More stories

  • in

    MIT researchers remotely map crops, field by field

    Crop maps help scientists and policymakers track global food supplies and estimate how they might shift with climate change and growing populations. But getting accurate maps of the types of crops that are grown from farm to farm often requires on-the-ground surveys that only a handful of countries have the resources to maintain.

    Now, MIT engineers have developed a method to quickly and accurately label and map crop types without requiring in-person assessments of every single farm. The team’s method uses a combination of Google Street View images, machine learning, and satellite data to automatically determine the crops grown throughout a region, from one fraction of an acre to the next. 

    The researchers used the technique to automatically generate the first nationwide crop map of Thailand — a smallholder country where small, independent farms make up the predominant form of agriculture. The team created a border-to-border map of Thailand’s four major crops — rice, cassava, sugarcane, and maize — and determined which of the four types was grown, at every 10 meters, and without gaps, across the entire country. The resulting map achieved an accuracy of 93 percent, which the researchers say is comparable to on-the-ground mapping efforts in high-income, big-farm countries.

    The team is applying their mapping technique to other countries such as India, where small farms sustain most of the population but the type of crops grown from farm to farm has historically been poorly recorded.

    “It’s a longstanding gap in knowledge about what is grown around the world,” says Sherrie Wang, the d’Arbeloff Career Development Assistant Professor in MIT’s Department of Mechanical Engineering, and the Institute for Data, Systems, and Society (IDSS). “The final goal is to understand agricultural outcomes like yield, and how to farm more sustainably. One of the key preliminary steps is to map what is even being grown — the more granularly you can map, the more questions you can answer.”

    Wang, along with MIT graduate student Jordi Laguarta Soler and Thomas Friedel of the agtech company PEAT GmbH, will present a paper detailing their mapping method later this month at the AAAI Conference on Artificial Intelligence.

    Ground truth

    Smallholder farms are often run by a single family or farmer, who subsist on the crops and livestock that they raise. It’s estimated that smallholder farms support two-thirds of the world’s rural population and produce 80 percent of the world’s food. Keeping tabs on what is grown and where is essential to tracking and forecasting food supplies around the world. But the majority of these small farms are in low to middle-income countries, where few resources are devoted to keeping track of individual farms’ crop types and yields.

    Crop mapping efforts are mainly carried out in high-income regions such as the United States and Europe, where government agricultural agencies oversee crop surveys and send assessors to farms to label crops from field to field. These “ground truth” labels are then fed into machine-learning models that make connections between the ground labels of actual crops and satellite signals of the same fields. They then label and map wider swaths of farmland that assessors don’t cover but that satellites automatically do.

    “What’s lacking in low- and middle-income countries is this ground label that we can associate with satellite signals,” Laguarta Soler says. “Getting these ground truths to train a model in the first place has been limited in most of the world.”

    The team realized that, while many developing countries do not have the resources to maintain crop surveys, they could potentially use another source of ground data: roadside imagery, captured by services such as Google Street View and Mapillary, which send cars throughout a region to take continuous 360-degree images with dashcams and rooftop cameras.

    In recent years, such services have been able to access low- and middle-income countries. While the goal of these services is not specifically to capture images of crops, the MIT team saw that they could search the roadside images to identify crops.

    Cropped image

    In their new study, the researchers worked with Google Street View (GSV) images taken throughout Thailand — a country that the service has recently imaged fairly thoroughly, and which consists predominantly of smallholder farms.

    Starting with over 200,000 GSV images randomly sampled across Thailand, the team filtered out images that depicted buildings, trees, and general vegetation. About 81,000 images were crop-related. They set aside 2,000 of these, which they sent to an agronomist, who determined and labeled each crop type by eye. They then trained a convolutional neural network to automatically generate crop labels for the other 79,000 images, using various training methods, including iNaturalist — a web-based crowdsourced  biodiversity database, and GPT-4V, a “multimodal large language model” that enables a user to input an image and ask the model to identify what the image is depicting. For each of the 81,000 images, the model generated a label of one of four crops that the image was likely depicting — rice, maize, sugarcane, or cassava.

    The researchers then paired each labeled image with the corresponding satellite data taken of the same location throughout a single growing season. These satellite data include measurements across multiple wavelengths, such as a location’s greenness and its reflectivity (which can be a sign of water). 

    “Each type of crop has a certain signature across these different bands, which changes throughout a growing season,” Laguarta Soler notes.

    The team trained a second model to make associations between a location’s satellite data and its corresponding crop label. They then used this model to process satellite data taken of the rest of the country, where crop labels were not generated or available. From the associations that the model learned, it then assigned crop labels across Thailand, generating a country-wide map of crop types, at a resolution of 10 square meters.

    This first-of-its-kind crop map included locations corresponding to the 2,000 GSV images that the researchers originally set aside, that were labeled by arborists. These human-labeled images were used to validate the map’s labels, and when the team looked to see whether the map’s labels matched the expert, “gold standard” labels, it did so 93 percent of the time.

    “In the U.S., we’re also looking at over 90 percent accuracy, whereas with previous work in India, we’ve only seen 75 percent because ground labels are limited,” Wang says. “Now we can create these labels in a cheap and automated way.”

    The researchers are moving to map crops across India, where roadside images via Google Street View and other services have recently become available.

    “There are over 150 million smallholder farmers in India,” Wang says. “India is covered in agriculture, almost wall-to-wall farms, but very small farms, and historically it’s been very difficult to create maps of India because there are very sparse ground labels.”

    The team is working to generate crop maps in India, which could be used to inform policies having to do with assessing and bolstering yields, as global temperatures and populations rise.

    “What would be interesting would be to create these maps over time,” Wang says. “Then you could start to see trends, and we can try to relate those things to anything like changes in climate and policies.” More

  • in

    MIT campus goals in food, water, waste support decarbonization efforts

    With the launch of Fast Forward: MIT’s Climate Action Plan for the Decade, the Institute committed to decarbonize campus operations by 2050 — an effort that touches on every corner of MIT, from building energy use to procurement and waste. At the operational level, the plan called for establishing a set of quantitative climate impact goals in the areas of food, water, and waste to inform the campus decarbonization roadmap. After an 18-month process that engaged staff, faculty, and researchers, the goals — as well as high-level strategies to reach them — were finalized in spring 2023.

    The goal development process was managed by a team representing the areas of campus food, water, and waste, respectively, and includes Director of Campus Dining Mark Hayes and Senior Sustainability Project Manager Susy Jones (food), Director of Utilities Janine Helwig (water), Assistant Director of Campus Services Marty O’Brien, and Assistant Director of Sustainability Brain Goldberg (waste) to co-lead the efforts. The group worked together to set goals that leverage ongoing campus sustainability efforts. “It was important for us to collaborate in order to identify the strategies and goals,” explains Goldberg. “It allowed us to set goals that not only align, but build off of one another, enabling us to work more strategically.”

    In setting the goals, each team relied on data, community insight, and best practices. The co-leads are sharing their process to help others at the Institute understand the roles they can play in supporting these objectives.  

    Sustainable food systems

    The primary food impact goal aims for a 25 percent overall reduction in the greenhouse gas footprint of food purchases starting with academic year 2021-22 as a baseline, acknowledging that beef purchases make up a significant share of those emissions. Additionally, the co-leads established a goal to recover all edible food waste in dining hall and retail operations where feasible, as that reduces MIT’s waste impact and acknowledges that redistributing surplus food to feed people is critically important.

