More stories

  • in

    Three MIT students selected as inaugural MIT-Pillar AI Collective Fellows

    MIT-Pillar AI Collective has announced three inaugural fellows for the fall 2023 semester. With support from the program, the graduate students, who are in their final year of a master’s or PhD program, will conduct research in the areas of artificial intelligence, machine learning, and data science with the aim of commercializing their innovations.

    Launched by MIT’s School of Engineering and Pillar VC in 2022, the MIT-Pillar AI Collective supports faculty, postdocs, and students conducting research on AI, machine learning, and data science. Supported by a gift from Pillar VC and administered by the MIT Deshpande Center for Technological Innovation, the mission of the program is to advance research toward commercialization.

    The fall 2023 MIT-Pillar AI Collective Fellows are:

    Alexander Andonian SM ’21 is a PhD candidate in electrical engineering and computer science whose research interests lie in computer vision, deep learning, and artificial intelligence. More specifically, he is focused on building a generalist, multimodal AI scientist driven by generative vision-language model agents capable of proposing scientific hypotheses, running computational experiments, evaluating supporting evidence, and verifying conclusions in the same way as a human researcher or reviewer. Such an agent could be trained to optimally distill and communicate its findings for human consumption and comprehension. Andonian’s work holds the promise of creating a concrete foundation for rigorously building and holistically testing the next-generation autonomous AI agent for science. In addition to his research, Andonian is the CEO and co-founder of Reelize, a startup that offers a generative AI video tool that effortlessly turns long videos into short clips — and originated from his business coursework and was supported by MIT Sandbox. Andonian is also a founding AI researcher at Poly AI, an early-stage YC-backed startup building AI design tools. Andonian earned an SM from MIT and a BS in neuroscience, physics, and mathematics from Bates College.

    Daniel Magley is a PhD candidate in the Harvard-MIT Program in Health Sciences and Technology who is passionate about making a healthy, fully functioning mind and body a reality for all. His leading-edge research is focused on developing a swallowable wireless thermal imaging capsule that could be used in treating and monitoring inflammatory bowel diseases and their manifestations, such as Crohn’s disease. Providing increased sensitivity and eliminating the need for bowel preparation, the capsule has the potential to vastly improve treatment efficacy and overall patient experience in routine monitoring. The capsule has completed animal studies and is entering human studies at Mass General Brigham, where Magley leads a team of engineers in the hospital’s largest translational research lab, the Tearney Lab. Following the human pilot studies, the largest technological and regulatory risks will be cleared for translation. Magley will then begin focusing on a multi-site study to get the device into clinics, with the promise of benefiting patients across the country. Magley earned a BS in electrical engineering from Caltech.

    Madhumitha Ravichandra is a PhD candidate interested in advancing heat transfer and surface engineering techniques to enhance the safety and performance of nuclear energy systems and reduce their environmental impacts. Leveraging her deep knowledge of the integration of explainable AI with high-throughput autonomous experimentation, she seeks to transform the development of radiation-hardened (rad-hard) sensors, which could potentially withstand and function amidst radiation levels that would render conventional sensors useless. By integrating explainable AI with high-throughput autonomous experimentation, she aims to rapidly iterate designs, test under varied conditions, and ensure that the final product is both robust and transparent in its operations. Her work in this space could shift the paradigm in rad-hard sensor development, addressing a glaring void in the market and redefining standards, ensuring that nuclear and space applications are safer, more efficient, and at the cutting edge of technological progress. Ravichandran earned a BTech in mechanical engineering from SASTRA University, India. More

  • in

    2023-24 Takeda Fellows: Advancing research at the intersection of AI and health

    The School of Engineering has selected 13 new Takeda Fellows for the 2023-24 academic year. With support from Takeda, the graduate students will conduct pathbreaking research ranging from remote health monitoring for virtual clinical trials to ingestible devices for at-home, long-term diagnostics.

    Now in its fourth year, the MIT-Takeda Program, a collaboration between MIT’s School of Engineering and Takeda, fuels the development and application of artificial intelligence capabilities to benefit human health and drug development. Part of the Abdul Latif Jameel Clinic for Machine Learning in Health, the program coalesces disparate disciplines, merges theory and practical implementation, combines algorithm and hardware innovations, and creates multidimensional collaborations between academia and industry.

    The 2023-24 Takeda Fellows are:

    Adam Gierlach

    Adam Gierlach is a PhD candidate in the Department of Electrical Engineering and Computer Science. Gierlach’s work combines innovative biotechnology with machine learning to create ingestible devices for advanced diagnostics and delivery of therapeutics. In his previous work, Gierlach developed a non-invasive, ingestible device for long-term gastric recordings in free-moving patients. With the support of a Takeda Fellowship, he will build on this pathbreaking work by developing smart, energy-efficient, ingestible devices powered by application-specific integrated circuits for at-home, long-term diagnostics. These revolutionary devices — capable of identifying, characterizing, and even correcting gastrointestinal diseases — represent the leading edge of biotechnology. Gierlach’s innovative contributions will help to advance fundamental research on the enteric nervous system and help develop a better understanding of gut-brain axis dysfunctions in Parkinson’s disease, autism spectrum disorder, and other prevalent disorders and conditions.

    Vivek Gopalakrishnan

    Vivek Gopalakrishnan is a PhD candidate in the Harvard-MIT Program in Health Sciences and Technology. Gopalakrishnan’s goal is to develop biomedical machine-learning methods to improve the study and treatment of human disease. Specifically, he employs computational modeling to advance new approaches for minimally invasive, image-guided neurosurgery, offering a safe alternative to open brain and spinal procedures. With the support of a Takeda Fellowship, Gopalakrishnan will develop real-time computer vision algorithms that deliver high-quality, 3D intraoperative image guidance by extracting and fusing information from multimodal neuroimaging data. These algorithms could allow surgeons to reconstruct 3D neurovasculature from X-ray angiography, thereby enhancing the precision of device deployment and enabling more accurate localization of healthy versus pathologic anatomy.

    Hao He

    Hao He is a PhD candidate in the Department of Electrical Engineering and Computer Science. His research interests lie at the intersection of generative AI, machine learning, and their applications in medicine and human health, with a particular emphasis on passive, continuous, remote health monitoring to support virtual clinical trials and health-care management. More specifically, He aims to develop trustworthy AI models that promote equitable access and deliver fair performance independent of race, gender, and age. In his past work, He has developed monitoring systems applied in clinical studies of Parkinson’s disease, Alzheimer’s disease, and epilepsy. Supported by a Takeda Fellowship, He will develop a novel technology for the passive monitoring of sleep stages (using radio signaling) that seeks to address existing gaps in performance across different demographic groups. His project will tackle the problem of imbalance in available datasets and account for intrinsic differences across subpopulations, using generative AI and multi-modality/multi-domain learning, with the goal of learning robust features that are invariant to different subpopulations. He’s work holds great promise for delivering advanced, equitable health-care services to all people and could significantly impact health care and AI.

