More stories

  • in

    Q&A: Global challenges surrounding the deployment of AI

    The AI Policy Forum (AIPF) is an initiative of the MIT Schwarzman College of Computing to move the global conversation about the impact of artificial intelligence from principles to practical policy implementation. Formed in late 2020, AIPF brings together leaders in government, business, and academia to develop approaches to address the societal challenges posed by the rapid advances and increasing applicability of AI.

    The co-chairs of the AI Policy Forum are Aleksander Madry, the Cadence Design Systems Professor; Asu Ozdaglar, deputy dean of academics for the MIT Schwarzman College of Computing and head of the Department of Electrical Engineering and Computer Science; and Luis Videgaray, senior lecturer at MIT Sloan School of Management and director of MIT AI Policy for the World Project. Here, they discuss talk some of the key issues facing the AI policy landscape today and the challenges surrounding the deployment of AI. The three are co-organizers of the upcoming AI Policy Forum Summit on Sept. 28, which will further explore the issues discussed here.

    Q: Can you talk about the ­ongoing work of the AI Policy Forum and the AI policy landscape generally?

    Ozdaglar: There is no shortage of discussion about AI at different venues, but conversations are often high-level, focused on questions of ethics and principles, or on policy problems alone. The approach the AIPF takes to its work is to target specific questions with actionable policy solutions and engage with the stakeholders working directly in these areas. We work “behind the scenes” with smaller focus groups to tackle these challenges and aim to bring visibility to some potential solutions alongside the players working directly on them through larger gatherings.

    Q: AI impacts many sectors, which makes us naturally worry about its trustworthiness. Are there any emerging best practices for development and deployment of trustworthy AI?

    Madry: The most important thing to understand regarding deploying trustworthy AI is that AI technology isn’t some natural, preordained phenomenon. It is something built by people. People who are making certain design decisions.

    We thus need to advance research that can guide these decisions as well as provide more desirable solutions. But we also need to be deliberate and think carefully about the incentives that drive these decisions. 

    Now, these incentives stem largely from the business considerations, but not exclusively so. That is, we should also recognize that proper laws and regulations, as well as establishing thoughtful industry standards have a big role to play here too.

    Indeed, governments can put in place rules that prioritize the value of deploying AI while being keenly aware of the corresponding downsides, pitfalls, and impossibilities. The design of such rules will be an ongoing and evolving process as the technology continues to improve and change, and we need to adapt to socio-political realities as well.

    Q: Perhaps one of the most rapidly evolving domains in AI deployment is in the financial sector. From a policy perspective, how should governments, regulators, and lawmakers make AI work best for consumers in finance?

    Videgaray: The financial sector is seeing a number of trends that present policy challenges at the intersection of AI systems. For one, there is the issue of explainability. By law (in the U.S. and in many other countries), lenders need to provide explanations to customers when they take actions deleterious in whatever way, like denial of a loan, to a customer’s interest. However, as financial services increasingly rely on automated systems and machine learning models, the capacity of banks to unpack the “black box” of machine learning to provide that level of mandated explanation becomes tenuous. So how should the finance industry and its regulators adapt to this advance in technology? Perhaps we need new standards and expectations, as well as tools to meet these legal requirements.

    Meanwhile, economies of scale and data network effects are leading to a proliferation of AI outsourcing, and more broadly, AI-as-a-service is becoming increasingly common in the finance industry. In particular, we are seeing fintech companies provide the tools for underwriting to other financial institutions — be it large banks or small, local credit unions. What does this segmentation of the supply chain mean for the industry? Who is accountable for the potential problems in AI systems deployed through several layers of outsourcing? How can regulators adapt to guarantee their mandates of financial stability, fairness, and other societal standards?

    Q: Social media is one of the most controversial sectors of the economy, resulting in many societal shifts and disruptions around the world. What policies or reforms might be needed to best ensure social media is a force for public good and not public harm?

    Ozdaglar: The role of social media in society is of growing concern to many, but the nature of these concerns can vary quite a bit — with some seeing social media as not doing enough to prevent, for example, misinformation and extremism, and others seeing it as unduly silencing certain viewpoints. This lack of unified view on what the problem is impacts the capacity to enact any change. All of that is additionally coupled with the complexities of the legal framework in the U.S. spanning the First Amendment, Section 230 of the Communications Decency Act, and trade laws.