    The work to develop the food goal was uniquely challenging, as MIT works with nine different vendors — including main vendor Bon Appetit — to provide food on campus, with many vendors having their own sustainability targets. The goal-setting process began by understanding vendor strategies and leveraging their climate commitments. “A lot of this work is not about reinventing the wheel, but about gathering data,” says Hayes. “We are trying to connect the dots of what is currently happening on campus and to better understand food consumption and waste, ensuring that we area reaching these targets.”

    In identifying ways to reach and exceed these targets, Jones conducted listening sessions around campus, balancing input with industry trends, best-available science, and institutional insight from Hayes. “Before we set these goals and possible strategies, we wanted to get a grounding from the community and understand what would work on our campus,” says Jones, who recently began a joint role that bridges the Office of Sustainability and MIT Dining in part to support the goal work.

    By establishing the 25 percent reduction in the greenhouse gas footprint of food purchases across MIT residential dining menus, Jones and Hayes saw goal-setting as an opportunity to add more sustainable, local, and culturally diverse foods to the menu. “If beef is the most carbon-intensive food on the menu, this enables us to explore and expand so many recipes and menus from around the globe that incorporate alternatives,” Jones says.

    Strategies to reach the climate food goals focus on local suppliers, more plant-forward meals, food recovery, and food security. In 2019, MIT was a co-recipient of the New England Food Vision Prize provided by the Kendall Foundation to increase the amount of local food served on campus in partnership with CommonWealth Kitchen in Dorchester. While implementation of that program was put on pause due to the pandemic, work resumed this year. Currently, the prize is funding a collaborative effort to introduce falafel-like, locally manufactured fritters made from Maine-grown yellow field peas to dining halls at MIT and other university campuses, exemplifying the efforts to meet the climate impact goal, serve as a model for others, and provide demonstrable ways of strengthening the regional food system.

    “This sort of innovation is where we’re a leader,” says Hayes. “In addition to the Kendall Prize, we are looking to focus on food justice, growing our BIPOC [Black, Indigenous, and people of color] vendors, and exploring ideas such as local hydroponic and container vegetable growing companies, and how to scale these types of products into institutional settings.”

    Reduce and reuse for campus water

    The 2030 water impact goal aims to achieve a 10 percent reduction in water use compared to the 2019 baseline and to update the water reduction goal to align with the new metering program and proposed campus decarbonization plans as they evolve.

    When people think of campus water use, they may think of sprinklers, lab sinks, or personal use like drinking water and showers. And while those uses make up around 60 percent of campus water use, the Central Utilities Plant (CUP) accounts for the remaining 40 percent. “The CUP generates electricity and delivers heating and cooling to the campus through steam and chilled water — all using what amounts to a large percentage of water use on campus,” says Helwig. As such, the water goal focuses as much on reuse as reduction, with one approach being to expand water capture from campus cooling towers for reuse in CUP operations. “People often think of water use and energy separately, but they often go hand-in-hand,” Helwig explains.

    Data also play a central part in the water impact goal — that’s why a new metering program is called for in the implementation strategy. “We have access to a lot of data at MIT, but in reviewing the water data to inform the goal, we learned that it wasn’t quite where we needed it,” explains Helwig. “By ensuring we have the right meter and submeters set up, we can better set boundaries to understand where there is the potential to reduce water use.” Irrigation on campus is one such target with plans to soon release new campuswide landscaping standards that minimize water use.

    Reducing campus waste

    The waste impact goal aims to reduce campus trash by 30 percent compared to 2019 baseline totals. Additionally, the goal outlines efforts to improve the accuracy of indicators tracking campus waste; reduce the percentage of food scraps in trash and percent of recycling in trash in select locations; reduce the percentage of trash and recycling comprised of single use items; and increase the percentage of residence halls and other campus spaces where food is consumed at scale, implementing an MIT food scrap collection program.

    In setting the waste goals, Goldberg and O’Brien studied available campus waste data from past waste audits, pilot programs, and MIT’s waste haulers. They factored in state and city policies that regulate things like the type and amount of waste large institutions can transport. “Looking at all the data it became clear that a 30 percent trash reduction goal will make a tremendous impact on campus and help us drive toward the goal of completely designing out waste from campus,” Goldberg says. The strategies to reach the goals include reducing the amount of materials that come into campus, increasing recycling rates, and expanding food waste collection on campus.

    While reducing the waste created from material sources is outlined in the goals, food waste is a special focus on campus because it comprises approximately 40 percent of campus trash, it can be easily collected separately from trash and recycled locally, and decomposing food waste is one of the largest sources of greenhouse gas emissions found in landfills. “There is a lot of greenhouse gas emissions that result from production, distribution, transportation, packaging, processing, and disposal of food,” explains Goldberg. “When food travels to campus, is removed from campus as waste, and then breaks down in a landfill, there are emissions every step of the way.”

    To reduce food waste, Goldberg and O’Brien outlined strategies that include working with campus suppliers to identify ordering volumes and practices to limit waste. Once materials are on campus, another strategy kicks in, with a new third stream of waste collection that joins recycling and trash — food waste. By collecting the food waste separately — in bins that are currently rolling out across campus — the waste can be reprocessed into fertilizer, compost, and/or energy without the off-product of greenhouse gases. The waste impact goal also relies on behavioral changes to reduce waste, with education materials part of the process to reduce waste and decontaminate reprocessing streams.

    Tracking progress

    As work toward the goals advances, community members can monitor progress in the Sustainability DataPool Material Matters and Campus Water Use dashboards, or explore the Impact Goals in depth.

    “From food to water to waste, everyone on campus interacts with these systems and can grapple with their impact either from a material they need to dispose of, to water they’re using in a lab, or leftover food from an event,” says Goldberg. “By setting these goals we as an institution can lead the way and help our campus community understand how they can play a role, plug in, and make an impact.” More

  • in

    System tracks movement of food through global humanitarian supply chain

    Although more than enough food is produced to feed everyone in the world, as many as 828 million people face hunger today. Poverty, social inequity, climate change, natural disasters, and political conflicts all contribute to inhibiting access to food. For decades, the U.S. Agency for International Development (USAID) Bureau for Humanitarian Assistance (BHA) has been a leader in global food assistance, supplying millions of metric tons of food to recipients worldwide. Alleviating hunger — and the conflict and instability hunger causes — is critical to U.S. national security.

    But BHA is only one player within a large, complex supply chain in which food gets handed off between more than 100 partner organizations before reaching its final destination. Traditionally, the movement of food through the supply chain has been a black-box operation, with stakeholders largely out of the loop about what happens to the food once it leaves their custody. This lack of direct visibility into operations is due to siloed data repositories, insufficient data sharing among stakeholders, and different data formats that operators must manually sort through and standardize. As a result, accurate, real-time information — such as where food shipments are at any given time, which shipments are affected by delays or food recalls, and when shipments have arrived at their final destination — is lacking. A centralized system capable of tracing food along its entire journey, from manufacture through delivery, would enable a more effective humanitarian response to food-aid needs.

    In 2020, a team from MIT Lincoln Laboratory began engaging with BHA to create an intelligent dashboard for their supply-chain operations. This dashboard brings together the expansive food-aid datasets from BHA’s existing systems into a single platform, with tools for visualizing and analyzing the data. When the team started developing the dashboard, they quickly realized the need for considerably more data than BHA had access to.

    “That’s where traceability comes in, with each handoff partner contributing key pieces of information as food moves through the supply chain,” explains Megan Richardson, a researcher in the laboratory’s Humanitarian Assistance and Disaster Relief Systems Group.

