More stories

  • in

    Building a playbook for elite-level sports

    “All I did was swim,” says Jerry Lu, recalling his teenage years as a competitive swimmer. “From age 12 to 19, it was close to 30 hours a week of training.” Although Lu no longer competes himself, his understanding of the dedication and impeccable technique required in elite sports continues to shape his path as a master’s student at the MIT Sloan School of Management.

    As an undergraduate at the University of Virginia, Lu majored in systems and information engineering and economics. He had stopped swimming competitively, but he stayed connected to the sport as a technical performance consultant for the university’s nationally ranked swim team. Under his advisor, Ken Ono, Lu built a methodology of analyzing data from sensors worn by swimmers to improve their individual performance. By looking at an athlete’s propulsion and drag data over the course of a race, Lu can advise them on where they can shave off tenths of a second simply by adjusting their stroke to be more efficient.

    That experience inspired Lu to pursue a career in other aspects of sports. At MIT he’s pursuing a master’s in finance to build the analytical skills necessary to enable the sustainability of sports that don’t already enjoy the major commercial success of, say, football or basketball. It’s especially a challenge for Olympic sports, such as swimming, which struggle for commercial ventures outside of Olympic years.

    “My work in swimming is focused on athlete performance to win, but the definition of winning is different for a sport as a whole, and for an organization,” Lu says. “Not only do you need to win medals, a big part of it is how you allocate money because you also need to grow your sport.”

    At MIT, Lu is building a playbook for high-performance sports from both an athletic and financial perspective. He’s been gaining exposure to additional elite sports by working with MIT’s Sports Lab under Professor Anette “Peko” Hosoi. His work there isn’t a requirement for his master’s program, but Lu appreciates that the program’s flexibility allows him time to pursue research that interests him, alongside the required curriculum.

    “I’m quite lucky to be here in the sense that MIT is known to train great people in engineering,  science, or business, but also people with unique passions,” says Lu. “People that love football drafting, people that love to understand how you throw a curveball — they use their knowledge in very unexpected ways, and that’s when innovation happens.”

    Lu’s research with the Sports Lab focuses on optimizing strategies for aesthetic sports, such as figure skating or snowboarding, which are judged very differently than swimming is. Instead of figuring out how to move faster, athletes are interested in structuring routines that net them the most points from a panel of judges. Modelling techniques can be helpful for figuring out how to put together routines to maximize an athlete’s abilities, and also to predict how a judge might assign points based on how or when a skill is demonstrated. Optimizing both athletic performance and judge psychology is a challenge, it’s this type of innovation that excites him. He hopes more sporting organizations will adopt similar data-driven strategies in the future.

    When asked where he’d like to end up after finishing his degree, “The sport industry is the natural choice,” Lu says. Though he is certain his career will lead to sports eventually, he is still open to exploring new paths. This summer he will be a trading intern at Citadel Securities to apply the concepts learned in his degree program courses. He’s also picked up sailing since coming to MIT, already reaching the highest amateur rating in under a year. Lu consistently strives for excellence, whether in himself or for those he works with.

    Since graduating from UVA, Lu has continued to work with swimmers, including national champions and Olympic medalists, as a technical performance consultant. He’s also branched out into another Olympic sport, triathlon. Lu describes it as a side gig, but he’s deeply invested in the athletes he works with, even taking trips to the Olympic Training Center to collect data and help them build strategies for improvement.

    “The most fun part is actually interacting with the athletes and engaging and understanding how they think,” says Lu. “It’s easier for me to do so than others, because if you’ve never swam before and you’ve never trained as an elite athlete before, it’s hard to understand what exactly you can and cannot do and how to communicate these things to a coach or an athlete.” More

  • in

    Bringing the social and ethical responsibilities of computing to the forefront

    There has been a remarkable surge in the use of algorithms and artificial intelligence to address a wide range of problems and challenges. While their adoption, particularly with the rise of AI, is reshaping nearly every industry sector, discipline, and area of research, such innovations often expose unexpected consequences that involve new norms, new expectations, and new rules and laws.

    To facilitate deeper understanding, the Social and Ethical Responsibilities of Computing (SERC), a cross-cutting initiative in the MIT Schwarzman College of Computing, recently brought together social scientists and humanists with computer scientists, engineers, and other computing faculty for an exploration of the ways in which the broad applicability of algorithms and AI has presented both opportunities and challenges in many aspects of society.

    “The very nature of our reality is changing. AI has the ability to do things that until recently were solely the realm of human intelligence — things that can challenge our understanding of what it means to be human,” remarked Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing, in his opening address at the inaugural SERC Symposium. “This poses philosophical, conceptual, and practical questions on a scale not experienced since the start of the Enlightenment. In the face of such profound change, we need new conceptual maps for navigating the change.”

    The symposium offered a glimpse into the vision and activities of SERC in both research and education. “We believe our responsibility with SERC is to educate and equip our students and enable our faculty to contribute to responsible technology development and deployment,” said Georgia Perakis, the William F. Pounds Professor of Management in the MIT Sloan School of Management, co-associate dean of SERC, and the lead organizer of the symposium. “We’re drawing from the many strengths and diversity of disciplines across MIT and beyond and bringing them together to gain multiple viewpoints.”