    Chengyi Long

    Chengyi Long is a PhD candidate in the Department of Civil and Environmental Engineering. Long’s interdisciplinary research integrates the methodology of physics, mathematics, and computer science to investigate questions in ecology. Specifically, Long is developing a series of potentially groundbreaking techniques to explain and predict the temporal dynamics of ecological systems, including human microbiota, which are essential subjects in health and medical research. His current work, supported by a Takeda Fellowship, is focused on developing a conceptual, mathematical, and practical framework to understand the interplay between external perturbations and internal community dynamics in microbial systems, which may serve as a key step toward finding bio solutions to health management. A broader perspective of his research is to develop AI-assisted platforms to anticipate the changing behavior of microbial systems, which may help to differentiate between healthy and unhealthy hosts and design probiotics for the prevention and mitigation of pathogen infections. By creating novel methods to address these issues, Long’s research has the potential to offer powerful contributions to medicine and global health.

    Omar Mohd

    Omar Mohd is a PhD candidate in the Department of Electrical Engineering and Computer Science. Mohd’s research is focused on developing new technologies for the spatial profiling of microRNAs, with potentially important applications in cancer research. Through innovative combinations of micro-technologies and AI-enabled image analysis to measure the spatial variations of microRNAs within tissue samples, Mohd hopes to gain new insights into drug resistance in cancer. This work, supported by a Takeda Fellowship, falls within the emerging field of spatial transcriptomics, which seeks to understand cancer and other diseases by examining the relative locations of cells and their contents within tissues. The ultimate goal of Mohd’s current project is to find multidimensional patterns in tissues that may have prognostic value for cancer patients. One valuable component of his work is an open-source AI program developed with collaborators at Beth Israel Deaconess Medical Center and Harvard Medical School to auto-detect cancer epithelial cells from other cell types in a tissue sample and to correlate their abundance with the spatial variations of microRNAs. Through his research, Mohd is making innovative contributions at the interface of microsystem technology, AI-based image analysis, and cancer treatment, which could significantly impact medicine and human health.

    Sanghyun Park

    Sanghyun Park is a PhD candidate in the Department of Mechanical Engineering. Park specializes in the integration of AI and biomedical engineering to address complex challenges in human health. Drawing on his expertise in polymer physics, drug delivery, and rheology, his research focuses on the pioneering field of in-situ forming implants (ISFIs) for drug delivery. Supported by a Takeda Fellowship, Park is currently developing an injectable formulation designed for long-term drug delivery. The primary goal of his research is to unravel the compaction mechanism of drug particles in ISFI formulations through comprehensive modeling and in-vitro characterization studies utilizing advanced AI tools. He aims to gain a thorough understanding of this unique compaction mechanism and apply it to drug microcrystals to achieve properties optimal for long-term drug delivery. Beyond these fundamental studies, Park’s research also focuses on translating this knowledge into practical applications in a clinical setting through animal studies specifically aimed at extending drug release duration and improving mechanical properties. The innovative use of AI in developing advanced drug delivery systems, coupled with Park’s valuable insights into the compaction mechanism, could contribute to improving long-term drug delivery. This work has the potential to pave the way for effective management of chronic diseases, benefiting patients, clinicians, and the pharmaceutical industry.

    Huaiyao Peng

    Huaiyao Peng is a PhD candidate in the Department of Biological Engineering. Peng’s research interests are focused on engineered tissue, microfabrication platforms, cancer metastasis, and the tumor microenvironment. Specifically, she is advancing novel AI techniques for the development of pre-cancer organoid models of high-grade serous ovarian cancer (HGSOC), an especially lethal and difficult-to-treat cancer, with the goal of gaining new insights into progression and effective treatments. Peng’s project, supported by a Takeda Fellowship, will be one of the first to use cells from serous tubal intraepithelial carcinoma lesions found in the fallopian tubes of many HGSOC patients. By examining the cellular and molecular changes that occur in response to treatment with small molecule inhibitors, she hopes to identify potential biomarkers and promising therapeutic targets for HGSOC, including personalized treatment options for HGSOC patients, ultimately improving their clinical outcomes. Peng’s work has the potential to bring about important advances in cancer treatment and spur innovative new applications of AI in health care. 

    Priyanka Raghavan

    Priyanka Raghavan is a PhD candidate in the Department of Chemical Engineering. Raghavan’s research interests lie at the frontier of predictive chemistry, integrating computational and experimental approaches to build powerful new predictive tools for societally important applications, including drug discovery. Specifically, Raghavan is developing novel models to predict small-molecule substrate reactivity and compatibility in regimes where little data is available (the most realistic regimes). A Takeda Fellowship will enable Raghavan to push the boundaries of her research, making innovative use of low-data and multi-task machine learning approaches, synthetic chemistry, and robotic laboratory automation, with the goal of creating an autonomous, closed-loop system for the discovery of high-yielding organic small molecules in the context of underexplored reactions. Raghavan’s work aims to identify new, versatile reactions to broaden a chemist’s synthetic toolbox with novel scaffolds and substrates that could form the basis of essential drugs. Her work has the potential for far-reaching impacts in early-stage, small-molecule discovery and could help make the lengthy drug-discovery process significantly faster and cheaper.

    Zhiye Song

    Zhiye “Zoey” Song is a PhD candidate in the Department of Electrical Engineering and Computer Science. Song’s research integrates cutting-edge approaches in machine learning (ML) and hardware optimization to create next-generation, wearable medical devices. Specifically, Song is developing novel approaches for the energy-efficient implementation of ML computation in low-power medical devices, including a wearable ultrasound “patch” that captures and processes images for real-time decision-making capabilities. Her recent work, conducted in collaboration with clinicians, has centered on bladder volume monitoring; other potential applications include blood pressure monitoring, muscle diagnosis, and neuromodulation. With the support of a Takeda Fellowship, Song will build on that promising work and pursue key improvements to existing wearable device technologies, including developing low-compute and low-memory ML algorithms and low-power chips to enable ML on smart wearable devices. The technologies emerging from Song’s research could offer exciting new capabilities in health care, enabling powerful and cost-effective point-of-care diagnostics and expanding individual access to autonomous and continuous medical monitoring.