    Richardson and the rest of the team have been working with BHA and their partners to scope, build, and implement such an end-to-end traceability system. This system consists of serialized, unique identifiers (IDs) — akin to fingerprints — that are assigned to individual food items at the time they are produced. These individual IDs remain linked to items as they are aggregated along the supply chain, first domestically and then internationally. For example, individually tagged cans of vegetable oil get packaged into cartons; cartons are placed onto pallets and transported via railway and truck to warehouses; pallets are loaded onto shipping containers at U.S. ports; and pallets are unloaded and cartons are unpackaged overseas.

    With a trace

    Today, visibility at the single-item level doesn’t exist. Most suppliers mark pallets with a lot number (a lot is a batch of items produced in the same run), but this is for internal purposes (i.e., to track issues stemming back to their production supply, like over-enriched ingredients or machinery malfunction), not data sharing. So, organizations know which supplier lot a pallet and carton are associated with, but they can’t track the unique history of an individual carton or item within that pallet. As the lots move further downstream toward their final destination, they are often mixed with lots from other productions, and possibly other commodity types altogether, because of space constraints. On the international side, such mixing and the lack of granularity make it difficult to quickly pull commodities out of the supply chain if food safety concerns arise. Current response times can span several months.

    “Commodities are grouped differently at different stages of the supply chain, so it is logical to track them in those groupings where needed,” Richardson says. “Our item-level granularity serves as a form of Rosetta Stone to enable stakeholders to efficiently communicate throughout these stages. We’re trying to enable a way to track not only the movement of commodities, including through their lot information, but also any problems arising independent of lot, like exposure to high humidity levels in a warehouse. Right now, we have no way to associate commodities with histories that may have resulted in an issue.”

    “You can now track your checked luggage across the world and the fish on your dinner plate,” adds Brice MacLaren, also a researcher in the laboratory’s Humanitarian Assistance and Disaster Relief Systems Group. “So, this technology isn’t new, but it’s new to BHA as they evolve their methodology for commodity tracing. The traceability system needs to be versatile, working across a wide variety of operators who take custody of the commodity along the supply chain and fitting into their existing best practices.”

    As food products make their way through the supply chain, operators at each receiving point would be able to scan these IDs via a Lincoln Laboratory-developed mobile application (app) to indicate a product’s current location and transaction status — for example, that it is en route on a particular shipping container or stored in a certain warehouse. This information would get uploaded to a secure traceability server. By scanning a product, operators would also see its history up until that point.   

    Hitting the mark

    At the laboratory, the team tested the feasibility of their traceability technology, exploring different ways to mark and scan items. In their testing, they considered barcodes and radio-frequency identification (RFID) tags and handheld and fixed scanners. Their analysis revealed 2D barcodes (specifically data matrices) and smartphone-based scanners were the most feasible options in terms of how the technology works and how it fits into existing operations and infrastructure.

    “We needed to come up with a solution that would be practical and sustainable in the field,” MacLaren says. “While scanners can automatically read any RFID tags in close proximity as someone is walking by, they can’t discriminate exactly where the tags are coming from. RFID is expensive, and it’s hard to read commodities in bulk. On the other hand, a phone can scan a barcode on a particular box and tell you that code goes with that box. The challenge then becomes figuring out how to present the codes for people to easily scan without significantly interrupting their usual processes for handling and moving commodities.” 

    As the team learned from partner representatives in Kenya and Djibouti, offloading at the ports is a chaotic, fast operation. At manual warehouses, porters fling bags over their shoulders or stack cartons atop their heads any which way they can and run them to a drop point; at bagging terminals, commodities come down a conveyor belt and land this way or that way. With this variability comes several questions: How many barcodes do you need on an item? Where should they be placed? What size should they be? What will they cost? The laboratory team is considering these questions, keeping in mind that the answers will vary depending on the type of commodity; vegetable oil cartons will have different specifications than, say, 50-kilogram bags of wheat or peas.

    Leaving a mark

    Leveraging results from their testing and insights from international partners, the team has been running a traceability pilot evaluating how their proposed system meshes with real-world domestic and international operations. The current pilot features a domestic component in Houston, Texas, and an international component in Ethiopia, and focuses on tracking individual cartons of vegetable oil and identifying damaged cans. The Ethiopian team with Catholic Relief Services recently received a container filled with pallets of uniquely barcoded cartons of vegetable oil cans (in the next pilot, the cans will be barcoded, too). They are now scanning items and collecting data on product damage by using smartphones with the laboratory-developed mobile traceability app on which they were trained. 

    “The partners in Ethiopia are comparing a couple lid types to determine whether some are more resilient than others,” Richardson says. “With the app — which is designed to scan commodities, collect transaction data, and keep history — the partners can take pictures of damaged cans and see if a trend with the lid type emerges.”

    Next, the team will run a series of pilots with the World Food Program (WFP), the world’s largest humanitarian organization. The first pilot will focus on data connectivity and interoperability, and the team will engage with suppliers to directly print barcodes on individual commodities instead of applying barcode labels to packaging, as they did in the initial feasibility testing. The WFP will provide input on which of their operations are best suited for testing the traceability system, considering factors like the network bandwidth of WFP staff and local partners, the commodity types being distributed, and the country context for scanning. The BHA will likely also prioritize locations for system testing.

    “Our goal is to provide an infrastructure to enable as close to real-time data exchange as possible between all parties, given intermittent power and connectivity in these environments,” MacLaren says.

    In subsequent pilots, the team will try to integrate their approach with existing systems that partners rely on for tracking procurements, inventory, and movement of commodities under their custody so that this information is automatically pushed to the traceability server. The team also hopes to add a capability for real-time alerting of statuses, like the departure and arrival of commodities at a port or the exposure of unclaimed commodities to the elements. Real-time alerts would enable stakeholders to more efficiently respond to food-safety events. Currently, partners are forced to take a conservative approach, pulling out more commodities from the supply chain than are actually suspect, to reduce risk of harm. Both BHA and WHP are interested in testing out a food-safety event during one of the pilots to see how the traceability system works in enabling rapid communication response.

    To implement this technology at scale will require some standardization for marking different commodity types as well as give and take among the partners on best practices for handling commodities. It will also require an understanding of country regulations and partner interactions with subcontractors, government entities, and other stakeholders.

    “Within several years, I think it’s possible for BHA to use our system to mark and trace all their food procured in the United States and sent internationally,” MacLaren says.

    Once collected, the trove of traceability data could be harnessed for other purposes, among them analyzing historical trends, predicting future demand, and assessing the carbon footprint of commodity transport. In the future, a similar traceability system could scale for nonfood items, including medical supplies distributed to disaster victims, resources like generators and water trucks localized in emergency-response scenarios, and vaccines administered during pandemics. Several groups at the laboratory are also interested in such a system to track items such as tools deployed in space or equipment people carry through different operational environments.

