately control concrete durability and life-cycle CO2 emissions.

    Chen: We investigate using waste materials to replace part of the cement component. This is something that we’ve hypothesized would be more sustainable and economic — actually waste materials are common, and they cost less. Because of the reduction in the use of cement, the final concrete product would be responsible for much less carbon dioxide production. Figuring out the right concrete mixture proportion that makes endurable concretes while achieving other goals is a very challenging problem. Machine learning is giving us an opportunity to explore the advancement of predictive modeling, uncertainty quantification, and optimization to solve the issue. What we are doing is exploring options using deep learning as well as multi-objective optimization techniques to find an answer. These efforts are now more feasible to carry out, and they will produce results with reliability estimates that we need to understand what makes a good concrete.

    Q: What kinds of AI and computational techniques are you employing for this?

    Olivetti: We use AI techniques to collect data on individual concrete ingredients, mix proportions, and concrete performance from the literature through natural language processing. We also add data obtained from industry and/or high throughput atomistic modeling and experiments to optimize the design of concrete mixtures. Then we use this information to develop insight into the reactivity of possible waste and byproduct materials as alternatives to cement materials for low-CO2 concrete. By incorporating generic information on concrete ingredients, the resulting concrete performance predictors are expected to be more reliable and transformative than existing AI models.

    Chen: The final objective is to figure out what constituents, and how much of each, to put into the recipe for producing the concrete that optimizes the various factors: strength, cost, environmental impact, performance, etc. For each of the objectives, we need certain models: We need a model to predict the performance of the concrete (like, how long does it last and how much weight does it sustain?), a model to estimate the cost, and a model to estimate how much carbon dioxide is generated. We will need to build these models by using data from literature, from industry, and from lab experiments.

    We are exploring Gaussian process models to predict the concrete strength, going forward into days and weeks. This model can give us an uncertainty estimate of the prediction as well. Such a model needs specification of parameters, for which we will use another model to calculate. At the same time, we also explore neural network models because we can inject domain knowledge from human experience into them. Some models are as simple as multi-layer perceptions, while some are more complex, like graph neural networks. The goal here is that we want to have a model that is not only accurate but also robust — the input data is noisy, and the model must embrace the noise, so that its prediction is still accurate and reliable for the multi-objective optimization.

    Once we have built models that we are confident with, we will inject their predictions and uncertainty estimates into the optimization of multiple objectives, under constraints and under uncertainties.

    Q: How do you balance cost-benefit trade-offs?

    Chen: The multiple objectives we consider are not necessarily consistent, and sometimes they are at odds with each other. The goal is to identify scenarios where the values for our objectives cannot be further pushed simultaneously without compromising one or a few. For example, if you want to further reduce the cost, you probably have to suffer the performance or suffer the environmental impact. Eventually, we will give the results to policymakers and they will look into the results and weigh the options. For example, they may be able to tolerate a slightly higher cost under a significant reduction in greenhouse gas. Alternatively, if the cost varies little but the concrete performance changes drastically, say, doubles or triples, then this is definitely a favorable outcome.

    Q: What kinds of challenges do you face in this work?

    Chen: The data we get either from industry or from literature are very noisy; the concrete measurements can vary a lot, depending on where and when they are taken. There are also substantial missing data when we integrate them from different sources, so, we need to spend a lot of effort to organize and make the data usable for building and training machine learning models. We also explore imputation techniques that substitute missing features, as well as models that tolerate missing features, in our predictive modeling and uncertainty estimate.

    Q: What do you hope to achieve through this work?

    Chen: In the end, we are suggesting either one or a few concrete recipes, or a continuum of recipes, to manufacturers and policymakers. We hope that this will provide invaluable information for both the construction industry and for the effort of protecting our beloved Earth.