    Peiqi Wang

    Peiqi Wang is a PhD candidate in the Department of Electrical Engineering and Computer Science. Wang’s research aims to develop machine learning methods for learning and interpretation from medical images and associated clinical data to support clinical decision-making. He is developing a multimodal representation learning approach that aligns knowledge captured in large amounts of medical image and text data to transfer this knowledge to new tasks and applications. Supported by a Takeda Fellowship, Wang will advance this promising line of work to build robust tools that interpret images, learn from sparse human feedback, and reason like doctors, with potentially major benefits to important stakeholders in health care.

    Oscar Wu

    Haoyang “Oscar” Wu is a PhD candidate in the Department of Chemical Engineering. Wu’s research integrates quantum chemistry and deep learning methods to accelerate the process of small-molecule screening in the development of new drugs. By identifying and automating reliable methods for finding transition state geometries and calculating barrier heights for new reactions, Wu’s work could make it possible to conduct the high-throughput ab initio calculations of reaction rates needed to screen the reactivity of large numbers of active pharmaceutical ingredients (APIs). A Takeda Fellowship will support his current project to: (1) develop open-source software for high-throughput quantum chemistry calculations, focusing on the reactivity of drug-like molecules, and (2) develop deep learning models that can quantitatively predict the oxidative stability of APIs. The tools and insights resulting from Wu’s research could help to transform and accelerate the drug-discovery process, offering significant benefits to the pharmaceutical and medical fields and to patients.

    Soojung Yang

    Soojung Yang is a PhD candidate in the Department of Materials Science and Engineering. Yang’s research applies cutting-edge methods in geometric deep learning and generative modeling, along with atomistic simulations, to better understand and model protein dynamics. Specifically, Yang is developing novel tools in generative AI to explore protein conformational landscapes that offer greater speed and detail than physics-based simulations at a substantially lower cost. With the support of a Takeda Fellowship, she will build upon her successful work on the reverse transformation of coarse-grained proteins to the all-atom resolution, aiming to build machine-learning models that bridge multiple size scales of protein conformation diversity (all-atom, residue-level, and domain-level). Yang’s research holds the potential to provide a powerful and widely applicable new tool for researchers who seek to understand the complex protein functions at work in human diseases and to design drugs to treat and cure those diseases.

    Yuzhe Yang

    Yuzhe Yang is a PhD candidate in the Department of Electrical Engineering and Computer Science. Yang’s research interests lie at the intersection of machine learning and health care. In his past and current work, Yang has developed and applied innovative machine-learning models that address key challenges in disease diagnosis and tracking. His many notable achievements include the creation of one of the first machine learning-based solutions using nocturnal breathing signals to detect Parkinson’s disease (PD), estimate disease severity, and track PD progression. With the support of a Takeda Fellowship, Yang will expand this promising work to develop an AI-based diagnosis model for Alzheimer’s disease (AD) using sleep-breathing data that is significantly more reliable, flexible, and economical than current diagnostic tools. This passive, in-home, contactless monitoring system — resembling a simple home Wi-Fi router — will also enable remote disease assessment and continuous progression tracking. Yang’s groundbreaking work has the potential to advance the diagnosis and treatment of prevalent diseases like PD and AD, and it offers exciting possibilities for addressing many health challenges with reliable, affordable machine-learning tools.  More

  • in

    Forging climate connections across the Institute

    Climate change is the ultimate cross-cutting issue: Not limited to any one discipline, it ranges across science, technology, policy, culture, human behavior, and well beyond. The response to it likewise requires an all-of-MIT effort.

    Now, to strengthen such an effort, a new grant program spearheaded by the Climate Nucleus, the faculty committee charged with the oversight and implementation of Fast Forward: MIT’s Climate Action Plan for the Decade, aims to build up MIT’s climate leadership capacity while also supporting innovative scholarship on diverse climate-related topics and forging new connections across the Institute.

    Called the Fast Forward Faculty Fund (F^4 for short), the program has named its first cohort of six faculty members after issuing its inaugural call for proposals in April 2023. The cohort will come together throughout the year for climate leadership development programming and networking. The program provides financial support for graduate students who will work with the faculty members on the projects — the students will also participate in leadership-building activities — as well as $50,000 in flexible, discretionary funding to be used to support related activities. 

    “Climate change is a crisis that truly touches every single person on the planet,” says Noelle Selin, co-chair of the nucleus and interim director of the Institute for Data, Systems, and Society. “It’s therefore essential that we build capacity for every member of the MIT community to make sense of the problem and help address it. Through the Fast Forward Faculty Fund, our aim is to have a cohort of climate ambassadors who can embed climate everywhere at the Institute.”

    F^4 supports both faculty who would like to begin doing climate-related work, as well as faculty members who are interested in deepening their work on climate. The program has the core goal of developing cohorts of F^4 faculty and graduate students who, in addition to conducting their own research, will become climate leaders at MIT, proactively looking for ways to forge new climate connections across schools, departments, and disciplines.

    One of the projects, “Climate Crisis and Real Estate: Science-based Mitigation and Adaptation Strategies,” led by Professor Siqi Zheng of the MIT Center for Real Estate in collaboration with colleagues from the MIT Sloan School of Management, focuses on the roughly 40 percent of carbon dioxide emissions that come from the buildings and real estate sector. Zheng notes that this sector has been slow to respond to climate change, but says that is starting to change, thanks in part to the rising awareness of climate risks and new local regulations aimed at reducing emissions from buildings.

    Using a data-driven approach, the project seeks to understand the efficient and equitable market incentives, technology solutions, and public policies that are most effective at transforming the real estate industry. Johnattan Ontiveros, a graduate student in the Technology and Policy Program, is working with Zheng on the project.

    “We were thrilled at the incredible response we received from the MIT faculty to our call for proposals, which speaks volumes about the depth and breadth of interest in climate at MIT,” says Anne White, nucleus co-chair and vice provost and associate vice president for research. “This program makes good on key commitments of the Fast Forward plan, supporting cutting-edge new work by faculty and graduate students while helping to deepen the bench of climate leaders at MIT.”

    During the 2023-24 academic year, the F^4 faculty and graduate student cohorts will come together to discuss their projects, explore opportunities for collaboration, participate in climate leadership development, and think proactively about how to deepen interdisciplinary connections among MIT community members interested in climate change.