    Through a succession of panels and sessions, the symposium delved into a variety of topics related to the societal and ethical dimensions of computing. In addition, 37 undergraduate and graduate students from a range of majors, including urban studies and planning, political science, mathematics, biology, electrical engineering and computer science, and brain and cognitive sciences, participated in a poster session to exhibit their research in this space, covering such topics as quantum ethics, AI collusion in storage markets, computing waste, and empowering users on social platforms for better content credibility.

    Showcasing a diversity of work

    In three sessions devoted to themes of beneficent and fair computing, equitable and personalized health, and algorithms and humans, the SERC Symposium showcased work by 12 faculty members across these domains.

    One such project from a multidisciplinary team of archaeologists, architects, digital artists, and computational social scientists aimed to preserve endangered heritage sites in Afghanistan with digital twins. The project team produced highly detailed interrogable 3D models of the heritage sites, in addition to extended reality and virtual reality experiences, as learning resources for audiences that cannot access these sites.

    In a project for the United Network for Organ Sharing, researchers showed how they used applied analytics to optimize various facets of an organ allocation system in the United States that is currently undergoing a major overhaul in order to make it more efficient, equitable, and inclusive for different racial, age, and gender groups, among others.

    Another talk discussed an area that has not yet received adequate public attention: the broader implications for equity that biased sensor data holds for the next generation of models in computing and health care.

    A talk on bias in algorithms considered both human bias and algorithmic bias, and the potential for improving results by taking into account differences in the nature of the two kinds of bias.

    Other highlighted research included the interaction between online platforms and human psychology; a study on whether decision-makers make systemic prediction mistakes on the available information; and an illustration of how advanced analytics and computation can be leveraged to inform supply chain management, operations, and regulatory work in the food and pharmaceutical industries.

    Improving the algorithms of tomorrow

    “Algorithms are, without question, impacting every aspect of our lives,” said Asu Ozdaglar, deputy dean of academics for the MIT Schwarzman College of Computing and head of the Department of Electrical Engineering and Computer Science, in kicking off a panel she moderated on the implications of data and algorithms.

    “Whether it’s in the context of social media, online commerce, automated tasks, and now a much wider range of creative interactions with the advent of generative AI tools and large language models, there’s little doubt that much more is to come,” Ozdaglar said. “While the promise is evident to all of us, there’s a lot to be concerned as well. This is very much time for imaginative thinking and careful deliberation to improve the algorithms of tomorrow.”

    Turning to the panel, Ozdaglar asked experts from computing, social science, and data science for insights on how to understand what is to come and shape it to enrich outcomes for the majority of humanity.

    Sarah Williams, associate professor of technology and urban planning at MIT, emphasized the critical importance of comprehending the process of how datasets are assembled, as data are the foundation for all models. She also stressed the need for research to address the potential implication of biases in algorithms that often find their way in through their creators and the data used in their development. “It’s up to us to think about our own ethical solutions to these problems,” she said. “Just as it’s important to progress with the technology, we need to start the field of looking at these questions of what biases are in the algorithms? What biases are in the data, or in that data’s journey?”

    Shifting focus to generative models and whether the development and use of these technologies should be regulated, the panelists — which also included MIT’s Srini Devadas, professor of electrical engineering and computer science, John Horton, professor of information technology, and Simon Johnson, professor of entrepreneurship — all concurred that regulating open-source algorithms, which are publicly accessible, would be difficult given that regulators are still catching up and struggling to even set guardrails for technology that is now 20 years old.

    Returning to the question of how to effectively regulate the use of these technologies, Johnson proposed a progressive corporate tax system as a potential solution. He recommends basing companies’ tax payments on their profits, especially for large corporations whose massive earnings go largely untaxed due to offshore banking. By doing so, Johnson said that this approach can serve as a regulatory mechanism that discourages companies from trying to “own the entire world” by imposing disincentives.

    The role of ethics in computing education

    As computing continues to advance with no signs of slowing down, it is critical to educate students to be intentional in the social impact of the technologies they will be developing and deploying into the world. But can one actually be taught such things? If so, how?

    Caspar Hare, professor of philosophy at MIT and co-associate dean of SERC, posed this looming question to faculty on a panel he moderated on the role of ethics in computing education. All experienced in teaching ethics and thinking about the social implications of computing, each panelist shared their perspective and approach.

    A strong advocate for the importance of learning from history, Eden Medina, associate professor of science, technology, and society at MIT, said that “often the way we frame computing is that everything is new. One of the things that I do in my teaching is look at how people have confronted these issues in the past and try to draw from them as a way to think about possible ways forward.” Medina regularly uses case studies in her classes and referred to a paper written by Yale University science historian Joanna Radin on the Pima Indian Diabetes Dataset that raised ethical issues on the history of that particular collection of data that many don’t consider as an example of how decisions around technology and data can grow out of very specific contexts.

    Milo Phillips-Brown, associate professor of philosophy at Oxford University, talked about the Ethical Computing Protocol that he co-created while he was a SERC postdoc at MIT. The protocol, a four-step approach to building technology responsibly, is designed to train computer science students to think in a better and more accurate way about the social implications of technology by breaking the process down into more manageable steps. “The basic approach that we take very much draws on the fields of value-sensitive design, responsible research and innovation, participatory design as guiding insights, and then is also fundamentally interdisciplinary,” he said.