    Olivetti: We’d like to develop a robust way to design cements that make use of waste materials to lower their CO2 footprint. Nobody is trying to make waste, so we can’t rely on one stream as a feedstock if we want this to be massively scalable. We have to be flexible and robust to shift with feedstocks changes, and for that we need improved understanding. Our approach to develop local, dynamic, and flexible alternatives is to learn what makes these wastes reactive, so we know how to optimize their use and do so as broadly as possible. We do that through predictive model development through software we have developed in my group to automatically extract data from literature on over 5 million texts and patents on various topics. We link this to the creative capabilities of our IBM collaborators to design methods that predict the final impact of new cements. If we are successful, we can lower the emissions of this ubiquitous material and play our part in achieving carbon emissions mitigation goals.

    Other researchers involved with this project include Stefanie Jegelka, the X-Window Consortium Career Development Associate Professor in the MIT Department of Electrical Engineering and Computer Science; Richard Goodwin, IBM principal researcher; Soumya Ghosh, MIT-IBM Watson AI Lab research staff member; and Kristen Severson, former research staff member. Collaborators included Nghia Hoang, former research staff member with MIT-IBM Watson AI Lab and IBM Research; and Jeremy Gregory, research scientist in the MIT Department of Civil and Environmental Engineering and executive director of the MIT Concrete Sustainability Hub.

    This research is supported by the MIT-IBM Watson AI Lab. More

  • in

    At UN climate change conference, trying to “keep 1.5 alive”

    After a one-year delay caused by the Covid-19 pandemic, negotiators from nearly 200 countries met this month in Glasgow, Scotland, at COP26, the United Nations climate change conference, to hammer out a new global agreement to reduce greenhouse gas emissions and prepare for climate impacts. A delegation of approximately 20 faculty, staff, and students from MIT was on hand to observe the negotiations, share and conduct research, and launch new initiatives.

    On Saturday, Nov. 13, following two weeks of negotiations in the cavernous Scottish Events Campus, countries’ representatives agreed to the Glasgow Climate Pact. The pact reaffirms the goal of the 2015 Paris Agreement “to pursue efforts” to limit the global average temperature increase to 1.5 degrees Celsius above preindustrial levels, and recognizes that achieving this goal requires “reducing global carbon dioxide emissions by 45 percent by 2030 relative to the 2010 level and to net zero around mid-century.”

    “On issues like the need to reach net-zero emissions, reduce methane pollution, move beyond coal power, and tighten carbon accounting rules, the Glasgow pact represents some meaningful progress, but we still have so much work to do,” says Maria Zuber, MIT’s vice president for research, who led the Institute’s delegation to COP26. “Glasgow showed, once again, what a wicked complex problem climate change is, technically, economically, and politically. But it also underscored the determination of a global community of people committed to addressing it.”

    An “ambition gap”

    Both within the conference venue and at protests that spilled through the streets of Glasgow, one rallying cry was “keep 1.5 alive.” Alok Sharma, who was appointed by the UK government to preside over COP26, said in announcing the Glasgow pact: “We can now say with credibility that we have kept 1.5 degrees alive. But, its pulse is weak and it will only survive if we keep our promises and translate commitments into rapid action.”

    In remarks delivered during the first week of the conference, Sergey Paltsev, deputy director of MIT’s Joint Program on the Science and Policy of Global Change, presented findings from the latest MIT Global Change Outlook, which showed a wide gap between countries’ nationally determined contributions (NDCs) — the UN’s term for greenhouse gas emissions reduction pledges — and the reductions needed to put the world on track to meet the goals of the Paris Agreement and, now, the Glasgow pact.

    Pointing to this ambition gap, Paltsev called on all countries to do more, faster, to cut emissions. “We could dramatically reduce overall climate risk through more ambitious policy measures and investments,” says Paltsev. “We need to employ an integrated approach of moving to zero emissions in energy and industry, together with sustainable development and nature-based solutions, simultaneously improving human well-being and providing biodiversity benefits.”

    Finalizing the Paris rulebook

    A key outcome of COP26 (COP stands for “conference of the parties” to the UN Framework Convention on Climate Change, held for the 26th time) was the development of a set of rules to implement Article 6 of the Paris Agreement, which provides a mechanism for countries to receive credit for emissions reductions that they finance outside their borders, and to cooperate by buying and selling emissions reductions on international carbon markets.