    The six inaugural F^4 awardees are:

    Professor Tristan Brown, History Section: Humanistic Approaches to the Climate Crisis  

    With this project, Brown aims to create a new community of practice around narrative-centric approaches to environmental and climate issues. Part of a broader humanities initiative at MIT, it brings together a global working group of interdisciplinary scholars, including Serguei Saavedra (Department of Civil and Environmental Engineering) and Or Porath (Tel Aviv University; Religion), collectively focused on examining the historical and present links between sacred places and biodiversity for the purposes of helping governments and nongovernmental organizations formulate better sustainability goals. Boyd Ruamcharoen, a PhD student in the History, Anthropology, and Science, Technology, and Society (HASTS) program, will work with Brown on this project.

    Professor Kerri Cahoy, departments of Aeronautics and Astronautics and Earth, Atmospheric, and Planetary Sciences (AeroAstro): Onboard Autonomous AI-driven Satellite Sensor Fusion for Coastal Region Monitoring

    The motivation for this project is the need for much better data collection from satellites, where technology can be “20 years behind,” says Cahoy. As part of this project, Cahoy will pursue research in the area of autonomous artificial intelligence-enabled rapid sensor fusion (which combines data from different sensors, such as radar and cameras) onboard satellites to improve understanding of the impacts of climate change, specifically sea-level rise and hurricanes and flooding in coastal regions. Graduate students Madeline Anderson, a PhD student in electrical engineering and computer science (EECS), and Mary Dahl, a PhD student in AeroAstro, will work with Cahoy on this project.

    Professor Priya Donti, Department of Electrical Engineering and Computer Science: Robust Reinforcement Learning for High-Renewables Power Grids 

    With renewables like wind and solar making up a growing share of electricity generation on power grids, Donti’s project focuses on improving control methods for these distributed sources of electricity. The research will aim to create a realistic representation of the characteristics of power grid operations, and eventually inform scalable operational improvements in power systems. It will “give power systems operators faith that, OK, this conceptually is good, but it also actually works on this grid,” says Donti. PhD candidate Ana Rivera from EECS is the F^4 graduate student on the project.

    Professor Jason Jackson, Department of Urban Studies and Planning (DUSP): Political Economy of the Climate Crisis: Institutions, Power and Global Governance

    This project takes a political economy approach to the climate crisis, offering a distinct lens to examine, first, the political governance challenge of mobilizing climate action and designing new institutional mechanisms to address the global and intergenerational distributional aspects of climate change; second, the economic challenge of devising new institutional approaches to equitably finance climate action; and third, the cultural challenge — and opportunity — of empowering an adaptive socio-cultural ecology through traditional knowledge and local-level social networks to achieve environmental resilience. Graduate students Chen Chu and Mrinalini Penumaka, both PhD students in DUSP, are working with Jackson on the project.

    Professor Haruko Wainwright, departments of Nuclear Science and Engineering (NSE) and Civil and Environmental Engineering: Low-cost Environmental Monitoring Network Technologies in Rural Communities for Addressing Climate Justice 

    This project will establish a community-based climate and environmental monitoring network in addition to a data visualization and analysis infrastructure in rural marginalized communities to better understand and address climate justice issues. The project team plans to work with rural communities in Alaska to install low-cost air and water quality, weather, and soil sensors. Graduate students Kay Whiteaker, an MS candidate in NSE, and Amandeep Singh, and MS candidate in System Design and Management at Sloan, are working with Wainwright on the project, as is David McGee, professor in earth, atmospheric, and planetary sciences.

    Professor Siqi Zheng, MIT Center for Real Estate and DUSP: Climate Crisis and Real Estate: Science-based Mitigation and Adaptation Strategies 

    See the text above for the details on this project. More

  • in

    Improving accessibility of online graphics for blind users

    The beauty of a nice infographic published alongside a news or magazine story is that it makes numeric data more accessible to the average reader. But for blind and visually impaired users, such graphics often have the opposite effect.

    For visually impaired users — who frequently rely on screen-reading software that speaks words or numbers aloud as the user moves a cursor across the screen — a graphic may be nothing more than a few words of alt text, such as a chart’s title. For instance, a map of the United States displaying population rates by county might have alt text in the HTML that says simply, “A map of the United States with population rates by county.” The data has been buried in an image, making it entirely inaccessible.

    “Charts have these various visual features that, as a [sighted] reader, you can shift your attention around, look at high-level patterns, look at individual data points, and you can do this on the fly,” says Jonathan Zong, a 2022 MIT Morningside Academy for Design (MAD) Fellow and PhD student in computer science, who points out that even when a graphic includes alt text that interprets the data, the visually impaired user must accept the findings as presented.

    “If you’re [blind and] using a screen reader, the text description imposes a linear predefined reading order. So, you’re beholden to the decisions that the person who wrote the text made about what information was important to include.”

    While some graphics do include data tables that a screen reader can read, it requires the user to remember all the data from each row and column as they move on to the next one. According to the National Federation of the Blind, Zong says, there are 7 million people living in the United States with visual disabilities, and nearly 97 percent of top-level pages on the internet are not accessible to screen readers. The problem, he points out, is an especially difficult one for blind researchers to get around. Some researchers with visual impairments rely on a sighted collaborator to read and help interpret graphics in peer-reviewed research.

    Working with the Visualization Group at the Computer Science and Artificial Intelligence Lab (CSAIL) on a project led by Associate Professor Arvind Satyanarayan that includes Daniel Hajas, a blind researcher and innovation manager at the Global Disability Innovation Hub in England, Zong and others have written an open-source Javascript software program named Olli that solves this problem when it’s included on a website. Olli is able to go from big-picture analysis of a chart to the finest grain of detail to give the user the ability to select the degree of granularity that interests them.

    “We want to design richer screen-reader experiences for visualization with a hierarchical structure, multiple ways to navigate, and descriptions at varying levels of granularity to provide self-guided, open-ended exploration for the user.”

    Next steps with Olli are incorporating multi-sensory software to integrate text and visuals with sound, such as having a musical note that moves up or down the harmonic scale to indicate the direction of data on a linear graph, and possibly even developing tactile interpretations of data. Like most of the MAD Fellows, Zong integrates his science and engineering skills with design and art to create solutions to real-world problems affecting individuals. He’s been recognized for his work in both the visual arts and computer science. He holds undergraduate degrees in computer science and visual arts with a focus on graphic design from Princeton University, where his research was on the ethics of data collection.