    “When we first started this program, colleagues were asking why the laboratory was involved in simple tasks like making a dashboard, marking items with barcodes, and using hand scanners,” MacLaren says. “Our impact here isn’t about the technology; it’s about providing a strategy for coordinated food-aid response and successfully implementing that strategy. Most importantly, it’s about people getting fed.” More

  • in

    J-WAFS announces 2023 seed grant recipients

    Today, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) announced its ninth round of seed grants to support innovative research projects at MIT. The grants are designed to fund research efforts that tackle challenges related to water and food for human use, with the ultimate goal of creating meaningful impact as the world population continues to grow and the planet undergoes significant climate and environmental changes.Ten new projects led by 15 researchers from seven different departments will be supported this year. The projects address a range of challenges by employing advanced materials, technology innovations, and new approaches to resource management. The new projects aim to remove harmful chemicals from water sources, develop monitoring and other systems to help manage various aquaculture industries, optimize water purification materials, and more.“The seed grant program is J-WAFS’ flagship grant initiative,” says J-WAFS executive director Renee J. Robins. “The funding is intended to spur groundbreaking MIT research addressing complex issues that are challenging our water and food systems. The 10 projects selected this year show great promise, and we look forward to the progress and accomplishments these talented researchers will make,” she adds.The 2023 J-WAFS seed grant researchers and their projects are:Sara Beery, an assistant professor in the Department of Electrical Engineering and Computer Science (EECS), is building the first completely automated system to estimate the size of salmon populations in the Pacific Northwest (PNW).Salmon are a keystone species in the PNW, feeding human populations for the last 7,500 years at least. However, overfishing, habitat loss, and climate change threaten extinction of salmon populations across the region. Accurate salmon counts during their seasonal migration to their natal river to spawn are essential for fisheries’ regulation and management but are limited by human capacity. Fish population monitoring is a widespread challenge in the United States and worldwide. Beery and her team are working to build a system that will provide a detailed picture of the state of salmon populations in unprecedented, spatial, and temporal resolution by combining sonar sensors and computer vision and machine learning (CVML) techniques. The sonar will capture individual fish as they swim upstream and CVML will train accurate algorithms to interpret the sonar video for detecting, tracking, and counting fish automatically while adapting to changing river conditions and fish densities.Another aquaculture project is being led by Michael Triantafyllou, the Henry L. and Grace Doherty Professor in Ocean Science and Engineering in the Department of Mechanical Engineering, and Robert Vincent, the assistant director at MIT’s Sea Grant Program. They are working with Otto Cordero, an associate professor in the Department of Civil and Environmental Engineering, to control harmful bacteria blooms in aquaculture algae feed production.

    Aquaculture in the United States represents a $1.5 billion industry annually and helps support 1.7 million jobs, yet many American hatcheries are not able to keep up with demand. One barrier to aquaculture production is the high degree of variability in survival rates, most likely caused by a poorly controlled microbiome that leads to bacterial infections and sub-optimal feed efficiency. Triantafyllou, Vincent, and Cordero plan to monitor the microbiome composition of a shellfish hatchery in order to identify possible causing agents of mortality, as well as beneficial microbes. They hope to pair microbe data with detail phenotypic information about the animal population to generate rapid diagnostic tests and explore the potential for microbiome therapies to protect larvae and prevent future outbreaks. The researchers plan to transfer their findings and technology to the local and regional aquaculture community to ensure healthy aquaculture production that will support the expansion of the U.S. aquaculture industry.