    An agreement on this part of the Paris “rulebook” had eluded negotiators in the years since the Paris climate conference, in part because negotiators were concerned about how to prevent double-counting, wherein both buyers and sellers would claim credit for the emissions reductions.

    Michael Mehling, the deputy director of MIT’s Center for Energy and Environmental Policy Research (CEEPR) and an expert on international carbon markets, drew on a recent CEEPR working paper to describe critical negotiation issues under Article 6 during an event at the conference on Nov. 10 with climate negotiators and private sector representatives.

    He cited research that finds that Article 6, by leveraging the cost-efficiency of global carbon markets, could cut in half the cost that countries would incur to achieve their nationally determined contributions. “Which, seen from another angle, means you could double the ambition of these NDCs at no additional cost,” Mehling noted in his talk, adding that, given the persistent ambition gap, “any such opportunity is bitterly needed.”

    Andreas Haupt, a graduate student in the Institute for Data, Systems, and Society, joined MIT’s COP26 delegation to follow Article 6 negotiations. Haupt described the final days of negotiations over Article 6 as a “roller coaster.” Once negotiators reached an agreement, he says, “I felt relieved, but also unsure how strong of an effect the new rules, with all their weaknesses, will have. I am curious and hopeful regarding what will happen in the next year until the next large-scale negotiations in 2022.”

    Nature-based climate solutions

    World leaders also announced new agreements on the sidelines of the formal UN negotiations. One such agreement, a declaration on forests signed by more than 100 countries, commits to “working collectively to halt and reverse forest loss and land degradation by 2030.”

    A team from MIT’s Environmental Solutions Initiative (ESI), which has been working with policymakers and other stakeholders on strategies to protect tropical forests and advance other nature-based climate solutions in Latin America, was at COP26 to discuss their work and make plans for expanding it.

    Marcela Angel, a research associate at ESI, moderated a panel discussion featuring John Fernández, professor of architecture and ESI’s director, focused on protecting and enhancing natural carbon sinks, particularly tropical forests such as the Amazon that are at risk of deforestation, forest degradation, and biodiversity loss.

    “Deforestation and associated land use change remain one of the main sources of greenhouse gas emissions in most Amazonian countries, such as Brazil, Peru, and Colombia,” says Angel. “Our aim is to support these countries, whose nationally determined contributions depend on the effectiveness of policies to prevent deforestation and promote conservation, with an approach based on the integration of targeted technology breakthroughs, deep community engagement, and innovative bioeconomic opportunities for local communities that depend on forests for their livelihoods.”

    Energy access and renewable energy

    Worldwide, an estimated 800 million people lack access to electricity, and billions more have only limited or erratic electrical service. Providing universal access to energy is one of the UN’s sustainable development goals, creating a dual challenge: how to boost energy access without driving up greenhouse gas emissions.

    Rob Stoner, deputy director for science and technology of the MIT Energy Initiative (MITEI), and Ignacio Pérez-Arriaga, a visiting professor at the Sloan School of Management, attended COP26 to share their work as members of the Global Commission to End Energy Poverty, a collaboration between MITEI and the Rockefeller Foundation. It brings together global energy leaders from industry, the development finance community, academia, and civil society to identify ways to overcome barriers to investment in the energy sectors of countries with low energy access.

    The commission’s work helped to motivate the formation, announced at COP26 on Nov. 2, of the Global Energy Alliance for People and Planet, a multibillion-dollar commitment by the Rockefeller and IKEA foundations and Bezos Earth Fund to support access to renewable energy around the world.

    Another MITEI member of the COP26 delegation, Martha Broad, the initiative’s executive director, spoke about MIT research to inform the U.S. goal of scaling offshore wind energy capacity from approximately 30 megawatts today to 30 gigawatts by 2030, including significant new capacity off the coast of New England.

    Broad described research, funded by MITEI member companies, on a coating that can be applied to the blades of wind turbines to prevent icing that would require the turbines’ shutdown; the use of machine learning to inform preventative turbine maintenance; and methodologies for incorporating the effects of climate change into projections of future wind conditions to guide wind farm siting decisions today. She also spoke broadly about the need for public and private support to scale promising innovations.