    “The throughline is the idea that design can help us make progress on really tough social and ethical questions,” Zong says, calling software for accessible data visualization an “intellectually rich area for design.” “We’re thinking about ways to translate charts and graphs into text descriptions that can get read aloud as speech, or thinking about other kinds of audio mappings to sonify data, and we’re even exploring some tactile methods to understand data,” he says.

    “I get really excited about design when it’s a way to both create things that are useful to people in everyday life and also make progress on larger conversations about technology and society. I think working in accessibility is a great way to do that.”

    Another problem at the intersection of technology and society is the ethics of taking user data from social media for large-scale studies without the users’ awareness. While working as a summer graduate research fellow at Cornell’s Citizens and Technology Lab, Zong helped create an open-source software called Bartleby that can be used in large anonymous data research studies. After researchers collect data, but before analysis, Bartleby would automatically send an email message to every user whose data was included, alert them to that fact and offer them the choice to review the resulting data table and opt out of the study. Bartleby was honored in the student category of Fast Company’s Innovation by Design Awards for 2022. In November the same year, Forbes magazine named Jonathan Zong in its Forbes 30 Under 30 in Science 2023 list for his work in data visualization accessibility.

    The underlying theme to all Zong’s work is the exploration of autonomy and agency, even in his artwork, which is heavily inclusive of text and semiotic play. In “Public Display,” he created a handmade digital display font by erasing parts of celebrity faces that were taken from a facial recognition dataset. The piece was exhibited in 2020 in MIT’s Wiesner Gallery, and received the third-place prize in the MIT Schnitzer Prize in the Visual Arts that year. The work deals not only with the neurological aspects of distinguishing faces from typefaces, but also with the implications for erasing individuals’ identities through the practice of using facial recognition programs that often target individuals in communities of color in unfair ways. Another of his works, “Biometric Sans,” a typography system that stretches letters based on a person’s typing speed, will be included in a show at the Harvard Science Center sometime next fall.

    “MAD, particularly the large events MAD jointly hosted, played a really important function in showing the rest of MIT that this is the kind of work we value. This is what design can look like and is capable of doing. I think it all contributes to that culture shift where this kind of interdisciplinary work can be valued, recognized, and serve the public.

    “There are shared ideas around embodiment and representation that tie these different pursuits together for me,” Zong says. “In the ethics work, and the art on surveillance, I’m thinking about whether data collectors are representing people the way they want to be seen through data. And similarly, the accessibility work is about whether we can make systems that are flexible to the way people want to use them.” More

  • in

    On the hunt for sustainable materials

    By the time she started high school, Avni Singhal had attended six different schools in a variety of settings, from a traditional public school to a self-paced program. The transitions opened her eyes to how widely educational environments can vary, and made her think about that impact on students.

    “Experiencing so many different types of educational systems exposed me to different ways of looking at things and how that shapes people’s worldviews,” says Singhal.

    Now a fourth-year PhD student in the Department of Materials Science and Engineering, Singhal is still thinking about increasing opportunities for her fellow students, while also pursuing her research. She devotes herself to both developing sustainable materials and improving the graduate experience in her department.

    She recently completed her two-year term as a student representative on the department’s graduate studies committee. In this role, she helped revamp the communication around the qualifying exams and introducing student input to the faculty search process.

    “It’s given me a lot of insight into how our department works,” says Singhal. “It’s a chance to get to know faculty, bring up issues that students experience, and work on changing things that we think could be improved.”

    At the same time, Singhal uses atomistic simulations to model material properties, with an eye toward sustainability. She is a part of the Learning Matter Lab, a group that merges data science tools with engineering and physics-based simulation to better design and understand materials. As part of a computational group, Singhal has worked on a range of projects in collaboration with other labs that are looking to combine computing with other disciplines. Some of this work is sponsored by the MIT Climate and Sustainability Consortium, which facilitates connections across MIT labs and industry.

    Joining the Learning Matter Lab was a step out of Singhal’s comfort zone. She arrived at MIT from the University of California at Berkeley with a joint degree in materials science and bioengineering, as well as a degree in electrical engineering and computer science.

    “I was generally interested in doing work on environment-related applications,” says Singhal. “I was pretty hesitant at first to switch entirely to computation because it’s a very different type of lifestyle of research than what I was doing before.”

    Singhal has taken the challenge in stride, contributing to projects including improving carbon capture molecules and developing new deconstructable, degradable plastics. Not only does Singhal have to understand the technical details of her own work, she also needs to understand the big picture and how to best wield the expertise of her collaborators.

    “When I came in, I was very wide-eyed, thinking computation can do everything because I had never done it before,” says Singhal. “It’s that curve where you know a little bit about something, and you think it can do everything. And then as you learn more, you learn where it can and can’t help us, where it can be valuable, and how to figure out in what part of a project it’s useful.”

    Singhal applies a similarly critical lens when thinking about graduate school as a whole. She notes that access to information and resources is often the main factor determining who enters selective educational programs, and that such access becomes increasingly limited at the graduate level.

    “I realized just how much applying is a function of knowing how to do it,” says Singhal, who co-organized and volunteers with the DMSE Application Assistance Program. The program matches prospective applicants with current students to give feedback on their application materials and provide insight into what it’s like attending MIT. Some of the first students Singhal mentored through the program are now also participants as well.

    “The further you get in your educational career, the more you realize how much assistance you got along the way to get where you are,” says Singhal. “That happens at every stage.”

    Looking toward the future, Singhal wants to continue to pursue research with a sustainability impact. She also wants to continue mentoring in some capacity but isn’t in a rush to figure out exactly what that will look like.

    “Grad school doesn’t mean I have to do one thing. I can stay open to all the possibilities of what comes next.”  More

  • in

    Meet the 2023-24 Accenture Fellows

    The MIT and Accenture Convergence Initiative for Industry and Technology has selected five new research fellows for 2023-24. Now in its third year, the initiative underscores the ways in which industry and research can collaborate to spur technological innovation.

    Through its partnership with the School of Engineering, Accenture provides five annual fellowships awarded to graduate students with the aim of generating powerful new insights on the convergence of business and technology with the potential to transform society. The 2023-24 fellows will conduct research in areas including artificial intelligence, sustainability, and robotics.