    However, these difficulties in regulating social media do not mean that there is nothing to be done. Indeed, regulators have begun to tighten their control over social media companies, both in the United States and abroad, be it through antitrust procedures or other means. In particular, Ofcom in the U.K. and the European Union is already introducing new layers of oversight to platforms. Additionally, some have proposed taxes on online advertising to address the negative externalities caused by current social media business model. So, the policy tools are there, if the political will and proper guidance exists to implement them. More

  • in

    Computing for the health of the planet

    The health of the planet is one of the most important challenges facing humankind today. From climate change to unsafe levels of air and water pollution to coastal and agricultural land erosion, a number of serious challenges threaten human and ecosystem health.

    Ensuring the health and safety of our planet necessitates approaches that connect scientific, engineering, social, economic, and political aspects. New computational methods can play a critical role by providing data-driven models and solutions for cleaner air, usable water, resilient food, efficient transportation systems, better-preserved biodiversity, and sustainable sources of energy.

    The MIT Schwarzman College of Computing is committed to hiring multiple new faculty in computing for climate and the environment, as part of MIT’s plan to recruit 20 climate-focused faculty under its climate action plan. This year the college undertook searches with several departments in the schools of Engineering and Science for shared faculty in computing for health of the planet, one of the six strategic areas of inquiry identified in an MIT-wide planning process to help focus shared hiring efforts. The college also undertook searches for core computing faculty in the Department of Electrical Engineering and Computer Science (EECS).

    The searches are part of an ongoing effort by the MIT Schwarzman College of Computing to hire 50 new faculty — 25 shared with other academic departments and 25 in computer science and artificial intelligence and decision-making. The goal is to build capacity at MIT to help more deeply infuse computing and other disciplines in departments.

    Four interdisciplinary scholars were hired in these searches. They will join the MIT faculty in the coming year to engage in research and teaching that will advance physical understanding of low-carbon energy solutions, Earth-climate modeling, biodiversity monitoring and conservation, and agricultural management through high-performance computing, transformational numerical methods, and machine-learning techniques.

    “By coordinating hiring efforts with multiple departments and schools, we were able to attract a cohort of exceptional scholars in this area to MIT. Each of them is developing and using advanced computational methods and tools to help find solutions for a range of climate and environmental issues,” says Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing and the Henry Warren Ellis Professor of Electrical Engineering and Computer Science. “They will also help strengthen cross-departmental ties in computing across an important, critical area for MIT and the world.”

    “These strategic hires in the area of computing for climate and the environment are an incredible opportunity for the college to deepen its academic offerings and create new opportunity for collaboration across MIT,” says Anantha P. Chandrakasan, dean of the MIT School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science. “The college plays a pivotal role in MIT’s overarching effort to hire climate-focused faculty — introducing the critical role of computing to address the health of the planet through innovative research and curriculum.”

    The four new faculty members are:

    Sara Beery will join MIT as an assistant professor in the Faculty of Artificial Intelligence and Decision-Making in EECS in September 2023. Beery received her PhD in computing and mathematical sciences at Caltech in 2022, where she was advised by Pietro Perona. Her research focuses on building computer vision methods that enable global-scale environmental and biodiversity monitoring across data modalities, tackling real-world challenges including strong spatiotemporal correlations, imperfect data quality, fine-grained categories, and long-tailed distributions. She partners with nongovernmental organizations and government agencies to deploy her methods in the wild worldwide and works toward increasing the diversity and accessibility of academic research in artificial intelligence through interdisciplinary capacity building and education.

    Priya Donti will join MIT as an assistant professor in the faculties of Electrical Engineering and Artificial Intelligence and Decision-Making in EECS in academic year 2023-24. Donti recently finished her PhD in the Computer Science Department and the Department of Engineering and Public Policy at Carnegie Mellon University, co-advised by Zico Kolter and Inês Azevedo. Her work focuses on machine learning for forecasting, optimization, and control in high-renewables power grids. Specifically, her research explores methods to incorporate the physics and hard constraints associated with electric power systems into deep learning models. Donti is also co-founder and chair of Climate Change AI, a nonprofit initiative to catalyze impactful work at the intersection of climate change and machine learning that is currently running through the Cornell Tech Runway Startup Postdoc Program.

    Ericmoore Jossou will join MIT as an assistant professor in a shared position between the Department of Nuclear Science and Engineering and the faculty of electrical engineering in EECS in July 2023. He is currently an assistant scientist at the Brookhaven National Laboratory, a U.S. Department of Energy-affiliated lab that conducts research in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience, and national security. His research at MIT will focus on understanding the processing-structure-properties correlation of materials for nuclear energy applications through advanced experiments, multiscale simulations, and data science. Jossou obtained his PhD in mechanical engineering in 2019 from the University of Saskatchewan.