    Fields such as biomedicine and law have an ethics ecosystem that distributes the function of ethical reasoning in these areas. Oversight and regulation are provided to guide front-line stakeholders and decision-makers when issues arise, as are training programs and access to interdisciplinary expertise that they can draw from. “In this space, we have none of that,” said John Basl, associate professor of philosophy at Northeastern University. “For current generations of computer scientists and other decision-makers, we’re actually making them do the ethical reasoning on their own.” Basl commented further that teaching core ethical reasoning skills across the curriculum, not just in philosophy classes, is essential, and that the goal shouldn’t be for every computer scientist be a professional ethicist, but for them to know enough of the landscape to be able to ask the right questions and seek out the relevant expertise and resources that exists.

    After the final session, interdisciplinary groups of faculty, students, and researchers engaged in animated discussions related to the issues covered throughout the day during a reception that marked the conclusion of the symposium. More

  • in

    MIT PhD students honored for their work to solve critical issues in water and food

    In 2017, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) initiated the J-WAFS Fellowship Program for outstanding MIT PhD students working to solve humankind’s water-related challenges. Since then, J-WAFS has awarded 18 fellowships to students who have gone on to create innovations like a pump that can maximize energy efficiency even with changing flow rates, and a low-cost water filter made out of sapwood xylem that has seen real-world use in rural India. Last year, J-WAFS expanded eligibility to students with food-related research. The 2022 fellows included students working on micronutrient deficiency and plastic waste from traditional food packaging materials. 

    Today, J-WAFS has announced the award of the 2023-24 fellowships to Gokul Sampath and Jie Yun. A doctoral student in the Department of Urban Studies and planning, Sampath has been awarded the Rasikbhai L. Meswani Fellowship for Water Solutions, which is supported through a generous gift from Elina and Nikhil Meswani and family. Yun, who is in the Department of Civil and Environmental Engineering, received a J-WAFS Fellowship for Water and Food Solutions, which is funded by the J-WAFS Research Affiliate Program. Currently, Xylem, Inc. and GoAigua are J-WAFS’ Research Affiliate companies. A review committee comprised of MIT faculty and staff selected Sampath and Yun from a competitive field of outstanding graduate students working in water and food who were nominated by their faculty advisors. Sampath and Yun will receive one academic semester of funding, along with opportunities for networking and mentoring to advance their research.

    “Both Yun and Sampath have demonstrated excellence in their research,” says J-WAFS executive director Renee J. Robins. “They also stood out in their communication skills and their passion to work on issues of agricultural sustainability and resilience and access to safe water. We are so pleased to have them join our inspiring group of J-WAFS fellows,” she adds.

    Using behavioral health strategies to address the arsenic crisis in India and Bangladesh

    Gokul Sampath’s research centers on ways to improve access to safe drinking water in developing countries. A PhD candidate in the International Development Group in the Department of Urban Studies and Planning, his current work examines the issue of arsenic in drinking water sources in India and Bangladesh. In Eastern India, millions of shallow tube wells provide rural households a personal water source that is convenient, free, and mostly safe from cholera. Unfortunately, it is now known that one-in-four of these wells is contaminated with naturally occurring arsenic at levels dangerous to human health. As a result, approximately 40 million people across the region are at elevated risk of cancer, stroke, and heart disease from arsenic consumed through drinking water and cooked food. 

    Since the discovery of arsenic in wells in the late 1980s, governments and nongovernmental organizations have sought to address the problem in rural villages by providing safe community water sources. Yet despite access to safe alternatives, many households still consume water from their contaminated home wells. Sampath’s research seeks to understand the constraints and trade-offs that account for why many villagers don’t collect water from arsenic-safe government wells in the village, even when they know their own wells at home could be contaminated.

    Before coming to MIT, Sampath received a master’s degree in Middle East, South Asian, and African studies from Columbia University, as well as a bachelor’s degree in microbiology and history from the University of California at Davis. He has long worked on water management in India, beginning in 2015 as a Fulbright scholar studying households’ water source choices in arsenic-affected areas of the state of West Bengal. He also served as a senior research associate with the Abdul Latif Jameel Poverty Action Lab, where he conducted randomized evaluations of market incentives for groundwater conservation in Gujarat, India. Sampath’s advisor, Bishwapriya Sanyal, the Ford International Professor of Urban Development and Planning at MIT, says Sampath has shown “remarkable hard work and dedication.” In addition to his classes and research, Sampath taught the department’s undergraduate Introduction to International Development course, for which he received standout evaluations from students.

    This summer, Sampath will travel to India to conduct field work in four arsenic-affected villages in West Bengal to understand how social influence shapes villagers’ choices between arsenic-safe and unsafe water sources. Through longitudinal surveys, he hopes to connect data on the social ties between families in villages and the daily water source choices they make. Exclusionary practices in Indian village communities, especially the segregation of water sources on the basis of caste and religion, has long been suspected to be a barrier to equitable drinking water access in Indian villages. Yet despite this, planners seeking to expand safe water access in diverse Indian villages have rarely considered the way social divisions within communities might be working against their efforts. Sampath hopes to test whether the injunctive norms enabled by caste ties constrain villagers’ ability to choose the safest water source among those shared within the village. When he returns to MIT in the fall, he plans to dive into analyzing his survey data and start work on a publication.