    David Des Marais is the Cecil and Ida Green Career Development Professor in the Department of Civil and Environmental Engineering. His 2023 J-WAFS project seeks to understand plant growth responses to elevated carbon dioxide (CO2) in the atmosphere, in the hopes of identifying breeding strategies that maximize crop yield under future CO2 scenarios.Today’s crop plants experience higher atmospheric CO2 than 20 or 30 years ago. Crops such as wheat, oat, barley, and rice typically increase their growth rate and biomass when grown at experimentally elevated atmospheric CO2. This is known as the so-called “CO2 fertilization effect.” However, not all plant species respond to rising atmospheric CO2 with increased growth, and for the ones that do, increased growth doesn’t necessarily correspond to increased crop yield. Using specially built plant growth chambers that can control the concentration of CO2, Des Marais will explore how CO2 availability impacts the development of tillers (branches) in the grass species Brachypodium. He will study how gene expression controls tiller development, and whether this is affected by the growing environment. The tillering response refers to how many branches a plant produces, which sets a limit on how much grain it can yield. Therefore, optimizing the tillering response to elevated CO2 could greatly increase yield. Des Marais will also look at the complete genome sequence of Brachypodium, wheat, oat, and barley to help identify genes relevant for branch growth.Darcy McRose, an assistant professor in the Department of Civil and Environmental Engineering, is researching whether a combination of plant metabolites and soil bacteria can be used to make mineral-associated phosphorus more bioavailable.The nutrient phosphorus is essential for agricultural plant growth, but when added as a fertilizer, phosphorus sticks to the surface of soil minerals, decreasing bioavailability, limiting plant growth, and accumulating residual phosphorus. Heavily fertilized agricultural soils often harbor large reservoirs of this type of mineral-associated “legacy” phosphorus. Redox transformations are one chemical process that can liberate mineral-associated phosphorus. However, this needs to be carefully controlled, as overly mobile phosphorus can lead to runoff and pollution of natural waters. Ideally, phosphorus would be made bioavailable when plants need it and immobile when they don’t. Many plants make small metabolites called coumarins that might be able to solubilize mineral-adsorbed phosphorus and be activated and inactivated under different conditions. McRose will use laboratory experiments to determine whether a combination of plant metabolites and soil bacteria can be used as a highly efficient and tunable system for phosphorus solubilization. She also aims to develop an imaging platform to investigate exchanges of phosphorus between plants and soil microbes.Many of the 2023 seed grants will support innovative technologies to monitor, quantify, and remediate various kinds of pollutants found in water. Two of the new projects address the problem of per- and polyfluoroalkyl substances (PFAS), human-made chemicals that have recently emerged as a global health threat. Known as “forever chemicals,” PFAS are used in many manufacturing processes. These chemicals are known to cause significant health issues including cancer, and they have become pervasive in soil, dust, air, groundwater, and drinking water. Unfortunately, the physical and chemical properties of PFAS render them difficult to detect and remove.Aristide Gumyusenge, the Merton C. Assistant Professor of Materials Science and Engineering, is using metal-organic frameworks for low-cost sensing and capture of PFAS. Most metal-organic frameworks (MOFs) are synthesized as particles, which complicates their high accuracy sensing performance due to defects such as intergranular boundaries. Thin, film-based electronic devices could enable the use of MOFs for many applications, especially chemical sensing. Gumyusenge’s project aims to design test kits based on two-dimensional conductive MOF films for detecting PFAS in drinking water. In early demonstrations, Gumyusenge and his team showed that these MOF films can sense PFAS at low concentrations. They will continue to iterate using a computation-guided approach to tune sensitivity and selectivity of the kits with the goal of deploying them in real-world scenarios.Carlos Portela, the Brit (1961) and Alex (1949) d’Arbeloff Career Development Professor in the Department of Mechanical Engineering, and Ariel Furst, the Cook Career Development Professor in the Department of Chemical Engineering, are building novel architected materials to act as filters for the removal of PFAS from water. Portela and Furst will design and fabricate nanoscale materials that use activated carbon and porous polymers to create a physical adsorption system. They will engineer the materials to have tunable porosities and morphologies that can maximize interactions between contaminated water and functionalized surfaces, while providing a mechanically robust system.Rohit Karnik is a Tata Professor and interim co-department head of the Department of Mechanical Engineering. He is working on another technology, his based on microbead sensors, to rapidly measure and monitor trace contaminants in water.Water pollution from both biological and chemical contaminants contributes to an estimated 1.36 million deaths annually. Chemical contaminants include pesticides and herbicides, heavy metals like lead, and compounds used in manufacturing. These emerging contaminants can be found throughout the environment, including in water supplies. The Environmental Protection Agency (EPA) in the United States sets recommended water quality standards, but states are responsible for developing their own monitoring criteria and systems, which must be approved by the EPA every three years. However, the availability of data on regulated chemicals and on candidate pollutants is limited by current testing methods that are either insensitive or expensive and laboratory-based, requiring trained scientists and technicians. Karnik’s project proposes a simple, self-contained, portable system for monitoring trace and emerging pollutants in water, making it suitable for field studies. The concept is based on multiplexed microbead-based sensors that use thermal or gravitational actuation to generate a signal. His proposed sandwich assay, a testing format that is appealing for environmental sensing, will enable both single-use and continuous monitoring. The hope is that the bead-based assays will increase the ease and reach of detecting and quantifying trace contaminants in water for both personal and industrial scale applications.Alexander Radosevich, a professor in the Department of Chemistry, and Timothy Swager, the John D. MacArthur Professor of Chemistry, are teaming up to create rapid, cost-effective, and reliable techniques for on-site arsenic detection in water.Arsenic contamination of groundwater is a problem that affects as many as 500 million people worldwide. Arsenic poisoning can lead to a range of severe health problems from cancer to cardiovascular and neurological impacts. Both the EPA and the World Health Organization have established that 10 parts per billion is a practical threshold for arsenic in drinking water, but measuring arsenic in water at such low levels is challenging, especially in resource-limited environments where access to sensitive laboratory equipment may not be readily accessible. Radosevich and Swager plan to develop reaction-based chemical sensors that bind and extract electrons from aqueous arsenic. In this way, they will exploit the inherent reactivity of aqueous arsenic to selectively detect and quantify it. This work will establish the chemical basis for a new method of detecting trace arsenic in drinking water.Rajeev Ram is a professor in the Department of Electrical Engineering and Computer Science. His J-WAFS research will advance a robust technology for monitoring nitrogen-containing pollutants, which threaten over 15,000 bodies of water in the United States alone.Nitrogen in the form of nitrate, nitrite, ammonia, and urea can run off from agricultural fertilizer and lead to harmful algal blooms that jeopardize human health. Unfortunately, monitoring these contaminants in the environment is challenging, as sensors are difficult to maintain and expensive to deploy. Ram and his students will work to establish limits of detection for nitrate, nitrite, ammonia, and urea in environmental, industrial, and agricultural samples using swept-source Raman spectroscopy. Swept-source Raman spectroscopy is a method of detecting the presence of a chemical by using a tunable, single mode laser that illuminates a sample. This method does not require costly, high-power lasers or a spectrometer. Ram will then develop and demonstrate a portable system that is capable of achieving chemical specificity in complex, natural environments. Data generated by such a system should help regulate polluters and guide remediation.Kripa Varanasi, a professor in the Department of Mechanical Engineering, and Angela Belcher, the James Mason Crafts Professor and head of the Department of Biological Engineering, will join forces to develop an affordable water disinfection technology that selectively identifies, adsorbs, and kills “superbugs” in domestic and industrial wastewater.Recent research predicts that antibiotic-resistance bacteria (superbugs) will result in $100 trillion in health care expenses and 10 million deaths annually by 2050. The prevalence of superbugs in our water systems has increased due to corroded pipes, contamination, and climate change. Current drinking water disinfection technologies are designed to kill all types of bacteria before human consumption. However, for certain domestic and industrial applications there is a need to protect the good bacteria required for ecological processes that contribute to soil and plant health. Varanasi and Belcher will combine material, biological, process, and system engineering principles to design a sponge-based water disinfection technology that can identify and destroy harmful bacteria while leaving the good bacteria unharmed. By modifying the sponge surface with specialized nanomaterials, their approach will be able to kill superbugs faster and more efficiently. The sponge filters can be deployed under very low pressure, making them an affordable technology, especially in resource-constrained communities.In addition to the 10 seed grant projects, J-WAFS will also fund a research initiative led by Greg Sixt. Sixt is the research manager for climate and food systems at J-WAFS, and the director of the J-WAFS-led Food and Climate Systems Transformation (FACT) Alliance. His project focuses on the Lake Victoria Basin (LVB) of East Africa. The second-largest freshwater lake in the world, Lake Victoria straddles three countries (Uganda, Tanzania, and Kenya) and has a catchment area that encompasses two more (Rwanda and Burundi). Sixt will collaborate with Michael Hauser of the University of Natural Resources and Life Sciences, Vienna, and Paul Kariuki, of the Lake Victoria Basin Commission.The group will study how to adapt food systems to climate change in the Lake Victoria Basin. The basin is facing a range of climate threats that could significantly impact livelihoods and food systems in the expansive region. For example, extreme weather events like droughts and floods are negatively affecting agricultural production and freshwater resources. Across the LVB, current approaches to land and water management are unsustainable and threaten future food and water security. The Lake Victoria Basin Commission (LVBC), a specialized institution of the East African Community, wants to play a more vital role in coordinating transboundary land and water management to support transitions toward more resilient, sustainable, and equitable food systems. The primary goal of this research will be to support the LVBC’s transboundary land and water management efforts, specifically as they relate to sustainability and climate change adaptation in food systems. The research team will work with key stakeholders in Kenya, Uganda, and Tanzania to identify specific capacity needs to facilitate land and water management transitions. The two-year project will produce actionable recommendations to the LVBC. More

  • in

    MIT PhD students honored for their work to solve critical issues in water and food

    In 2017, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) initiated the J-WAFS Fellowship Program for outstanding MIT PhD students working to solve humankind’s water-related challenges. Since then, J-WAFS has awarded 18 fellowships to students who have gone on to create innovations like a pump that can maximize energy efficiency even with changing flow rates, and a low-cost water filter made out of sapwood xylem that has seen real-world use in rural India. Last year, J-WAFS expanded eligibility to students with food-related research. The 2022 fellows included students working on micronutrient deficiency and plastic waste from traditional food packaging materials. 

    Today, J-WAFS has announced the award of the 2023-24 fellowships to Gokul Sampath and Jie Yun. A doctoral student in the Department of Urban Studies and planning, Sampath has been awarded the Rasikbhai L. Meswani Fellowship for Water Solutions, which is supported through a generous gift from Elina and Nikhil Meswani and family. Yun, who is in the Department of Civil and Environmental Engineering, received a J-WAFS Fellowship for Water and Food Solutions, which is funded by the J-WAFS Research Affiliate Program. Currently, Xylem, Inc. and GoAigua are J-WAFS’ Research Affiliate companies. A review committee comprised of MIT faculty and staff selected Sampath and Yun from a competitive field of outstanding graduate students working in water and food who were nominated by their faculty advisors. Sampath and Yun will receive one academic semester of funding, along with opportunities for networking and mentoring to advance their research.

    “Both Yun and Sampath have demonstrated excellence in their research,” says J-WAFS executive director Renee J. Robins. “They also stood out in their communication skills and their passion to work on issues of agricultural sustainability and resilience and access to safe water. We are so pleased to have them join our inspiring group of J-WAFS fellows,” she adds.

    Using behavioral health strategies to address the arsenic crisis in India and Bangladesh

    Gokul Sampath’s research centers on ways to improve access to safe drinking water in developing countries. A PhD candidate in the International Development Group in the Department of Urban Studies and Planning, his current work examines the issue of arsenic in drinking water sources in India and Bangladesh. In Eastern India, millions of shallow tube wells provide rural households a personal water source that is convenient, free, and mostly safe from cholera. Unfortunately, it is now known that one-in-four of these wells is contaminated with naturally occurring arsenic at levels dangerous to human health. As a result, approximately 40 million people across the region are at elevated risk of cancer, stroke, and heart disease from arsenic consumed through drinking water and cooked food. 