    Sherrie Wang will join MIT as an assistant professor in a shared position between the Department of Mechanical Engineering and the Institute for Data, Systems, and Society in academic year 2023-24. Wang is currently a Ciriacy-Wantrup Postdoctoral Fellow at the University of California at Berkeley, hosted by Solomon Hsiang and the Global Policy Lab. She develops machine learning for Earth observation data. Her primary application areas are improving agricultural management and forecasting climate phenomena. She obtained her PhD in computational and mathematical engineering from Stanford University in 2021, where she was advised by David Lobell. More

  • in

    New leadership at MIT’s Center for Biomedical Innovation

    As it continues in its mission to improve global health through the development and implementation of biomedical innovation, the MIT Center for Biomedical Innovation (CBI) today announced changes to its leadership team: Stacy Springs has been named executive director, and Professor Richard Braatz has joined as the center’s new associate faculty director.

    The change in leadership comes at a time of rapid development in new therapeutic modalities, growing concern over global access to biologic medicines and healthy food, and widespread interest in applying computational tools and multi-disciplinary approaches to address long-standing biomedical challenges.

    “This marks an exciting new chapter for the CBI,” says faculty director Anthony J. Sinskey, professor of biology, who cofounded CBI in 2005. “As I look back at almost 20 years of CBI history, I see an exponential growth in our activities, educational offerings, and impact.”

    The center’s collaborative research model accelerates innovation in biotechnology and biomedical research, drawing on the expertise of faculty and researchers in MIT’s schools of Engineering and Science, the MIT Schwarzman College of Computing, and the MIT Sloan School of Management.

    Springs steps into the role of executive director having previously served as senior director of programs for CBI and as executive director of CBI’s Biomanufacturing Program and its Consortium on Adventitious Agent Contamination in Biomanufacturing (CAACB). She succeeds Gigi Hirsch, who founded the NEW Drug Development ParadIGmS (NEWDIGS) Initiative at CBI in 2009. Hirsch and NEWDIGS have now moved to Tufts Medical Center, establishing a headquarters at the new Center for Biomedical System Design within the Institute for Clinical Research and Health Policy Studies there.

    Braatz, a chemical engineer whose work is informed by mathematical modeling and computational techniques, conducts research in process data analytics, design, and control of advanced manufacturing systems.

    “It’s been great to interact with faculty from across the Institute who have complementary expertise,” says Braatz, the Edwin R. Gilliland Professor in the Department of Chemical Engineering. “Participating in CBI’s workshops has led to fruitful partnerships with companies in tackling industry-wide challenges.”

    CBI is housed under the Institute for Data Systems and Society and, specifically, the Sociotechnical Systems Research Center in the MIT Schwarzman College of Computing. CBI is home to two biomanufacturing consortia: the CAACB and the Biomanufacturing Consortium (BioMAN). Through these precompetitive collaborations, CBI researchers work with biomanufacturers and regulators to advance shared interests in biomanufacturing.

    In addition, CBI researchers are engaged in several sponsored research programs focused on integrated continuous biomanufacturing capabilities for monoclonal antibodies and vaccines, analytical technologies to measure quality and safety attributes of a variety of biologics, including gene and cell therapies, and rapid-cycle development of virus-like particle vaccines for SARS-CoV-2.

    In another significant initiative, CBI researchers are applying data analytics strategies to biomanufacturing problems. “In our smart data analytics project, we are creating new decision support tools and algorithms for biomanufacturing process control and plant-level decision-making. Further, we are leveraging machine learning and natural language processing to improve post-market surveillance studies,” says Springs.

    CBI is also working on advanced manufacturing for cell and gene therapies, among other new modalities, and is a part of the Singapore-MIT Alliance for Research and Technology – Critical Analytics for Manufacturing Personalized-Medicine (SMART CAMP). SMART CAMP is an international research effort focused on developing the analytical tools and biological understanding of critical quality attributes that will enable the manufacture and delivery of improved cell therapies to patients.

    “This is a crucial time for biomanufacturing and for innovation across the health-care value chain. The collaborative efforts of MIT researchers and consortia members will drive fundamental discovery and inform much-needed progress in industry,” says MIT Vice President for Research Maria Zuber.