    Understanding plant responses to stress to improve crop drought resistance and yield

    Plants, including crops, play a fundamental role in Earth’s ecosystems through their effects on climate, air quality, and water availability. At the same time, plants grown for agriculture put a burden on the environment as they require energy, irrigation, and chemical inputs. Understanding plant/environment interactions is becoming more and more important as intensifying drought is straining agricultural systems. Jie Yun, a PhD student in the Department of Civil and Environmental Engineering, is studying plant response to drought stress in the hopes of improving agricultural sustainability and yield under climate change.  Yun’s research focuses on genotype-by-environment interaction (GxE.) This relates to the observation that plant varieties respond to environmental changes differently. The effects of GxE in crop breeding can be exploited because differing environmental responses among varieties enables breeders to select for plants that demonstrate high stress-tolerant genotypes under particular growing conditions. Yun bases her studies on Brachypodium, a model grass species related to wheat, oat, barley, rye, and perennial forage grasses. By experimenting with this species, findings can be directly applied to cereal and forage crop improvement. For the first part of her thesis, Yun collaborated with Professor Caroline Uhler’s group in the Department of Electrical Engineering and Computer Science and the Institute for Data, Systems, and Society. Uhler’s computational tools helped Yun to evaluate gene regulatory networks and how they relate to plant resilience and environmental adaptation. This work will help identify the types of genes and pathways that drive differences in drought stress response among plant varieties.  David Des Marais, the Cecil and Ida Green Career Development Professor in the Department of Civil and Environmental Engineering, is Yun’s advisor. He notes, “throughout Jie’s time [at MIT] I have been struck by her intellectual curiosity, verging on fearlessness.” When she’s not mentoring undergraduate students in Des Marais’ lab, Yun is working on the second part of her project: how carbon allocation in plants and growth is affected by soil drying. One result of this work will be to understand which populations of plants harbor the necessary genetic diversity to adapt or acclimate to climate change. Another likely impact is identifying targets for the genetic improvement of crop species to increase crop yields with less water supply. Growing up in China, Yun witnessed environmental issues springing from the development of the steel industry, which caused contamination of rivers in her hometown. On one visit to her aunt’s house in rural China, she learned that water pollution was widespread after noticing wastewater was piped outside of the house into nearby farmland without being treated. These experiences led Yun to study water supply and sewage engineering for her undergraduate degree at Shenyang Jianzhu University. She then went on to complete a master’s program in civil and environmental engineering at Carnegie Mellon University. It was there that Yun discovered a passion for plant-environment interactions; during an independent study on perfluorooctanoic sulfonate, she realized the amazing ability of plants to adapt to environmental changes, toxins, and stresses. Her goal is to continue researching plant and environment interactions and to translate the latest scientific findings into applications that can improve food security. More

  • in

    Meet the 2022-23 Accenture Fellows

    Launched in October 2020, the MIT and Accenture Convergence Initiative for Industry and Technology underscores the ways in which industry and technology can collaborate to spur innovation. The five-year initiative aims to achieve its mission through research, education, and fellowships. To that end, Accenture has once again awarded five annual fellowships to MIT graduate students working on research in industry and technology convergence who are underrepresented, including by race, ethnicity, and gender.This year’s Accenture Fellows work across research areas including telemonitoring, human-computer interactions, operations research,  AI-mediated socialization, and chemical transformations. Their research covers a wide array of projects, including designing low-power processing hardware for telehealth applications; applying machine learning to streamline and improve business operations; improving mental health care through artificial intelligence; and using machine learning to understand the environmental and health consequences of complex chemical reactions.As part of the application process, student nominations were invited from each unit within the School of Engineering, as well as from the Institute’s four other schools and the MIT Schwarzman College of Computing. Five exceptional students were selected as fellows for the initiative’s third year.Drew Buzzell is a doctoral candidate in electrical engineering and computer science whose research concerns telemonitoring, a fast-growing sphere of telehealth in which information is collected through internet-of-things (IoT) connected devices and transmitted to the cloud. Currently, the high volume of information involved in telemonitoring — and the time and energy costs of processing it — make data analysis difficult. Buzzell’s work is focused on edge computing, a new computing architecture that seeks to address these challenges by managing data closer to the source, in a distributed network of IoT devices. Buzzell earned his BS in physics and engineering science and his MS in engineering science from the Pennsylvania State University.

    Mengying (Cathy) Fang is a master’s student in the MIT School of Architecture and Planning. Her research focuses on augmented reality and virtual reality platforms. Fang is developing novel sensors and machine components that combine computation, materials science, and engineering. Moving forward, she will explore topics including soft robotics techniques that could be integrated with clothes and wearable devices and haptic feedback in order to develop interactions with digital objects. Fang earned a BS in mechanical engineering and human-computer interaction from Carnegie Mellon University.

    Xiaoyue Gong is a doctoral candidate in operations research at the MIT Sloan School of Management. Her research aims to harness the power of machine learning and data science to reduce inefficiencies in the operation of businesses, organizations, and society. With the support of an Accenture Fellowship, Gong seeks to find solutions to operational problems by designing reinforcement learning methods and other machine learning techniques to embedded operational problems. Gong earned a BS in honors mathematics and interactive media arts from New York University.