    “Clearly, both the public sector and the private sector have a role to play in getting these technologies to the point where we can use them in New England, and also where we can deploy them affordably for the developing world,” Broad said at an event sponsored by America Is All In, a coalition of nonprofit and business organizations.

    Food and climate alliance

    Food systems around the world are increasingly at risk from the impacts of climate change. At the same time, these systems, which include all activities from food production to consumption and food waste, are responsible for about one-third of the human-caused greenhouse gas emissions warming the planet.

    At COP26, MIT’s Abdul Latif Jameel Water and Food Systems Lab announced the launch of a new alliance to drive research-based innovation that will make food systems more resilient and sustainable, called the Food and Climate Systems Transformation (FACT) Alliance. With 16 member institutions, the FACT Alliance will better connect researchers to farmers, food businesses, policymakers, and other food systems stakeholders around the world.

    Looking ahead

    By the end of 2022, the Glasgow pact asks countries to revisit their nationally determined contributions and strengthen them to bring them in line with the temperature goals of the Paris Agreement. The pact also “notes with deep regret” the failure of wealthier countries to collectively provide poorer countries $100 billion per year in climate financing that they pledged in 2009 to begin in 2020.

    These and other issues will be on the agenda for COP27, to be held in Sharm El-Sheikh, Egypt, next year.

    “Limiting warming to 1.5 degrees is broadly accepted as a critical goal to avoiding worsening climate consequences, but it’s clear that current national commitments will not get us there,” says ESI’s Fernández. “We will need stronger emissions reductions pledges, especially from the largest greenhouse gas emitters. At the same time, expanding creativity, innovation, and determination from every sector of society, including research universities, to get on with real-world solutions is essential. At Glasgow, MIT was front and center in energy systems, cities, nature-based solutions, and more. The year 2030 is right around the corner so we can’t afford to let up for one minute.” More

  • in

    Making the case for hydrogen in a zero-carbon economy

    As the United States races to achieve its goal of zero-carbon electricity generation by 2035, energy providers are swiftly ramping up renewable resources such as solar and wind. But because these technologies churn out electrons only when the sun shines and the wind blows, they need backup from other energy sources, especially during seasons of high electric demand. Currently, plants burning fossil fuels, primarily natural gas, fill in the gaps.

    “As we move to more and more renewable penetration, this intermittency will make a greater impact on the electric power system,” says Emre Gençer, a research scientist at the MIT Energy Initiative (MITEI). That’s because grid operators will increasingly resort to fossil-fuel-based “peaker” plants that compensate for the intermittency of the variable renewable energy (VRE) sources of sun and wind. “If we’re to achieve zero-carbon electricity, we must replace all greenhouse gas-emitting sources,” Gençer says.

    Low- and zero-carbon alternatives to greenhouse-gas emitting peaker plants are in development, such as arrays of lithium-ion batteries and hydrogen power generation. But each of these evolving technologies comes with its own set of advantages and constraints, and it has proven difficult to frame the debate about these options in a way that’s useful for policymakers, investors, and utilities engaged in the clean energy transition.

    Now, Gençer and Drake D. Hernandez SM ’21 have come up with a model that makes it possible to pin down the pros and cons of these peaker-plant alternatives with greater precision. Their hybrid technological and economic analysis, based on a detailed inventory of California’s power system, was published online last month in Applied Energy. While their work focuses on the most cost-effective solutions for replacing peaker power plants, it also contains insights intended to contribute to the larger conversation about transforming energy systems.

    “Our study’s essential takeaway is that hydrogen-fired power generation can be the more economical option when compared to lithium-ion batteries — even today, when the costs of hydrogen production, transmission, and storage are very high,” says Hernandez, who worked on the study while a graduate research assistant for MITEI. Adds Gençer, “If there is a place for hydrogen in the cases we analyzed, that suggests there is a promising role for hydrogen to play in the energy transition.”

    Adding up the costs

    California serves as a stellar paradigm for a swiftly shifting power system. The state draws more than 20 percent of its electricity from solar and approximately 7 percent from wind, with more VRE coming online rapidly. This means its peaker plants already play a pivotal role, coming online each evening when the sun goes down or when events such as heat waves drive up electricity use for days at a time.