    “CBI has a track record of engaging with health-care ecosystem challenges. I am confident that under the new leadership, it will continue to inspire MIT, the United States, and the entire world to improve the health of all people,” adds Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing. More

  • in

    Caspar Hare, Georgia Perakis named associate deans of Social and Ethical Responsibilities of Computing

    Caspar Hare and Georgia Perakis have been appointed the new associate deans of the Social and Ethical Responsibilities of Computing (SERC), a cross-cutting initiative in the MIT Stephen A. Schwarzman College of Computing. Their new roles will take effect on Sept. 1.

    “Infusing social and ethical aspects of computing in academic research and education is a critical component of the college mission,” says Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing and the Henry Ellis Warren Professor of Electrical Engineering and Computer Science. “I look forward to working with Caspar and Georgia on continuing to develop and advance SERC and its reach across MIT. Their complementary backgrounds and their broad connections across MIT will be invaluable to this next chapter of SERC.”

    Caspar Hare

    Hare is a professor of philosophy in the Department of Linguistics and Philosophy. A member of the MIT faculty since 2003, his main interests are in ethics, metaphysics, and epistemology. The general theme of his recent work has been to bring ideas about practical rationality and metaphysics to bear on issues in normative ethics and epistemology. He is the author of two books: “On Myself, and Other, Less Important Subjects” (Princeton University Press 2009), about the metaphysics of perspective, and “The Limits of Kindness” (Oxford University Press 2013), about normative ethics.

    Georgia Perakis

    Perakis is the William F. Pounds Professor of Management and professor of operations research, statistics, and operations management at the MIT Sloan School of Management, where she has been a faculty member since 1998. She investigates the theory and practice of analytics and its role in operations problems and is particularly interested in how to solve complex and practical problems in pricing, revenue management, supply chains, health care, transportation, and energy applications, among other areas. Since 2019, she has been the co-director of the Operations Research Center, an interdepartmental PhD program that jointly reports to MIT Sloan and the MIT Schwarzman College of Computing, a role in which she will remain. Perakis will also assume an associate dean role at MIT Sloan in recognition of her leadership.

    Hare and Perakis succeed David Kaiser, the Germeshausen Professor of the History of Science and professor of physics, and Julie Shah, the H.N. Slater Professor of Aeronautics and Astronautics, who will be stepping down from their roles at the conclusion of their three-year term on Aug. 31.

    “My deepest thanks to Dave and Julie for their tremendous leadership of SERC and contributions to the college as associate deans,” says Huttenlocher.

    SERC impact

    As the inaugural associate deans of SERC, Kaiser and Shah have been responsible for advancing a mission to incorporate humanist, social science, social responsibility, and civic perspectives into MIT’s teaching, research, and implementation of computing. In doing so, they have engaged dozens of faculty members and thousands of students from across MIT during these first three years of the initiative.

    They have brought together people from a broad array of disciplines to collaborate on crafting original materials such as active learning projects, homework assignments, and in-class demonstrations. A collection of these materials was recently published and is now freely available to the world via MIT OpenCourseWare.

    In February 2021, they launched the MIT Case Studies in Social and Ethical Responsibilities of Computing for undergraduate instruction across a range of classes and fields of study. The specially commissioned and peer-reviewed cases are based on original research and are brief by design. Three issues have been published to date and a fourth will be released later this summer. Kaiser will continue to oversee the successful new series as editor.

    Last year, 60 undergraduates, graduate students, and postdocs joined a community of SERC Scholars to help advance SERC efforts in the college. The scholars participate in unique opportunities throughout, such as the summer Experiential Ethics program. A multidisciplinary team of graduate students last winter worked with the instructors and teaching assistants of class 6.036 (Introduction to Machine Learning), MIT’s largest machine learning course, to infuse weekly labs with material covering ethical computing, data and model bias, and fairness in machine learning through SERC.

    Through efforts such as these, SERC has had a substantial impact at MIT and beyond. Over the course of their tenure, Kaiser and Shah have engaged about 80 faculty members, and more than 2,100 students took courses that included new SERC content in the last year alone. SERC’s reach extended well beyond engineering students, with about 500 exposed to SERC content through courses offered in the School of Humanities, Arts, and Social Sciences, the MIT Sloan School of Management, and the School of Architecture and Planning. More

  • in

    Costis Daskalakis appointed inaugural Avanessians Professor in the MIT Schwarzman College of Computing

    The MIT Stephen A. Schwarzman College of Computing has named Costis Daskalakis as the inaugural holder of the Avanessians Professorship. His chair began on July 1.

    Daskalakis is the first person appointed to this position generously endowed by Armen Avanessians ’81. Established in the MIT Schwarzman College of Computing, the new chair provides Daskalakis with additional support to pursue his research and develop his career.