    Ruby Liu is a doctoral candidate in medical engineering and medical physics. Their research addresses the growing pandemic of loneliness among older adults, which leads to poor health outcomes and presents particularly high risks for historically marginalized people, including members of the LGBTQ+ community and people of color. Liu is designing a network of interconnected AI agents that foster connections between user and agent, offering mental health care while strengthening and facilitating human-human connections. Liu received a BS in biomedical engineering from Johns Hopkins University.

    Joules Provenzano is a doctoral candidate in chemical engineering. Their work integrates machine learning and liquid chromatography-high resolution mass spectrometry (LC-HRMS) to improve our understanding of complex chemical reactions in the environment. As an Accenture Fellow, Provenzano will build upon recent advances in machine learning and LC-HRMS, including novel algorithms for processing real, experimental HR-MS data and new approaches in extracting structure-transformation rules and kinetics. Their research could speed the pace of discovery in the chemical sciences and benefits industries including oil and gas, pharmaceuticals, and agriculture. Provenzano earned a BS in chemical engineering and international and global studies from the Rochester Institute of Technology. More

  • in

    Making each vote count

    Graduate student Jacob Jaffe wants to improve the administration of American elections. To do that, he is posing “questions in political science that we haven’t been asking enough,” he says, “and solving them with methods we haven’t been using enough.”

    Considerable research has been devoted to understanding “who votes, and what makes people vote or not vote,” says Jaffe. He is training his attention on questions of a different nature: Does providing practical information to voters about how to cast their ballots change how they will vote? Is it possible to increase the accuracy of vote-counting, on a state-by-state and even precinct-by-precinct basis? How do voters experience polling places? These problems form the core of his dissertation.

    Taking advantage of the resources at the MIT Election Data and Science Lab, where he serves as a researcher, Jaffe conducts novel field experiments to gather highly detailed information on local, state, and federal elections, and analyzes this trove with advanced statistical techniques. Whether investigating the probability of miscounts in voting, or the possibility of changing a voter’s mode of voting, Jaffe intends to strengthen the scaffolding that supports representative government. “Elections are both theoretically and normatively important; they’re the basis of our belief in the moral rightness of the state to do the things the state does,” he says.

    Click this link

    For one of his keystone projects, Jaffe seized a unique opportunity to run a big field experiment. In summer 2020, at the height of the Covid-19 pandemic, he emailed 80,000 Floridians instructions on how to vote in an upcoming primary by mail. His email contained a link enabling recipients to fill out two simple questions to receive a ballot. “I wanted to learn if this was an effective method for getting people to vote by mail, and I proved it is, statistically,” he says. “This is important to know because if elections are held in times when we might need people to vote nonlocally or vote using one method over another — if they’re displaced by a hurricane or another emergency, for instance — I learned that we can effect a new vote mode practically and quickly.”

    One of Jaffe’s insights from this experiment is that “people do read their voting-related emails, but the content of the email has to be something they can act on proximately,” he says. “A message reminding them to vote two weeks from now is not so helpful.” The lower the burden on an individual to participate in voting, whether due to proximity to a polling site or instructions on how to receive and cast a ballot, the greater the likelihood of that person engaging in the election.

    “If we want people to vote by mail, we need to reduce the informational cost so it’s easier for voters to understand how the system works,” he says.

    Another significant research thrust for Jaffe involves scrutinizing accuracy in vote counting, using instances of recounts in presidential elections. Ensuring each vote counts, he says, “is one of the most fundamental questions in democracy,” he says.

    With access to 20 elections in 2020, Jaffe is comparing original vote totals for each candidate to the recounted, correct tally, on a precinct-level basis. “Using original combinatorial techniques, I can estimate the probability of miscounting ballots,” he says. The ultimate goal is to generate a granular picture of the efficacy of election administration across the country.

    “It varies a lot by state, and most states do a good job,” he says. States that take their time in counting perform better. “There’s a phenomenon where some towns race to get results in as quickly as possible, and this affects their accuracy.”

    In spite of the bright spots, Jaffe sees chronic underfunding of American elections. “We need to give local administrators the resources, the time and money to fund employees to do their jobs,” he says. The worse the situation is, “the more likely that elections will be called wrong, with no one knowing.” Jaffe believes that his analysis can offer states useful information for improving election administration. “Determining how good a place is historically at counting ballots can help determine the likelihood of needing costly recounts in future elections,” he says.

    The ballot box and beyond

    It didn’t take Jaffe long to decide on a life dedicated to studying politics. Part of a Boston-area family who, he says, “liked discussing what was going on in the world,” he had his own subscriptions to Time magazine at age 9, and to The Economist in middle school. During high school, he volunteered for then-Massachusetts Representative Barney Frank and Senator John Kerry, working on constituent services. At Rice University, he interned all four years with political scientist Robert M. Stein, an expert on voting and elections. With Stein’s help, Jaffe landed a position the summer before his senior year with the Department of Justice (DOJ), researching voting rights cases.

    “The experience was fascinating, and the work felt super important,” says Jaffe. His portfolio involved determining whether legal challenges to particular elections met the statistical standard for racial gerrymandering. “I had to answer hard quantitative questions about the relationship between race and voting in an area, and whether minority candidates were systematically prevented from winning,” he says.