    The 2023-24 Accenture Fellows are:

    Yiyue Luo

    Yiyue Luo is a PhD candidate who is developing innovative integrations of tactile sensing and haptics, interactive sensing and AI, digital fabrication, and smart wearables. Her work takes advantage of recent advances in digital manufacturing and AI, and the convergence in advanced sensing and actuation mechanisms, scalable digital manufacturing, and emerging computational techniques, with the goal of creating novel sensing and actuation devices that revolutionize interactions between people and their environments. In past projects, Luo has developed tactile sensing apparel including socks, gloves, and vests, as well as a workflow for computationally designing and digitally fabricating soft textiles-based pneumatic actuators. With the support of an Accenture Fellowship, she will advance her work of combining sensing and actuating devices and explore the development of haptic devices that simulate tactile cues captured by tactile sensors. Her ultimate aim is to build a scalable, textile-based, closed-loop human-machine interface. Luo’s research holds exciting potential to advance ground-breaking applications for smart textiles, health care, artificial and virtual reality, human-machine interactions, and robotics.

    Zanele Munyikwa is a PhD candidate whose research explores foundation models, a class of models that forms the basis of transformative general-purpose technologies (GPTs) such as GPT4. An Accenture Fellowship will enable Munyikwa to conduct research aimed at illuminating the current and potential impact of foundation models (including large language models) on work and tasks common to “high-skilled” knowledge workers in industries such as marketing, legal services, and medicine, in which foundation models are expected to have significant economic and social impacts. A primary goal of her project is to observe the impact of AI augmentation on tasks like copywriting and long-form writing. A second aim is to explore two primary ways that foundation models are driving the convergence of creative and technological industries, namely: reducing the cost of content generation and enabling the development of tools and platforms for education and training. Munyikwa’s work has important implications for the use of foundation models in many fields, from health care and education to legal services, business, and technology.

    Michelle Vaccaro is a PhD candidate in social engineering systems whose research explores human-AI collaboration with the goals of developing a deeper understanding of AI-based technologies (including ChatGPT and DALL-E), evaluating their performance and evolution, and steering their development toward societally beneficial applications, like climate change mitigation. An Accenture Fellowship will support Vaccaro’s current work toward two key objectives: identifying synergies between humans and AI-based software to help design human-AI systems that address persistent problems better than existing approaches; and investigating applications of human-AI collaboration for forecasting technological change, specifically for renewable energy technologies. By integrating the historically distinct domains of AI, systems engineering, and cognitive science with a wide range of industries, technical fields, and social applications, Vaccaro’s work has the potential to advance individual and collective productivity and creativity in all these areas.

    Chonghuan Wang is a PhD candidate in computational science and engineering whose research employs statistical learning, econometrics theory, and experimental design to create efficient, reliable, and sustainable field experiments in various domains. In his current work, Wang is applying statistical learning techniques such as online learning and bandit theory to test the effectiveness of new treatments, vaccinations, and health care interventions. With the support of an Accenture Fellowship, he will design experiments with the specific aim of understanding the trade-off between the loss of a patient’s welfare and the accuracy of estimating the treatment effect. The results of this research could help to save lives and contain disease outbreaks during pandemics like Covid-19. The benefits of enhanced experiment design and the collection of high-quality data extend well beyond health care; for example, these tools could help businesses optimize user engagement, test pricing impacts, and increase the usage of platforms and services. Wang’s research holds exciting potential to harness statistical learning, econometrics theory, and experimental design in support of strong businesses and the greater social good.

    Aaron Michael West Jr. is a PhD candidate whose research seeks to enhance our knowledge of human motor control and robotics. His work aims to advance rehabilitation technologies and prosthetic devices, as well as improve robot dexterity. His previous work has yielded valuable insights into the human ability to extract information solely from visual displays. Specifically, he demonstrated humans’ ability to estimate stiffness based solely on the visual observation of motion. These insights could advance the development of software applications with the same capability (e.g., using machine learning methods applied to video data) and may enable roboticists to develop enhanced motion control such that a robot’s intention is perceivable by humans. An Accenture Fellowship will enable West to continue this work, as well as new investigations into the functionality of the human hand to aid in the design of a prosthetic hand that better replicates human dexterity. By advancing understandings of human bio- and neuro-mechanics, West’s work has the potential to support major advances in robotics and rehabilitation technologies, with profound impacts on human health and well-being. More

  • in

    M’Care and MIT students join forces to improve child health in Nigeria

    Through a collaboration between M’Care, a 2021 Health Security and Pandemics Solver team, and students from MIT, the landscape of child health care in Nigeria could undergo a transformative change, wherein the power of data is harnessed to improve child health outcomes in economically disadvantaged communities. 

    M’Care is a mobile application of Promane and Promade Limited, developed by Opeoluwa Ashimi, which gives community health workers in Nigeria real-time diagnostic and treatment support. The application also creates a dashboard that is available to government health officials to help identify disease trends and deploy timely interventions. As part of its work, M’Care is working to mitigate malnutrition by providing micronutrient powder, vitamin A, and zinc to children below the age of 5. To help deepen its impact, Ashimi decided to work with students in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) course 6.S897 (Machine Learning for Healthcare) — instructed by professors Peter Szolovits and Manolis Kellis — to leverage data in order to improve nutrient delivery to children across Nigeria. The collaboration also enabled students to see real-world applications for data analysis in the health care space.

    A meeting of minds: M’Care, MIT, and national health authorities

    “Our primary goal for collaborating with the ML for Health team was to spot the missing link in the continuum of care. With over 1 million cumulative consultations that qualify for a continuum of care evaluation, it was important to spot why patients could be lost to followup, prevent this, and ensure completion of care to successfully address the health needs of our patients,” says Ashimi, founder and CEO of M’Care.

    In May 2023, Ashimi attended a meeting that brought together key national stakeholders, including the representatives of the National Ministry of Health in Nigeria. This gathering served as a platform to discuss the profound impact of M’Care’s and ML for Health team’s collaboration — bolstered by data analysis provided on dosage regimens and a child’s age to enhance continuum of care with its attendant impact on children’s health, particularly in relation to brain development with regards to the use of essential micronutrients. The data analyzed by the students using ML methods that were shared during the meeting provided strong supporting evidence to individualize dosage regimens for children based on their age in months for the ANRIN project — a national nutrition project supported by the World Bank — as well as policy decisions to extend months of coverage for children, redefining health care practices in Nigeria.

    MIT students drive change by harnessing the power of data

    At the heart of this collaboration lies the contribution of MIT students. Armed with their dedication and skill in data analysis and machine learning, they played a pivotal role in helping M’Care analyze their data and prepare for their meeting with the Ministry of Health. Their most significant findings included ways to identify patients at risk of not completing their full course of micronutrient powder and/or vitamin A, and identifying gaps in M’Care’s data, such as postdated delivery dates and community demographics. These findings are already helping M’Care better plan its resources and adjust the scope of its program to ensure more children complete the intervention.