    “I’m delighted to recognize Costis for his scholarship and extraordinary achievements with this distinguished professorship,” says Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing and the Henry Ellis Warren Professor of Electrical Engineering and Computer Science.

    A professor in the MIT Department of Electrical Engineering and Computer Science, Daskalakis is a theoretical computer scientist who works at the interface of game theory, economics, probability theory, statistics, and machine learning. He has resolved long-standing open problems about the computational complexity of the Nash equilibrium, the mathematical structure and computational complexity of multi-item auctions, and the behavior of machine-learning methods such as the expectation-maximization algorithm. He has obtained computationally and statistically efficient methods for statistical hypothesis testing and learning in high-dimensional settings, as well as results characterizing the structure and concentration properties of high-dimensional distributions. His current work focuses on multi-agent learning, learning from biased and dependent data, causal inference, and econometrics.

    A native of Greece, Daskalakis joined the MIT faculty in 2009. He is a member of the Computer Science and Artificial Intelligence Laboratory and is affiliated with the Laboratory for Information and Decision Systems and the Operations Research Center. He is also an investigator in the Foundations of Data Science Institute.

    He has previously received such honors as the 2018 Nevanlinna Prize from the International Mathematical Union, the 2018 ACM Grace Murray Hopper Award, the Kalai Game Theory and Computer Science Prize from the Game Theory Society, and the 2008 ACM Doctoral Dissertation Award. More

  • in

    MIT welcomes eight MLK Visiting Professors and Scholars for 2022-23

    From space traffic to virus evolution, community journalism to hip-hop, this year’s cohort in the Martin Luther King Jr. (MLK) Visiting Professors and Scholars Program will power an unprecedented range of intellectual pursuits during their time on the MIT campus. 

    “MIT is so fortunate to have this group of remarkable individuals join us,” says Institute Community and Equity Officer John Dozier. “They bring a range and depth of knowledge to share with our students and faculty, and we look forward to working with them to build a stronger sense of community across the Institute.”

    Since its inception in 1990, the MLK Scholars Program has hosted more than 135 visiting professors, practitioners, and intellectuals who enhance and enrich the MIT community through their engagement with students and faculty. The program, which honors the life and legacy of MLK by increasing the presence and recognizing the contributions of underrepresented scholars, is supported by the Office of the Provost with oversight from the Institute Community and Equity Office. 

    In spring 2022, MIT President Rafael Reif committed to MIT to adding two new positions in the MLK Visiting Scholars Program, including an expert in Native American studies. Those additional positions will be filled in the coming year.  

    The 2022-23 MLK Scholars:

    Daniel Auguste is an assistant professor in the Department of Sociology at Florida Atlantic University and is hosted by Roberto Fernandez in MIT Sloan School of Management. Auguste’s research interests include social inequalities in entrepreneurship development. During his visit, Auguste will study the impact of education debt burden and wealth inequality on business ownership and success, and how these consequences differ by race and ethnicity.

    Tawanna Dillahunt is an associate professor in the School of Information at the University of Michigan, where she also holds an appointment with the electrical engineering and computer science department. Catherine D’Ignazio in the Department of Urban Studies and Planning and Fotini Christia in the Institute for Data, Systems, and Society are her faculty hosts. Dillahunt’s scholarship focuses on equitable and inclusive computing. She identifies technological opportunities and implements tools to address and alleviate employment challenges faced by marginalized people. Dillahunt’s visiting appointment begins in September 2023.

    Javit Drake ’94 is a principal scientist in modeling and simulation and measurement sciences at Proctor & Gamble. His faculty host is Fikile Brushett in the Department of Chemical Engineering. An industry researcher with electrochemical energy expertise, Drake is a Course 10 (chemical engineering) alumnus, repeat lecturer, and research affiliate in the department. During his visit, he will continue to work with the Brushett Research Group to deepen his research and understanding of battery technologies while he innovates from those discoveries.

    Eunice Ferreira is an associate professor in the Department of Theater at Skidmore College and is hosted by Claire Conceison in Music and Theater Arts. This fall, Ferreira will teach “Black Theater Matters,” a course where students will explore performance and the cultural production of Black intellectuals and artists on Broadway and in local communities. Her upcoming book projects include “Applied Theatre and Racial Justice: Radical Imaginings for Just Communities” (forthcoming from Routledge) and “Crioulo Performance: Remapping Creole and Mixed Race Theatre” (forthcoming from Vanderbilt University Press). 