    “We looked at all the peaker plants in California,” recounts Gençer. “We wanted to know the cost of electricity if we replaced them with hydrogen-fired turbines or with lithium-ion batteries.” The researchers used a core metric called the levelized cost of electricity (LCOE) as a way of comparing the costs of different technologies to each other. LCOE measures the average total cost of building and operating a particular energy-generating asset per unit of total electricity generated over the hypothetical lifetime of that asset.

    Selecting 2019 as their base study year, the team looked at the costs of running natural gas-fired peaker plants, which they defined as plants operating 15 percent of the year in response to gaps in intermittent renewable electricity. In addition, they determined the amount of carbon dioxide released by these plants and the expense of abating these emissions. Much of this information was publicly available.

    Coming up with prices for replacing peaker plants with massive arrays of lithium-ion batteries was also relatively straightforward: “There are no technical limitations to lithium-ion, so you can build as many as you want; but they are super expensive in terms of their footprint for energy storage and the mining required to manufacture them,” says Gençer.

    But then came the hard part: nailing down the costs of hydrogen-fired electricity generation. “The most difficult thing is finding cost assumptions for new technologies,” says Hernandez. “You can’t do this through a literature review, so we had many conversations with equipment manufacturers and plant operators.”

    The team considered two different forms of hydrogen fuel to replace natural gas, one produced through electrolyzer facilities that convert water and electricity into hydrogen, and another that reforms natural gas, yielding hydrogen and carbon waste that can be captured to reduce emissions. They also ran the numbers on retrofitting natural gas plants to burn hydrogen as opposed to building entirely new facilities. Their model includes identification of likely locations throughout the state and expenses involved in constructing these facilities.

    The researchers spent months compiling a giant dataset before setting out on the task of analysis. The results from their modeling were clear: “Hydrogen can be a more cost-effective alternative to lithium-ion batteries for peaking operations on a power grid,” says Hernandez. In addition, notes Gençer, “While certain technologies worked better in particular locations, we found that on average, reforming hydrogen rather than electrolytic hydrogen turned out to be the cheapest option for replacing peaker plants.”

    A tool for energy investors

    When he began this project, Gençer admits he “wasn’t hopeful” about hydrogen replacing natural gas in peaker plants. “It was kind of shocking to see in our different scenarios that there was a place for hydrogen.” That’s because the overall price tag for converting a fossil-fuel based plant to one based on hydrogen is very high, and such conversions likely won’t take place until more sectors of the economy embrace hydrogen, whether as a fuel for transportation or for varied manufacturing and industrial purposes.

    A nascent hydrogen production infrastructure does exist, mainly in the production of ammonia for fertilizer. But enormous investments will be necessary to expand this framework to meet grid-scale needs, driven by purposeful incentives. “With any of the climate solutions proposed today, we will need a carbon tax or carbon pricing; otherwise nobody will switch to new technologies,” says Gençer.

    The researchers believe studies like theirs could help key energy stakeholders make better-informed decisions. To that end, they have integrated their analysis into SESAME, a life cycle and techno-economic assessment tool for a range of energy systems that was developed by MIT researchers. Users can leverage this sophisticated modeling environment to compare costs of energy storage and emissions from different technologies, for instance, or to determine whether it is cost-efficient to replace a natural gas-powered plant with one powered by hydrogen.

    “As utilities, industry, and investors look to decarbonize and achieve zero-emissions targets, they have to weigh the costs of investing in low-carbon technologies today against the potential impacts of climate change moving forward,” says Hernandez, who is currently a senior associate in the energy practice at Charles River Associates. Hydrogen, he believes, will become increasingly cost-competitive as its production costs decline and markets expand.

    A study group member of MITEI’s soon-to-be published Future of Storage study, Gençer knows that hydrogen alone will not usher in a zero-carbon future. But, he says, “Our research shows we need to seriously consider hydrogen in the energy transition, start thinking about key areas where hydrogen should be used, and start making the massive investments necessary.”

    Funding for this research was provided by MITEI’s Low-Carbon Energy Centers and Future of Storage study. More