    Darcy Kim, an undergraduate at Wellesley College studying math and computer science, who is cross-registered for the MIT machine learning course, expresses enthusiasm about the practical applications found within the project: “To me, data and math is storytelling, and the story is why I love studying it. … I learned that data exploration involves asking questions about how the data is collected, and that surprising patterns that arise often have a qualitative explanation. Impactful research requires radical collaboration with the people the research intends to help. Otherwise, these qualitative explanations get lost in the numbers.”

    Joyce Luo, a first-year operations research PhD student at the Operations Research Center at MIT, shares similar thoughts about the project: “I learned the importance of understanding the context behind data to figure out what kind of analysis might be most impactful. This involves being in frequent contact with the company or organization who provides the data to learn as much as you can about how the data was collected and the people the analysis could help. Stepping back and looking at the bigger picture, rather than just focusing on accuracy or metrics, is extremely important.”

    Insights to implementation: A new era for micronutrient dosing

    As a direct result of M’Care’s collaboration with MIT, policymakers revamped the dosing scheme for essential micronutrient administration for children in Nigeria to prevent malnutrition. M’Care and MIT’s data analysis unearthed critical insights into the limited frequency of medical visits caused by late-age enrollment. 

    “One big takeaway for me was that the data analysis portion of the project — doing a deep dive into the data; understanding, analyzing, visualizing, and summarizing the data — can be just as important as building the machine learning models. M’Care shared our data analysis with the National Ministry of Health, and the insights from it drove them to change their dosing scheme and schedule for delivering micronutrient powder to young children. This really showed us the value of understanding and knowing your data before modeling,” shares Angela Lin, a second-year PhD student at the Operations Research Center.

    Armed with this knowledge, policymakers are eager to develop an optimized dosing scheme that caters to the unique needs of children in disadvantaged communities, ensuring maximum impact on their brain development and overall well-being.

    Siddharth Srivastava, M’Care’s corporate technology liaison, shares his gratitude for the MIT student’s input. “Collaborating with enthusiastic and driven students was both empowering and inspiring. Each of them brought unique perspectives and technical skills to the table. Their passion for applying machine learning to health care was evident in their unwavering dedication and proactive approach to problem-solving.”

    Forging a path to impact

    The collaboration between M’Care and MIT exemplifies the remarkable achievements that arise when academia, innovative problem-solvers, and policy authorities unite. By merging academic rigor with real-world expertise, this partnership has the potential to revolutionize child health care not only in Nigeria but also in similar contexts worldwide.

    “I believe applying innovative methods of machine learning, data gathering, instrumentation, and planning to real problems in the developing world can be highly effective for those countries and highly motivating for our students. I was happy to have such a project in our class portfolio this year and look forward to future opportunities,” says Peter Szolovits, professor of computer science and engineering at MIT.

    By harnessing the power of data, innovation, and collective expertise, this collaboration between M’Care and MIT has the potential to improve equitable child health care in Nigeria. “It has been so fulfilling to see how our team’s work has been able to create even the smallest positive impact in such a short period of time, and it has been amazing to work with a company like Promane and Promade Limited that is so knowledgeable and caring for the communities that they serve,” shares Elizabeth Whittier, a second-year PhD electrical engineering student at MIT. More

  • in

    Summer research offers a springboard to advanced studies

    Doctoral studies at MIT aren’t a calling for everyone, but they can be for anyone who has had opportunities to discover that science and technology research is their passion and to build the experience and skills to succeed. For Taylor Baum, Josefina Correa Menéndez, and Karla Alejandra Montejo, three graduate students in just one lab of The Picower Institute for Learning and Memory, a pivotal opportunity came via the MIT Summer Research Program in Biology and Neuroscience (MSRP-Bio). When a student finds MSRP-Bio, it helps them find their future in research. 

    In the program, undergraduate STEM majors from outside MIT spend the summer doing full-time research in the departments of Biology, Brain and Cognitive Sciences (BCS), or the Center for Brains, Minds and Machines (CBMM). They gain lab skills, mentoring, preparation for graduate school, and connections that might last a lifetime. Over the last two decades, a total of 215 students from underrepresented minority groups, who are from economically disadvantaged backgrounds, first-generation or nontraditional college students, or students with disabilities have participated in research in BCS or CBMM labs.  

    Like Baum, Correa Menéndez, and Montejo, the vast majority go on to pursue graduate studies, says Diversity and Outreach Coordinator Mandana Sassanfar, who runs the program. For instance, among 91 students who have worked in Picower Institute labs, 81 have completed their undergraduate studies. Of those, 46 enrolled in PhD programs at MIT or other schools such as Cornell, Yale, Stanford, and Princeton universities, and the University of California System. Another 12 have gone to medical school, another seven are in MD/PhD programs, and three have earned master’s degrees. The rest are studying as post-baccalaureates or went straight into the workforce after earning their bachelor’s degree. 

    After participating in the program, Baum, Correa Menéndez, and Montejo each became graduate students in the research group of Emery N. Brown, the Edward Hood Taplin Professor of Computational Neuroscience and Medical Engineering in The Picower Institute and the Institute for Medical Engineering and Science. The lab combines statistical, computational, and experimental neuroscience methods to study how general anesthesia affects the central nervous system to ultimately improve patient care and advance understanding of the brain. Brown says the students have each been doing “off-the-scale” work, in keeping with the excellence he’s seen from MSRP BIO students over the years. For example, on Aug. 10 Baum and Correa Menéndez were honored with MathWorks Fellowships.

    “I think MSRP is fantastic. Mandana does this amazing job of getting students who are quite talented to come to MIT to realize that they can move their game to the next level. They have the capacity to do it. They just need the opportunities,” Brown says. “These students live up to the expectations that you have of them. And now as graduate students, they’re taking on hard problems and they’re solving them.” 

    Paths to PhD studies 

    Pursuing a PhD is hardly a given. Many young students have never considered graduate school or specific fields of study like neuroscience or electrical engineering. But Sassanfar engages students across the country to introduce them to the opportunity MSRP-Bio provides to gain exposure, experience, and mentoring in advanced fields. Every fall, after the program’s students have returned to their undergraduate institutions, she visits schools in places as far flung as Florida, Maryland, Puerto Rico, and Texas and goes to conferences for diverse science communities such as ABRCMS and SACNAS to spread the word. 

    Taylor Baum

    Photo courtesy of Taylor Baum.