    Since the discovery of arsenic in wells in the late 1980s, governments and nongovernmental organizations have sought to address the problem in rural villages by providing safe community water sources. Yet despite access to safe alternatives, many households still consume water from their contaminated home wells. Sampath’s research seeks to understand the constraints and trade-offs that account for why many villagers don’t collect water from arsenic-safe government wells in the village, even when they know their own wells at home could be contaminated.

    Before coming to MIT, Sampath received a master’s degree in Middle East, South Asian, and African studies from Columbia University, as well as a bachelor’s degree in microbiology and history from the University of California at Davis. He has long worked on water management in India, beginning in 2015 as a Fulbright scholar studying households’ water source choices in arsenic-affected areas of the state of West Bengal. He also served as a senior research associate with the Abdul Latif Jameel Poverty Action Lab, where he conducted randomized evaluations of market incentives for groundwater conservation in Gujarat, India. Sampath’s advisor, Bishwapriya Sanyal, the Ford International Professor of Urban Development and Planning at MIT, says Sampath has shown “remarkable hard work and dedication.” In addition to his classes and research, Sampath taught the department’s undergraduate Introduction to International Development course, for which he received standout evaluations from students.

    This summer, Sampath will travel to India to conduct field work in four arsenic-affected villages in West Bengal to understand how social influence shapes villagers’ choices between arsenic-safe and unsafe water sources. Through longitudinal surveys, he hopes to connect data on the social ties between families in villages and the daily water source choices they make. Exclusionary practices in Indian village communities, especially the segregation of water sources on the basis of caste and religion, has long been suspected to be a barrier to equitable drinking water access in Indian villages. Yet despite this, planners seeking to expand safe water access in diverse Indian villages have rarely considered the way social divisions within communities might be working against their efforts. Sampath hopes to test whether the injunctive norms enabled by caste ties constrain villagers’ ability to choose the safest water source among those shared within the village. When he returns to MIT in the fall, he plans to dive into analyzing his survey data and start work on a publication.

    Understanding plant responses to stress to improve crop drought resistance and yield

    Plants, including crops, play a fundamental role in Earth’s ecosystems through their effects on climate, air quality, and water availability. At the same time, plants grown for agriculture put a burden on the environment as they require energy, irrigation, and chemical inputs. Understanding plant/environment interactions is becoming more and more important as intensifying drought is straining agricultural systems. Jie Yun, a PhD student in the Department of Civil and Environmental Engineering, is studying plant response to drought stress in the hopes of improving agricultural sustainability and yield under climate change.  Yun’s research focuses on genotype-by-environment interaction (GxE.) This relates to the observation that plant varieties respond to environmental changes differently. The effects of GxE in crop breeding can be exploited because differing environmental responses among varieties enables breeders to select for plants that demonstrate high stress-tolerant genotypes under particular growing conditions. Yun bases her studies on Brachypodium, a model grass species related to wheat, oat, barley, rye, and perennial forage grasses. By experimenting with this species, findings can be directly applied to cereal and forage crop improvement. For the first part of her thesis, Yun collaborated with Professor Caroline Uhler’s group in the Department of Electrical Engineering and Computer Science and the Institute for Data, Systems, and Society. Uhler’s computational tools helped Yun to evaluate gene regulatory networks and how they relate to plant resilience and environmental adaptation. This work will help identify the types of genes and pathways that drive differences in drought stress response among plant varieties.  David Des Marais, the Cecil and Ida Green Career Development Professor in the Department of Civil and Environmental Engineering, is Yun’s advisor. He notes, “throughout Jie’s time [at MIT] I have been struck by her intellectual curiosity, verging on fearlessness.” When she’s not mentoring undergraduate students in Des Marais’ lab, Yun is working on the second part of her project: how carbon allocation in plants and growth is affected by soil drying. One result of this work will be to understand which populations of plants harbor the necessary genetic diversity to adapt or acclimate to climate change. Another likely impact is identifying targets for the genetic improvement of crop species to increase crop yields with less water supply. Growing up in China, Yun witnessed environmental issues springing from the development of the steel industry, which caused contamination of rivers in her hometown. On one visit to her aunt’s house in rural China, she learned that water pollution was widespread after noticing wastewater was piped outside of the house into nearby farmland without being treated. These experiences led Yun to study water supply and sewage engineering for her undergraduate degree at Shenyang Jianzhu University. She then went on to complete a master’s program in civil and environmental engineering at Carnegie Mellon University. It was there that Yun discovered a passion for plant-environment interactions; during an independent study on perfluorooctanoic sulfonate, she realized the amazing ability of plants to adapt to environmental changes, toxins, and stresses. Her goal is to continue researching plant and environment interactions and to translate the latest scientific findings into applications that can improve food security. More

  • in

    A breakthrough on “loss and damage,” but also disappointment, at UN climate conference

    As the 2022 United Nations climate change conference, known as COP27, stretched into its final hours on Saturday, Nov. 19, it was uncertain what kind of agreement might emerge from two weeks of intensive international negotiations.

    In the end, COP27 produced mixed results: on the one hand, a historic agreement for wealthy countries to compensate low-income countries for “loss and damage,” but on the other, limited progress on new plans for reducing the greenhouse gas emissions that are warming the planet.

    “We need to drastically reduce emissions now — and this is an issue this COP did not address,” said U.N. Secretary-General António Guterres in a statement at the conclusion of COP27. “A fund for loss and damage is essential — but it’s not an answer if the climate crisis washes a small island state off the map — or turns an entire African country to desert.”

    Throughout the two weeks of the conference, a delegation of MIT students, faculty, and staff was at the Sharm El-Sheikh International Convention Center to observe the negotiations, conduct and share research, participate in panel discussions, and forge new connections with researchers, policymakers, and advocates from around the world.

    Loss and damage

    A key issue coming in to COP27 (COP stands for “conference of the parties” to the U.N. Framework Convention on Climate Change, held for the 27th time) was loss and damage: a term used by the U.N. to refer to harms caused by climate change — either through acute catastrophes like extreme weather events or slower-moving impacts like sea level rise — to which communities and countries are unable to adapt. 

    Ultimately, a deal on loss and damage proved to be COP27’s most prominent accomplishment. Negotiators reached an eleventh-hour agreement to “establish new funding arrangements for assisting developing countries that are particularly vulnerable to the adverse effects of climate change.” 

    “Providing financial assistance to developing countries so they can better respond to climate-related loss and damage is not only a moral issue, but also a pragmatic one,” said Michael Mehling, deputy director of the MIT Center for Energy and Environmental Policy Research, who attended COP27 and participated in side events. “Future emissions growth will be squarely centered in the developing world, and offering support through different channels is key to building the trust needed for more robust global cooperation on mitigation.”

    Youssef Shaker, a graduate student in the MIT Technology and Policy Program and a research assistant with the MIT Energy Initiative, attended the second week of the conference, where he followed the negotiations over loss and damage closely. 

    “While the creation of a fund is certainly an achievement,” Shaker said, “significant questions remain to be answered, such as the size of the funding available as well as which countries receive access to it.” A loss-and-damage fund that is not adequately funded, Shaker noted, “would not be an impactful outcome.” 

    The agreement on loss and damage created a new committee, made up of 24 country representatives, to “operationalize” the new funding arrangements, including identifying funding sources. The committee is tasked with delivering a set of recommendations at COP28, which will take place next year in Dubai.