    Wasalu Jaco, widely known as Lupe Fiasco, is a rapper, record producer, and entrepreneur. He will be co-hosted by Nick Montfort of Comparative Media Studies/Writing and Mary Fuller of Literature. Jaco’s interests lie in the nexus of rap, computing, and activism. As a former visiting artist in MIT’s Center for Art, Science and Technology (CAST), he will leverage existing collaborations and participate in digital media and art research projects that use computing to explore novel questions related to hip-hop and rap. In addition to his engagement in cross-departmental projects, Jaco will teach a spring course on rap in the media and social contexts.

    Moribah Jah is an associate professor in the Aerospace Engineering and Engineering Mechanics Department at the University of Texas at Austin. He is hosted by Danielle Wood in Media Arts and Sciences and the Department of Aeronautics and Astronautics, and Richard Linares in the Department of Aeronautics and Astronautics. Jah’s research interests include space sustainability and space traffic management; as a visiting scholar, he will develop and strengthen a joint MIT/UT-Austin research program to increase resources and visibility of space sustainability. Jah will also help host the AeroAstro Rising Stars symposium, which highlights graduate students, postdocs, and early-career faculty from backgrounds underrepresented in aerospace engineering. 

    Louis Massiah SM ’82 is a documentary filmmaker and the founder and director of community media of Scribe Video Center, a nonprofit organization that uses media as a tool for social change. His work focuses on empowering Black, Indigenous, and People of Color (BIPOC) filmmakers to tell the stories of/by BIPOC communities. Massiah is hosted by Vivek Bald in Creative Media Studies/Writing. Massiah’s first project will be the launch of a National Community Media Journalism Consortium, a platform to share local news on a broader scale across communities.

    Brian Nord, a scientist at Fermi National Accelerator Laboratory, will join the Laboratory for Nuclear Science, hosted by Jesse Thaler in the Department of Physics. Nord’s research interests include the connection between ethics, justice, and scientific discovery. His efforts will be aimed at introducing new insights into how we model physical systems, design scientific experiments, and approach the ethics of artificial intelligence. As a lead organizer of the Strike for Black Lives in 2020, Nord will engage with justice-oriented members of the MIT physics community to strategize actions for advocacy and activism.

    Brandon Ogbunu, an assistant professor in the Department of Ecology and Evolutionary Biology at Yale University, will be hosted by Matthew Shoulders in the Department of Chemistry. Ogbunu’s research focus is on implementing chemistry and materials science perspectives into his work on virus evolution. In addition to serving as a guest lecturer in graduate courses, he will be collaborating with the Office of Engineering Outreach Programs on their K-12 outreach and recruitment efforts.

    For more information about these scholars and the program, visit mlkscholars.mit.edu. More

  • in

    3 Questions: Marking the 10th anniversary of the Higgs boson discovery

    This July 4 marks 10 years since the discovery of the Higgs boson, the long-sought particle that imparts mass to all elementary particles. The elusive particle was the last missing piece in the Standard Model of particle physics, which is our most complete model of the universe.

    In early summer of 2012, signs of the Higgs particle were detected in the Large Hadron Collider (LHC), the world’s largest particle accelerator, which is operated by CERN, the European Organization for Nuclear Research. The LHC is engineered to smash together billions upon billions of protons for the chance at producing the Higgs boson and other particles that are predicted to have been created in the early universe.

    In analyzing the products of countless proton-on-proton collisions, scientists registered a Higgs-like signal in the accelerator’s two independent detectors, ATLAS and CMS (the Compact Muon Solenoid). Specifically, the teams observed signs that a new particle had been created and then decayed to two photons, two Z bosons or two W bosons, and that this new particle was likely the Higgs boson.

    The discovery was revealed within the CMS collaboration, including over 3,000 scientists, on June 15, and ATLAS and CMS announced their respective observations to the world on July 4. More than 50 MIT physicists and students contributed to the CMS experiment, including Christoph Paus, professor of physics, who was one of the experiment’s two lead investigators to organize the search for the Higgs boson.

    As the LHC prepares to start back up on July 5 with “Run 3,” MIT News spoke with Paus about what physicists have learned about the Higgs particle in the last 10 years, and what they hope to discover with this next deluge of particle data.

    Q: Looking back, what do you remember as the key moments leading up to the Higgs boson’s discovery?

    A: I remember that by the end of 2011, we had taken a significant amount of data, and there were some first hints that there could be something, but nothing that was conclusive enough. It was clear to everybody that we were entering the critical phase of a potential discovery. We still wanted to improve our searches, and so we decided, which I felt was one of the most important decisions we took, that we had to remove the bias — that is, remove our knowledge about where the signal could appear. Because it’s dangerous as a scientist to say, “I know the solution,” which can influence the result unconsciously. So, we made that decision together in the coordination group and said, we are going to get rid of this bias by doing what people refer to as a “blind” analysis. This allowed the analyzers to focus on the technical aspects, making sure everything was correct without having to worry about being influenced by what they saw.