    Previous item
    Next item

    When Baum first connected with the program in 2017, she was finding her way at Penn State University. She had been majoring in biology and music composition but had just switched the latter to engineering following a conversation over coffee exposing her to brain-computer interfacing technology, in which detecting brain signals of people with full-body paralysis could improve their quality of life by enabling control of computers or wheelchairs. Baum became enthusiastic about the potential to build similar systems, but as a new engineering student, she struggled to find summer internships and research opportunities. 

    “I got rejected from every single progam except the MIT Center for Brains, Minds and Machines MSRP,” she recalls with a chuckle. 

    Baum thrived in MSRP-Bio, working in Brown’s lab for three successive summers. At each stage, she said, she gained more research skills, experience, and independence. When she graduated, she was sure she wanted to go to graduate school and applied to four of her dream schools. She accepted MIT’s offer to join the Department of Electrical Engineering and Computer Science, where she is co-advised by faculty members there and by Brown. She is now working to develop a system grounded in cardiovascular physiology that can improve blood pressure management. A tool for practicing anesthesiologists, the system automates the dosing of drugs to maintain a patient’s blood pressure at safe levels in the operating room or intensive care unit. 

    More than that, Baum not only is leading an organization advancing STEM education in Puerto Rico, but also is helping to mentor a current MSRP-Bio student in the Brown lab. 

    “MSRP definitely bonds everyone who has participated in it,” Baum says. “If I see anyone who I know participated in MSRP, we could have an immediate conversation. I know that most of us, if we needed help, we’d feel comfortable asking for help from someone from MSRP. With that shared experience, we have a sense of camaraderie, and community.” 

    In fact, a few years ago when a former MSRP-Bio student named Karla Montejo was applying to MIT, Baum provided essential advice and feedback about the application process, Montejo says. Now, as a graduate student, Montejo has become a mentor for the program in her own right, Sassanfar notes. For instance, Montejo serves on program alumni panels that advise new MSRP-Bio students. 

    Karla Alejandra Montejo

    Photo courtesy of Karla Alejandra Montejo.

    Previous item
    Next item

    Montejo’s family immigrated to Miami from Cuba when she was a child. The magnet high school she attended was so new that students were encouraged to help establish the school’s programs. She forged a path into research. 

    “I didn’t even know what research was,” she says. “I wanted to be a doctor, and I thought maybe it would help me on my resume. I thought it would be kind of like shadowing, but no, it was really different. So I got really captured by research when I was in high school.” 

    Despite continuing to pursue research in college at Florida International University, Montejo didn’t get into graduate school on her first attempt because she hadn’t yet learned how to focus her application. But Sassanfar had visited FIU to recruit students and through that relationship Montejo had already gone through MIT’s related Quantitative Methods Workshop (QMW). So Montejo enrolled in MSRP-Bio, working in the CBMM-affiliated lab of Gabriel Kreiman at Boston Children’s Hospital. 

    “I feel like Mandana really helped me out, gave me a break, and the MSRP experience pretty much solidified that I really wanted to come to MIT,” Montejo says. 

    In the QMW, Montejo learned she really liked computational neuroscience, and in Kreiman’s lab she got to try her hand at computational modeling of the cognition involved in making perceptual sense of complex scenes. Montejo realized she wanted to work on more biologically based neuroscience problems. When the summer ended, because she was off the normal graduate school cycle for now, she found a two-year post-baccalaurate program at Mayo Clinic studying the role a brain cell type called astrocytes might have in the Parkinson’s disease treatment deep brain stimulation. 

    When it came time to reapply to graduate schools (with the help of Baum and others in the BCS Application Assistance Program) Montejo applied to MIT and got in, joining the Brown lab. Now she’s working on modeling the role of  metabolic processes in the changing of brain rhythms under anesthesia, taking advantage of how general anesthesia predictably changes brain states. The effects anesthetic drugs have on cell metabolism and the way that ultimately affects levels of consciousness reveals important aspects of how metabolism affects brain circuits and systems. Earlier this month, for instance, Montejo co-led a paper the lab published in The Proceedings of the National Academy of Sciences detailing the neuroscience of a patient’s transition into an especially deep state of unconsciousness called “burst suppression.” 

    Josefina Correa Menendez

    Photo: David Orenstein

    Previous item
    Next item

    A signature of the Brown lab’s work is rigorous statistical analysis and methods, for instance to discern brain arousal states from EEG measures of brain rhythms. A PhD candidate in MIT’s Interdisciplinary Doctoral Program in Statistics, Correa Menéndez is advancing the use of Bayesian hierarchical models for neural data analysis. These statistical models offer a principled way of pooling information across datasets. One of her models can help scientists better understand the way neurons can “spike” with electrical activity when the brain is presented with a stimulus. The other’s power is in discerning critical features such as arousal states of the brain under general anesthesia from electrophysiological recordings. 

    Though she now works with complex equations and computations as a PhD candidate in neuroscience and statistics, Correa Menéndez was mostly interested in music art as a high school student at Academia María Reina in San Juan and then architecture in college at the University of Puerto Rico at Río Piedras. It was discussions at the intersection of epistemology and art during an art theory class that inspired Correa Menéndez to switch her major to biology and to take computer science classes, too. 

    When Sassanfar visited Puerto Rico in 2017, a computer science professor (Patricia Ordóñez) suggested that Correa Menéndez apply for a chance to attend the QMW. She did, and that led her to also participate in MSRP-Bio in the lab of Sherman Fairchild Professor Matt Wilson (a faculty member in BCS, CBMM, and the Picower Institute). She joined in the lab’s studies of how spatial memories are represented in the hippocampus and how the brain makes use of those memories to help understand the world around it. With mentoring from then-postdoc Carmen Varela (now a faculty member at Florida State University), the experience not only exposed her to neuroscience, but also helped her gain skills and experience with lab experiments, building research tools, and conducting statistical analyses. She ended up working in the Wilson lab as a research scholar for a year and began her graduate studies in September 2018.  

    Classes she took with Brown as a research scholar inspired her to join his lab as a graduate student. 

    “Taking the classes with Emery and also doing experiments made me aware of the role of statistics in the scientific process: from the interpretation of results to the analysis and the design of experiments,” she says. “More often than not, in science, statistics becomes this sort of afterthought — this ‘annoying’ thing that people need to do to get their paper published. But statistics as a field is actually a lot more than that. It’s a way of thinking about data. Particularly, Bayesian modeling provides a principled inference framework for combining prior knowledge into a hypothesis that you can test with data.” 

    To be sure, no one starts out with such inspiration about scientific scholarship, but MSRP-Bio helps students find that passion for research and the paths that opens up.   More