    Advising the U.N. on net zero

    Though the decisions reached at COP27 did not include major new commitments on reducing emissions from the combustion of fossil fuels, the transition to a clean global energy system was nevertheless a key topic of conversation throughout the conference.

    The Council of Engineers for the Energy Transition (CEET), an independent, international body of engineers and energy systems experts formed to provide advice to the U.N. on achieving net-zero emissions globally by 2050, convened for the first time at COP27. Jessika Trancik, a professor in the MIT Institute for Data, Systems, and Society and a member of CEET, spoke on a U.N.-sponsored panel on solutions for the transition to clean energy.

    Trancik noted that the energy transition will look different in different regions of the world. “As engineers, we need to understand those local contexts and design solutions around those local contexts — that’s absolutely essential to support a rapid and equitable energy transition.”

    At the same time, Trancik noted that there is now a set of “low-cost, ready-to-scale tools” available to every region — tools that resulted from a globally competitive process of innovation, stimulated by public policies in different countries, that dramatically drove down the costs of technologies like solar energy and lithium-ion batteries. The key, Trancik said, is for regional transition strategies to “tap into global processes of innovation.”

    Reinventing climate adaptation

    Elfatih Eltahir, the H. M. King Bhumibol Professor of Hydrology and Climate, traveled to COP27 to present plans for the Jameel Observatory Climate Resilience Early Warning System (CREWSnet), one of the five projects selected in April 2022 as a flagship in MIT’s Climate Grand Challenges initiative. CREWSnet focuses on climate adaptation, the term for adapting to climate impacts that are unavoidable.

    The aim of CREWSnet, Eltahir told the audience during a panel discussion, is “nothing short of reinventing the process of climate change adaptation,” so that it is proactive rather than reactive; community-led; data-driven and evidence-based; and so that it integrates different climate risks, from heat waves to sea level rise, rather than treating them individually.

    “However, it’s easy to talk about these changes,” said Eltahir. “The real challenge, which we are now just launching and engaging in, is to demonstrate that on the ground.” Eltahir said that early demonstrations will happen in a couple of key locations, including southwest Bangladesh, where multiple climate risks — rising sea levels, increasing soil salinity, and intensifying heat waves and cyclones — are combining to threaten the area’s agricultural production.

    Building on COP26

    Some members of MIT’s delegation attended COP27 to advance efforts that had been formally announced at last year’s U.N. climate conference, COP26, in Glasgow, Scotland.

    At an official U.N. side event co-organized by MIT on Nov. 11, Greg Sixt, the director of the Food and Climate Systems Transformation (FACT) Alliance led by the Abdul Latif Jameel Water and Food Systems Lab, provided an update on the alliance’s work since its launch at COP26.

    Food systems are a major source of greenhouse gas emissions — and are increasingly vulnerable to climate impacts. The FACT Alliance works to better connect researchers to farmers, food businesses, policymakers, and other food systems stakeholders to make food systems (which include food production, consumption, and waste) more sustainable and resilient. 

    Sixt told the audience that the FACT Alliance now counts over 20 research and stakeholder institutions around the world among its members, but also collaborates with other institutions in an “open network model” to advance work in key areas — such as a new research project exploring how climate scenarios could affect global food supply chains.

    Marcela Angel, research program director for the Environmental Solutions Initiative (ESI), helped convene a meeting at COP27 of the Afro-InterAmerican Forum on Climate Change, which also launched at COP26. The forum works with Afro-descendant leaders across the Americas to address significant environmental issues, including climate risks and biodiversity loss. 

    At the event — convened with the Colombian government and the nonprofit Conservation International — ESI brought together leaders from six countries in the Americas and presented recent work that estimates that there are over 178 million individuals who identify as Afro-descendant living in the Americas, in lands of global environmental importance. 

    “There is a significant overlap between biodiversity hot spots, protected areas, and areas of high Afro-descendant presence,” said Angel. “But the role and climate contributions of these communities is understudied, and often made invisible.”    

    Limiting methane emissions

    Methane is a short-lived but potent greenhouse gas: When released into the atmosphere, it immediately traps about 120 times more heat than carbon dioxide does. More than 150 countries have now signed the Global Methane Pledge, launched at COP26, which aims to reduce methane emissions by at least 30 percent by 2030 compared to 2020 levels.

    Sergey Paltsev, the deputy director of the Joint Program on the Science and Policy of Global Change and a senior research scientist at the MIT Energy Initiative, gave the keynote address at a Nov. 17 event on methane, where he noted the importance of methane reductions from the oil and gas sector to meeting the 2030 goal.

    “The oil and gas sector is where methane emissions reductions could be achieved the fastest,” said Paltsev. “We also need to employ an integrated approach to address methane emissions in all sectors and all regions of the world because methane emissions reductions provide a near-term pathway to avoiding dangerous tipping points in the global climate system.”

    “Keep fighting relentlessly”

    Arina Khotimsky, a senior majoring in materials science and engineering and a co-president of the MIT Energy and Climate Club, attended the first week of COP27. She reflected on the experience in a social media post after returning home. 

    “COP will always have its haters. Is there greenwashing? Of course! Is everyone who should have a say in this process in the room? Not even close,” wrote Khotimsky. “So what does it take for COP to matter? It takes everyone who attended to not only put ‘climate’ on front-page news for two weeks, but to return home and keep fighting relentlessly against climate change. I know that I will.” More

  • in

    Reducing food waste to increase access to affordable foods

    About a third of the world’s food supply never gets eaten. That means the water, labor, energy, and fertilizer that went into growing, processing, and distributing the food is wasted.

    On the other end of the supply chain are cash-strapped consumers, who have been further distressed in recent years by factors like the Covid-19 pandemic and inflation.

    Spoiler Alert, a company founded by two MIT alumni, is helping companies bridge the gap between food waste and food insecurity with a platform connecting major food and beverage brands with discount grocers, retailers, and nonprofits. The platform helps brands discount or donate excess and short-dated inventory days, weeks, and months before it expires.

    “There is a tremendous amount of underutilized data that exists in the manufacturing and distribution space that results in good food going to waste,” says Ricky Ashenfelter MBA ’15, who co-founded the company with Emily Malina MBA ’15.

    Spoiler Alert helps brands manage distressed inventory data, create offers for potential buyers, and review and accept bids. The platform is designed to work with companies’ existing inventory and fulfillment systems, using automation and pricing intelligence to further streamline sales.

    “At a high level, we’re a waste-prevention software built for sales and supply-chain teams,” Ashenfelter says. “You can think of it as a private [business-to-business] eBay of sorts.”

    Spoiler Alert is working with global companies like Nestle, Kraft Heinz, and Danone, as well as discount grocers like the United Grocery Outlet and Misfits Market. Those brands are already using the platform to reduce food waste and get more food on people’s tables.

    “Project Drawdown [a nonprofit working on climate solutions] has identified food waste as the number one priority to address the global climate crisis, so these types of corporate initiatives can be really powerful from an environmental standpoint,” Ashenfelter says, noting the nonprofit estimates food waste accounts for 8 percent of global greenhouse gas emissions. “Contrast that with growing levels of food insecurity and folks not being able to access affordable nutrition, and you start to see how tackling supply-chain inefficiency can have a dramatic impact from both an environmental and a social lens. That’s what motivates us.”

    Untapped data for change

    Ashenfelter came to MIT’s Sloan School of Management after several years in sustainability software and management consulting within the retail and consumer products industries.

    “I was really attracted to transitioning into something much more entrepreneurial, and to leverage not only Sloan’s focus on entrepreneurship, but also the broader MIT ecosystem’s focus on technology, entrepreneurship, clean tech innovation, and other themes along that front,” he says.