    Then, of course, there had to be the moment where we unblind the data and really look to see, is the Higgs there or not. And about two weeks before the scheduled presentations on July 4 where we eventually announced the discovery, there was a meeting on June 15 to show the analysis with its results to the collaboration. The most significant analysis turned out to be the two-photon analysis. One of my students, Joshua Bendavid PhD ’13, was leading that analysis, and the night before the meeting, only he and another person on the team were allowed to unblind the data. They were working until 2 in the morning, when they finally pushed a button to see what it looks like. And they were the first in CMS to have that moment of seeing that [the Higgs boson] was there. Another student of mine who was working on this analysis, Mingming Yang PhD ’15, presented the results of that search to the Collaboration at CERN that following afternoon. It was a very exciting moment for all of us. The room was hot and filled with electricity.

    The scientific process of the discovery was very well-designed and executed, and I think it can serve as a blueprint for how people should do such searches.

    Q: What more have scientists learned of the Higgs boson since the particle’s detection?

    A: At the time of the discovery, something interesting happened I did not really expect. While we were always talking about the Higgs boson before, we became very careful once we saw that “narrow peak.” How could we be sure that it was the Higgs boson and not something else? It certainly looked like the Higgs boson, but our vision was quite blurry. It could have turned out in the following years that it was not the Higgs boson. But as we now know, with so much more data, everything is completely consistent with what the Higgs boson is predicted to look like, so we became comfortable with calling the narrow resonance not just a Higgs-like particle but rather simply the Higgs boson. And there were a few milestones that made sure this is really the Higgs as we know it.

    The initial discovery was based on Higgs bosons decaying to two photons, two Z bosons or two W bosons. That was only a small fraction of decays that the Higgs could undergo. There are many more. The amount of decays of the Higgs boson into a particular set of particles depends critically on their masses. This characteristic feature is essential to confirm that we are really dealing with the Higgs boson.

    What we found since then is that the Higgs boson does not only decay to bosons, but also to fermions, which is not obvious because bosons are force carrier particles while fermions are matter particles. The first new decay was the decay to tau leptons, the heavier sibling of the electron. The next step was the observation of the Higgs boson decaying to b quarks, the heaviest quark that the Higgs can decay to. The b quark is the heaviest sibling of the down quark, which is a building block of protons and neutrons and thus all atomic nuclei around us. These two fermions are part of the heaviest generation of fermions in the standard model. Only recently the Higgs boson was observed to decay to muons, the charge lepton of the second and thus lighter generation, at the expected rate. Also, the direct coupling to the heaviest  top quark was established, which spans together with the muons four orders of magnitudes in terms of their masses, and the Higgs coupling behaves as expected over this wide range.

    Q: As the Large Hadron Collider gears up for its new “Run 3,” what do you hope to discover next?

    One very interesting question that Run 3 might give us some first hints on is the self-coupling of the Higgs boson. As the Higgs couples to any massive particle, it can also couple to itself. It is unlikely that there is enough data to make a discovery, but first hints of this coupling would be very exciting to see, and this constitutes a fundamentally different test than what has been done so far.

    Another interesting aspect that more data will help to elucidate is the question of whether the Higgs boson might be a portal and decay to invisible particles that could be candidates for explaining the mystery of dark matter in the universe. This is not predicted in our standard model and thus would unveil the Higgs boson as an imposter.

    Of course, we want to double down on all the measurements we have made so far and see whether they continue to line up with our expectations.

    This is true also for the upcoming major upgrade of the LHC (runs starting in 2029) for what we refer to as the High Luminosity LHC (HL-LHC). Another factor of 10 more events will be accumulated during this program, which for the Higgs boson means we will be able to observe its self-coupling. For the far future, there are plans for a Future Circular Collider, which could ultimately measure the total decay width of the Higgs boson independent of its decay mode, which would be another important and very precise test whether the Higgs boson is an imposter.