    But while Jaffe cared a lot about this work, he didn’t feel adequately challenged. “As a 21-year-old at DOJ, I learned that I could address problems in the world using statistics,” he says. “But I felt I could have a greater impact addressing tougher questions outside of voting rights.”

    Jaffe was drawn to political science at MIT, and specifically to the research of Charles Stewart III, the Kenan Sahin Distinguished Professor of Political Science, director of the MIT Election Lab, and head of Jaffe’s thesis committee. It wasn’t just the opportunity to plumb the lab’s singular repository of voting data that attracted Jaffe, but its commitment to making every vote count. For Jaffe, this was a call to arms to investigate the many, and sometimes quotidian, obstacles, between citizens and ballot boxes.

    To this end, he has been analyzing, with the help of mathematical methods from queuing theory, why some elections involve wait lines of six hours and longer at polling sites. “We know that simpler ballots mean people move don’t get stuck in these lines, where they might potentially give up before voting,” he says. “Looking at the content of ballots and the interval between voter check-in and check-out, I learned that adding races, rather than candidates, to a ballot, means that people take more time completing ballots, leading to interminable lines.”

    A key takeaway from his ensemble of studies is that “while it’s relatively rare that elections are bad, we shouldn’t think that we’re good to go,” he says. “Instead, we need to be asking under what conditions do things get bad, and how can we make them better.” More

  • in

    New program to support translational research in AI, data science, and machine learning

    The MIT School of Engineering and Pillar VC today announced the MIT-Pillar AI Collective, a one-year pilot program funded by a gift from Pillar VC that will provide seed grants for projects in artificial intelligence, machine learning, and data science with the goal of supporting translational research. The program will support graduate students and postdocs through access to funding, mentorship, and customer discovery.

    Administered by the MIT Deshpande Center for Technological Innovation, the MIT-Pillar AI Collective will center on the market discovery process, advancing projects through market research, customer discovery, and prototyping. Graduate students and postdocs will aim to emerge from the program having built minimum viable products, with support from Pillar VC and experienced industry leaders.

    “We are grateful for this support from Pillar VC and to join forces to converge the commercialization of translational research in AI, data science, and machine learning, with an emphasis on identifying and cultivating prospective entrepreneurs,” says Anantha Chandrakasan, dean of the MIT School of Engineering and Vannevar Bush Professor of Electrical Engineering and Computer Science. “Pillar’s focus on mentorship for our graduate students and postdoctoral researchers, and centering the program within the Deshpande Center, will undoubtedly foster big ideas in AI and create an environment for prospective companies to launch and thrive.” 

    Founded by Jamie Goldstein ’89, Pillar VC is committed to growing companies and investing in personal and professional development, coaching, and community.

    “Many of the most promising companies of the future are living at MIT in the form of transformational research in the fields of data science, AI, and machine learning,” says Goldstein. “We’re honored by the chance to help unlock this potential and catalyze a new generation of founders by surrounding students and postdoctoral researchers with the resources and mentorship they need to move from the lab to industry.”

    The program will launch with the 2022-23 academic year. Grants will be open only to MIT faculty and students, with an emphasis on funding for graduate students in their final year, as well as postdocs. Applications must be submitted by MIT employees with principal investigator status. A selection committee composed of three MIT representatives will include Devavrat Shah, faculty director of the Deshpande Center, the Andrew (1956) and Erna Viterbi Professor in the Department of Electrical Engineering and Computer Science and the Institute for Data, Systems, and Society; the chair of the selection committee; and a representative from the MIT Schwarzman College of Computing. The committee will also include representation from Pillar VC. Funding will be provided for up to nine research teams.

    “The Deshpande Center will serve as the perfect home for the new collective, given its focus on moving innovative technologies from the lab to the marketplace in the form of breakthrough products and new companies,” adds Chandrakasan. 

    “The Deshpande Center has a 20-year history of guiding new technologies toward commercialization, where they can have a greater impact,” says Shah. “This new collective will help the center expand its own impact by helping more projects realize their market potential and providing more support to researchers in the fast-growing fields of AI, machine learning, and data science.” More

  • in

    Emma Gibson: Optimizing health care logistics in Africa

    Growing up in South Africa at the turn of the century, Emma Gibson saw the rise of the HIV/AIDS epidemic and its devastating impact on her home country, where many people lacked life-saving health care. At the time, Gibson was too young to understand what a sexually transmitted infection was, but she knew that HIV was infecting millions of South Africans and AIDS was taking hundreds of thousands of lives. “As a child, I was terrified by this monster that was HIV and felt so powerless to do anything about it,” she says.

    Now, as an adult, her childhood fear of the HIV epidemic has evolved into a desire to fight it. Gibson seeks to improve health care for HIV and other diseases in regions with limited resources, including South Africa. She wants to help health care facilities in these areas to use their resources more effectively so that patients can more easily obtain care.

    To help reach her goal, Gibson sought mathematics and logistics training through higher education in South Africa. She first earned her bachelor’s degree in mathematical sciences at the University of the Witwatersrand, and then her master’s degree in operations research at Stellenbosch University. There, she learned to tackle complex decision-making problems using math, statistics, and computer simulations.