    Ashenfelter met Malina at one of Sloan’s admitted students events in 2013, and the founders soon set out to use data to decrease food waste.

    “For us, the idea was clear: How do we better leverage data to manage excess and short-dated inventory?” Ashenfelter says. “How we go about that has evolved over the last six years, but it’s all rooted in solving an enormous climate problem, solving a major food insecurity problem, and from a capitalistic standpoint, helping businesses cut costs and generate revenue from otherwise wasted products.”

    The founders spent many hours in the Martin Trust Center for MIT Entrepreneurship with support from the Sloan Sustainability Initiative, and used Spoiler Alert as a case study in nearly every class they took, thinking through product development, sales, marketing, pricing, and more through their coursework.

    “We brought our idea into just about every action learning class that we could at Sloan and MIT,” Ashenfelter says.

    They also participated in the MIT $100K Entrepreneurship Competition and received support from the Venture Mentoring Service and the IDEAS Global Challenge program.

    Upon graduation, the founders initially began building a platform to facilitate donations of excess inventory, but soon learned big companies’ processes for discounting that inventory were also highly manual. Today, more than 90 percent of Spoiler Alert’s transaction volume is discounted, with the remainder donated.

    Different teams within an organization can upload excess inventory reports to Spoiler Alert’s system, eliminating the need to manually aggregate datasets and preparing what the industry refers to as “blowout lists” to sell. Spoiler Alert uses machine-learning-based tools to help both parties with pricing and negotiations to close deals more quickly.

    “Companies are taking pretty manual and slow approaches to deciding [what to do with excess inventory],” Ashenfelter says. “And when you have slow decision-making, you’re losing days or even weeks of shelf life on that product. That can be the difference between selling product versus donating, and donating versus dumping.”

    Once a deal has been made, Spoiler Alert automatically generates the forms and workflows needed by fulfillment teams to get the product out the door. The relationships companies build on the platform are also a major driver for cutting down waste.

    “We’re providing suppliers with the ability to control where their discounted and donated product ends up,” Ashenfelter says. “That’s really powerful because it allows these CPG brands to ensure that this product is, in many cases, getting to affordable nutrition outlets in underserved communities.”

    Ashenfelter says the majority of inventory goes to regional and national discount grocers, supplemented with extensive purchasing from local and nonprofit grocery chains.

    “Everything we do is oriented around helping sell as much product as possible to a reputable set of buyers at the most fair, equitable prices possible,” Ashenfelter says.

    Scaling for impact

    The pandemic has disrupted many aspects of the food supply chains. But Ashenfelter says it has also accelerated the adoption of digital solutions that can better manage such volatility.

    When Campbell began using Spoiler Alert’s system in 2019, for instance, it achieved a 36 percent increase in discount sales and a 27 percent increase in donations over the first five months.

    Ashenfelter says the results have proven that companies’ sustainability targets can go hand in hand with initiatives that boost their bottom lines. In fact, because Spoiler Alert focuses so much on the untapped revenue associated with food waste, many customers don’t even realize Spoiler Alert is a sustainability company until after they’ve signed on.

    “What’s neat about this program is that it becomes an incredibly powerful case study internally for how sustainability and operational outcomes aren’t in conflict and can drive both business results as well as overall environmental impact,” Ashenfelter says.

    Going forward, Spoiler Alert will continue building out algorithmic solutions that could further cut down on waste internationally and across a wider array of products.

    “At every step in our process, we’re collecting a tremendous amount of data in terms of what is and isn’t selling, at what price point, to which buyers, out of which geographies, and with how much remaining shelf life,” Ashenfelter explains. “We are only starting to scratch the surface in terms of bringing our recommendations engine to life for our suppliers and buyers. Ultimately our goal is to power the waste-free economy, and rooted in that is making better decisions faster, in collaboration with a growing ecosystem of supply chain partners, and with as little manual intervention as possible.” More

  • in

    Meet the 2021-22 Accenture Fellows

    Launched in October of 2020, the MIT and Accenture Convergence Initiative for Industry and Technology underscores the ways in which industry and technology come together to spur innovation. The five-year initiative aims to achieve its mission through research, education, and fellowships. To that end, Accenture has once again awarded five annual fellowships to MIT graduate students working on research in industry and technology convergence who are underrepresented, including by race, ethnicity, and gender.

    This year’s Accenture Fellows work across disciplines including robotics, manufacturing, artificial intelligence, and biomedicine. Their research covers a wide array of subjects, including: advancing manufacturing through computational design, with the potential to benefit global vaccine production; designing low-energy robotics for both consumer electronics and the aerospace industry; developing robotics and machine learning systems that may aid the elderly in their homes; and creating ingestible biomedical devices that can help gather medical data from inside a patient’s body.

    Student nominations from each unit within the School of Engineering, as well as from the four other MIT schools and the MIT Schwarzman College of Computing, were invited as part of the application process. Five exceptional students were selected as fellows in the initiative’s second year.

    Xinming (Lily) Liu is a PhD student in operations research at MIT Sloan School of Management. Her work is focused on behavioral and data-driven operations for social good, incorporating human behaviors into traditional optimization models, designing incentives, and analyzing real-world data. Her current research looks at the convergence of social media, digital platforms, and agriculture, with particular attention to expanding technological equity and economic opportunity in developing countries. Liu earned her BS from Cornell University, with a double major in operations research and computer science.

    Caris Moses is a PhD student in electrical engineering and computer science specializing inartificial intelligence. Moses’ research focuses on using machine learning, optimization, and electromechanical engineering to build robotics systems that are robust, flexible, intelligent, and can learn on the job. The technology she is developing holds promise for industries including flexible, small-batch manufacturing; robots to assist the elderly in their households; and warehouse management and fulfillment. Moses earned her BS in mechanical engineering from Cornell University and her MS in computer science from Northeastern University.

    Sergio Rodriguez Aponte is a PhD student in biological engineering. He is working on the convergence of computational design and manufacturing practices, which have the potential to impact industries such as biopharmaceuticals, food, and wellness/nutrition. His current research aims to develop strategies for applying computational tools, such as multiscale modeling and machine learning, to the design and production of manufacturable and accessible vaccine candidates that could eventually be available globally. Rodriguez Aponte earned his BS in industrial biotechnology from the University of Puerto Rico at Mayaguez.

    Soumya Sudhakar SM ’20 is a PhD student in aeronautics and astronautics. Her work is focused on theco-design of new algorithms and integrated circuits for autonomous low-energy robotics that could have novel applications in aerospace and consumer electronics. Her contributions bring together the emerging robotics industry, integrated circuits industry, aerospace industry, and consumer electronics industry. Sudhakar earned her BSE in mechanical and aerospace engineering from Princeton University and her MS in aeronautics and astronautics from MIT.

    So-Yoon Yang is a PhD student in electrical engineering and computer science. Her work on the development of low-power, wireless, ingestible biomedical devices for health care is at the intersection of the medical device, integrated circuit, artificial intelligence, and pharmaceutical fields. Currently, the majority of wireless biomedical devices can only provide a limited range of medical data measured from outside the body. Ingestible devices hold promise for the next generation of personal health care because they do not require surgical implantation, can be useful for detecting physiological and pathophysiological signals, and can also function as therapeutic alternatives when treatment cannot be done externally. Yang earned her BS in electrical and computer engineering from Seoul National University in South Korea and her MS in electrical engineering from Caltech. More