    As any other good physicist, I hope though that we can find a crack in the armor of the Standard Model, which is so far holding up all too well. There are a number of very important observations, for example the nature of dark matter, that cannot be explained using the Standard Model. All of our future studies, from Run 3 starting on July 5 to the very in the future FCC, will give us access to entirely uncharted territory. New phenomena can pop up, and I like to be optimistic. More

  • in

    Emery Brown wins a share of 2022 Gruber Neuroscience Prize

    The Gruber Foundation announced on May 17 that Emery N. Brown, the Edward Hood Taplin Professor of Medical Engineering and Computational Neuroscience at MIT, has won the 2022 Gruber Neuroscience Prize along with neurophysicists Laurence Abbott of Columbia University, Terrence Sejnowski of the Salk Institute for Biological Studies, and Haim Sompolinsky of the Hebrew University of Jerusalem.

    The foundation says it honored the four recipients for their influential contributions to the fields of computational and theoretical neuroscience. As datasets have grown ever larger and more complex, these fields have increasingly helped scientists unravel the mysteries of how the brain functions in both health and disease. The prize, which includes a total $500,000 award, will be presented in San Diego, California, on Nov. 13 at the annual meeting of the Society for Neuroscience.

    “These four remarkable scientists have applied their expertise in mathematical and statistical analysis, physics, and machine learning to create theories, mathematical models, and tools that have greatly advanced how we study and understand the brain,” says Joshua Sanes, professor of molecular and cellular biology and founding director of the Center for Brain Science at Harvard University and member of the selection advisory board to the prize. “Their insights and research have not only transformed how experimental neuroscientists do their research, but also are leading to promising new ways of providing clinical care.”

    Brown, who is an investigator in The Picower Institute for Learning and Memory and the Institute for Medical Engineering and Science at MIT, an anesthesiologist at Massachusetts General Hospital, and a professor at Harvard Medical School, says: “It is a pleasant surprise and tremendous honor to be named a co-recipient of the 2022 Gruber Prize in Neuroscience. I am especially honored to share this award with three luminaries in computational and theoretical neuroscience.”

    Brown’s early groundbreaking findings in neuroscience included a novel algorithm that decodes the position of an animal by observing the activity of a small group of place cells in the animal’s brain, a discovery he made while working with fellow Picower Institute investigator Matt Wilson in the 1990s. The resulting state-space algorithm for point processes not only offered much better decoding with fewer neurons than previous approaches, but it also established a new framework for specifying dynamically the relationship between the spike trains (the timing sequence of firing neurons) in the brain and factors from the outside world.

    “One of the basic questions at the time was whether an animal holds a representation of where it is in its mind — in the hippocampus,” Brown says. “We were able to show that it did, and we could show that with only 30 neurons.”

    After introducing this state-space paradigm to neuroscience, Brown went on to refine the original idea and apply it to other dynamic situations — to simultaneously track neural activity and learning, for example, and to define with precision anesthesia-induced loss of consciousness, as well as its subsequent recovery. In the early 2000s, Brown put together a team to specifically study anesthesia’s effects on the brain.

    Through experimental research and mathematical modeling, Brown and his team showed that the altered arousal states produced by the main classes of anesthesia medications can be characterized by analyzing the oscillatory patterns observed in the EEG along with the locations of their molecular targets, and the anatomy and physiology of the neural circuits that connect those locations. He has established, including in recent papers with Picower Professor Earl K. Miller, that a principal way in which anesthetics produce unconsciousness is by producing oscillations that impair how different brain regions communicate with each other.

    The result of Brown’s research has been a new paradigm for brain monitoring during general anesthesia for surgery, one that allows an anesthesiologist to dose the patient based on EEG readouts (neural oscillations) of the patient’s anesthetic state rather than purely on vital sign responses. This pioneering approach promises to revolutionize how anesthesia medications are delivered to patients, and also shed light on other altered states of arousal such as sleep and coma.

    To advance that vision, Brown recently discussed how he is working to develop a new research center at MIT and MGH to further integrate anesthesiology with neuroscience research. The Brain Arousal State Control Innovation Center, he said, would not only advance anesthesiology care but also harness insights gained from anesthesiology research to improve other aspects of clinical neuroscience.

    “By demonstrating that physics and mathematics can make an enormous contribution to neuroscience, doctors Abbott, Brown, Sejnowski, and Sompolinsky have inspired an entire new generation of physicists and other quantitative scientists to follow in their footsteps,” says Frances Jensen, professor and chair of the Department of Neurology and co-director of the Penn Medicine Translational Neuroscience Center within the Perelman School of Medicine at the University of Pennsylvania, and chair of the Selection Advisory Board to the prize. “The ramifications for neuroscience have been broad and profound. It is a great pleasure to be honoring each of them with this prestigious award.”

    This report was adapted from materials provided by the Gruber Foundation. More