    During her master’s, Gibson studied the operational challenges faced in rural South African health care facilities by working with staff at Zithulele Hospital in the Eastern Cape, one of the country’s poorest provinces. Her research focused on ways to reduce hours-long wait times for patients seeking same-day care. In the end, she developed a software tool to model patient congestion throughout the day and optimize staff schedules accordingly, enabling the hospital to care for its patients more efficiently.

    After completing her master’s, Gibson wanted to further her education outside of South Africa and left to pursue a PhD in operations research at MIT. Upon arrival, she branched out in her research and worked on a project to improve breast cancer treatment in U.S. health care, a very different environment from what she was used to.

    Two years later, Gibson had the opportunity to return to researching health care in resource-limited settings and began working with Jónas Jónasson, an associate professor at the MIT Sloan School of Management, on a new project to improve diagnostic services in sub-Saharan Africa. For the past four years, she has been working diligently on this project in collaboration with researchers at the Indian School of Business and Northwestern University. “My love language is time,” she says. “If I’m investing a lot of time in something, I really value it.”

    Scheduling sample transport

    Diagnostic testing is an essential tool that allows medical professionals to identify new diagnoses in patients and monitor patients’ conditions as they undergo treatment. For example, people living with HIV require regular blood tests to ensure that their prescribed treatments are working effectively and provide an early warning of potential treatment failures.

    For Gibson’s current project, she’s trying to improve diagnostic services in Malawi, a landlocked country in southeast Africa. “We have the tools” to diagnose and treat diseases like HIV, she says. “But in resource-limited settings, we often lack the money, the staff, and the infrastructure to reach every patient that needs them.”

    When diagnostic testing is needed, clinicians collect samples from patients and send the samples to be tested at a laboratory, which then returns the results to the facility where the patient is treated. To move these items between facilities and laboratories, Malawi has developed a national sample transportation network. The transportation system plays an important role in linking remote, rural facilities to laboratory services and ensuring that patients in these areas can access diagnostic testing through community clinics. Samples collected at these clinics are first transported to nearby district hubs, and then forwarded to laboratories located in urban areas. Since most facilities do not have computers or communications infrastructure, laboratories print copies of test results and send them back to facilities through the same transportation process.

    The sample transportation cycle is onerous, but it’s a practical solution to a difficult problem. “During the Covid pandemic, we saw how hard it was to scale up diagnostic infrastructure,” Gibson says. Diagnostic services in sub-Saharan Africa face “similar challenges, but in a much poorer setting.”

    In Malawi, sample transportation is managed by a  nongovernment organization called Riders 4 Health. The organization has around 80 couriers on motorcycles who transport samples and test results between facilities. “When we started working with [Riders], the couriers operated on fixed weekly schedules, visiting each site once or twice a week,” Gibson says. But that led to “a lot of unnecessary trips and delays.”

    To make sample transportation more efficient, Gibson developed a dynamic scheduling system that adapts to the current demand for diagnostic testing. The system consists of two main parts: an information sharing platform that aggregates sample transportation data, and an algorithm that uses the data to generate optimized routes and schedules for sample transport couriers.

    In 2019, Gibson ran a four-month-long pilot test for this system in three out of the 27 districts in Malawi. During the pilot study, six couriers transported over 20,000 samples and results across 51 health care facilities, and 150 health care workers participated in data sharing.

    The pilot was a success. Gibson’s dynamic scheduling system eliminated about half the unnecessary trips and reduced transportation delays by 25 percent — a delay that used to be four days was reduced to three. Now, Riders 4 Health is developing their own version of Gibson’s system to operate nationally in Malawi. Throughout this project, “we focused on making sure this was something that could grow with the organization,” she says. “It’s gratifying to see that actually happening.”

    Leveraging patient data

    Gibson is completing her MIT degree this September but will continue working to improve health care in Africa. After graduation, she will join the technology and analytics health care practice of an established company in South Africa. Her initial focus will be on public health care institutions, including Chris Hani Baragwanath Academic Hospital in Johannesburg, the third-largest hospital in the world.

    In this role, Gibson will work to fill in gaps in African patient data for medical operational research and develop ways to use this data more effectively to improve health care in resource-limited areas. For example, better data systems can help to monitor the prevalence and impact of different diseases, guiding where health care workers and researchers put their efforts to help the most people. “You can’t make good decisions if you don’t have all the information,” Gibson says.

    To best leverage patient data for improving health care, Gibson plans to reevaluate how data systems are structured and used in the hospital. For ideas on upgrading the current system, she’ll look to existing data systems in other countries to see what works and what doesn’t, while also drawing upon her past research experience in U.S. health care. Ultimately, she’ll tailor the new hospital data system to South African needs to accurately inform future directions in health care.

    Gibson’s new job — her “dream job” — will be based in the United Kingdom, but she anticipates spending a significant amount of time in Johannesburg. “I have so many opportunities in the wider world, but the ones that appeal to me are always back in the place I came from,” she says. More

  • in

    Mining social media data for social good

    For Erin Walk, who has loved school since she was a little girl, pursuing a graduate degree always seemed like a given. As a mechanical engineering major at Harvard University with a minor in government, she figured that going to graduate school in engineering would be the next logical step. However, during her senior year, a class on the “Technology of War” changed her trajectory, sparking her interest in technology and policy.

    “[Warfare] seems like a very dark reason for this interest to blossom … but I was so interested in how these technological developments including cyberwar had such a large impact on the entire course of world history,” Walk says. The class took a starkly different perspective from her engineering classes, which often focused on how a revolutionary technology was built. Instead, Walk was challenged to think about “the implications of what this [technology] could do.” 

    Now, Walk is studying the intersection between data science, policy, and technology as a graduate student in the Social and Engineering Systems program (SES), part of the Institute for Data, Systems, and Society (IDSS). Her research has demonstrated the value and bias inherent in social media data, with a focus on how to mine social media data to better understand the conflict in Syria. 

    Using data for social good

    With a newfound interest in policy developing just as college was drawing to a close, Walk says, “I realized I did not know what I wanted to do research on for five whole years, and the idea of getting a PhD started to feel very daunting.” Instead, she decided to work for a web security company in Washington, as a member of the policy team. “Being in school can be this fast process where you feel like you are being pushed through a tube and all of a sudden you come out the other end. Work gave me a lot more mental time to think about what I enjoyed and what was important to me,” she says.

    Walk served as a liaison between thinktanks and nonprofits in Washington that worked to provide services and encourage policies that enable equitable technology distribution. The role helped her identify what held her interest: corporate social responsibility projects that addressed access to technology, in this case, by donating free web security services to nonprofit organizations and to election websites. She became curious about how access to data and to the Internet can be beneficial for education, and how such access can be leveraged to establish connections to populations that are otherwise hard-to-reach, such as refugees, marginalized groups, or activist communities that rely on anonymity for safety.

    Walk knew she wanted to pursue this kind of tech activism work, but she also recognized that staying with a company driven by profits would not be the best avenue to fulfill her personal career aspirations. Graduate school seemed like the best option to both learn the data science skills she needed, and pursue full-time research focusing on technology and policy.

    Finding new ways to tap social media data

    With these goals in mind, Walk joined the SES graduate program in IDSS. “This program for me had the most balance,” she says. “I have a lot of leeway to explore whatever kind of research I want, provided it has an impact component and a data component.”

    During her first year, she intended to explore a variety of research advisors to find the right fit. Instead, during her first few months on MIT’s campus, she sat down for an introductory meeting with her now-research advisor, Fotini Christia, the Ford International Professor in the Social Sciences, and walked out with a project. Her new task: analyzing “how different social media sources are used differently by groups within the conflict, and how those different narratives present themselves online. So much social science research tends to use just Twitter, or just Facebook, to draw conclusions. It is important to understand how your data set might be skewed,” she says.

    Walk’s current research focuses on another novel way to tap social media. Scholars traditionally use geographic data to understand population movements, but her research has demonstrated that social media can also be a ripe data source. She is analyzing how social media discussions differ in places with and without refugees, with a particular focus on places where refugees have returned to their homelands, including Syria.

    “Now that the [Syrian] civil war has been going on for so long, there is a lot of discussion on how to bring refugees back in [to their homelands],” Walk says. Her research adds to this discussion by using social media sources to understand and predict the factors that encourage refugees to return, such as economic opportunities and decreases in local violence. Her goal is to harness some of the social media data to provide policymakers and nonprofits with information on how to address repatriation and related issues.

    Walk attributes much of her growth as a graduate student to the influence of collaborators, especially Professor Kiran Garimella at Rutgers’ Department of Library and Information Science. “So much of being a graduate student is feeling like you have a stupid question and figuring out who you can be vulnerable with in asking that stupid question,” she says. “I am very lucky to have a lot of those people in my life.”

    Encouraging the next generation

    Now, as a third-year student, Walk is the one whom others go to with their “stupid questions.” This desire to mentor and share her knowledge extends beyond the laboratory. “Something I discovered is that I really like talking to and advising people who are in a similar position to where I was. It is fulfilling to work with smart people close to my age who are just trying to figure out the answers to these meaty life issues that I have also struggled with,” she says.

    This realization led Walk to a position as a resident advisor at Harvard University’s Mather House, an undergraduate dormitory and community center. Walk became a faculty dean aide during her first year at MIT, and since then has served as a full-time Mather House resident tutor. “Every year I advise a new class of students, and I just become invested in their process. I get to talk to people about their lives, about their classes, about what is making them excited and about what is making them sad,” she says.

    After she graduates, Walk plans to explore issues that have a positive, tangible impact on policy outcomes and people, perhaps in an academic lab or in a nonprofit organization. Two such issues that particularly intrigue her are internet access and privacy for underserved populations. Regardless of the issues, she will continue to draw from both political science and data science. “One of my favorite things about being a part of interdisciplinary research is that [experts in] political science and computer science approach these issues so differently, and it is very grounding to have both of those perspectives. Political science thinks so carefully about measurement, population selection, and research design … [while] computer science has so many interesting methods that should be used in other disciplines,” she says.

    No matter what the future holds, Walk already has a sense of contentment. She admits that “my path was much less linear than I expected. I don’t think I even realized that a field like this existed.” Nevertheless, she says with a laugh, “I think that little-girl me would be very proud of present-day me.” More