More stories

  • in

    Using data to write songs for progress

    A three-year recipient of MIT’s Emerson Classical Vocal Scholarships, senior Ananya Gurumurthy recalls getting ready to step onto the Carnegie Hall stage to sing a Mozart opera that she once sang with the New York All-State Choir. The choir conductor reminded her to articulate her words and to engage her diaphragm.

    “If you don’t project your voice, how are people going to hear you when you perform?” Gurumurthy recalls her conductor telling her. “This is your moment, your chance to connect with such a tremendous audience.”

    Gurumurthy reflects on the universal truth of those words as she adds her musical talents to her math and computer science studies to campaign for social and economic justice.

    The daughter of immigrants

    Growing up in Edgemont, New York, she was inspired to fight on behalf of others by her South Asian immigrant parents, who came to the United States in the 1980s. Her father is a management consultant and her mother has experience as an investment banker.

    “They came barely 15 years after the passage of the 1965 Immigration and Nationality Act, which removed national origin quotas from the American immigration system,” she says. “I would not be here if it had not been for the Civil Rights Movement, which preceded both me and my parents.”

    Her parents told her about their new home’s anti-immigrant sentiments; for example, her father was a graduate student in Dallas exiting a store when he was pelted with glass bottles and racial slurs.

    “I often consider the amount of bravery that it must have taken them to abandon everything they knew to immigrate to a new, but still imperfect, country in search of something better,” she says. “As a result, I have always felt so grounded in my identity both as a South Asian American and a woman of color. These identities have allowed me to think critically about how I can most effectively reform the institutions surrounding me.”

    Gurumurthy has been singing since she was 11, but in high school, she decided to also build her political voice by working for New York Senator Andrea Stewart-Cousins. At one point, Gurumurthy noted a log was kept for the subjects of constituent calls, such as “affordable housing” and  “infrastructure,” and it was then that she became aware that Stewart-Cousins would address the most pressing of these callers’ issues before the Senate.

    “This experience was my first time witnessing how powerful the mobilization of constituents in vast numbers was for influencing meaningful legislative change,” says Gurumurthy.

    After she began applying her math skills to political campaigns, Gurumurthy was soon tapped to run analytics for the Democratic National Committee’s (DNC) midterm election initiative. As a lead analyst for the New York DNC, she adapted an interactive activation-competition (IAC) model to understand voting patterns in the 2018 and 2020 elections. She collected data from public voting records to predict how constituents would cast their ballots and used an IAC algorithm to strategize alongside grassroots organizations and allocate resources to empower historically disenfranchised groups in municipal, state, and federal elections to encourage them to vote.

    Research and student organizing at MIT

    When she arrived at MIT in 2019 to study mathematics with computer science, along with minors in music and economics, she admits she was saddled with the naïve notion that she would “build digital tools that could single-handedly alleviate all of the collective pressures of systemic injustice in this country.” 

    Since then, she has learned to create what she calls “a more nuanced view.” She picked up data analytics skills to build mobilization platforms for organizations that pursued social and economic justice, including working in Fulton County, Georgia, with Fair Fight Action (through the Kelly-Douglas Fund Scholarship) to analyze patterns of voter suppression, and MIT’s ethics laboratories in the Computer Science and Artificial Intelligence Laboratory to build symbolic artificial intelligence protocols to better understand bias in artificial intelligence algorithms. For her work on the International Monetary Fund (through the MIT Washington Summer Internship Program), Gurumurthy was awarded second place for the 2022 S. Klein Prize in Technical Writing for her paper “The Rapid Rise of Cryptocurrency.”

    “The outcomes of each project gave me more hope to begin the next because I could see the impact of these digital tools,” she says. “I saw people feel empowered to use their voices whether it was voting for the first time, protesting exploitative global monetary policy, or fighting gender discrimination. I’ve been really fortunate to see the power of mathematical analysis firsthand.”

    “I have come to realize that the constructive use of technology could be a powerful voice of resistance against injustice,” she says. “Because numbers matter, and when people bear witness to them, they are pushed to take action in meaningful ways.”

    Hoping to make a difference in her own community, she joined several Institute committees. As co-chair of the Undergraduate Association’s education committee, she propelled MIT’s first-ever digital petition for grade transparency and worked with faculty members on Institute committees to ensure that all students were being provided adequate resources to participate in online education in the wake of the Covid-19 pandemic. The digital petition inspired her to begin a project, called Insite, to develop a more centralized digital means of data collection on student life at MIT to better inform policies made by its governing bodies. As Ring Committee chair, she ensured that the special traditions of the “Brass Rat” were made economically accessible to all class members by helping the committee nearly triple its financial aid budget. For her efforts at MIT, last May she received the William L. Stewart, Jr. Award for “[her] contributions [as] an individual student at MIT to extracurricular activities and student life.”

    Ananya plans on going to law school after graduation, to study constitutional law so that she can use her technical background to build quantitative evidence in cases pertaining to voting rights, social welfare, and ethical technology, and set legal standards ”for the humane use of data,” she says.

    “In building digital tools for a variety of social and economic justice organizations, I hope that we can challenge our existing systems of power and realize the progress we so dearly need to witness. There is strength in numbers, both algorithmically and organizationally. I believe it is our responsibility to simultaneously use these strengths to change the world.”

    Her ambitions, however, began when she began singing lessons when she was 11; without her background as a vocalist, she says she would be voiceless.

    “Operatic performance has given me the ability to truly step into my character and convey powerful emotions in my performance. In the process, I have realized that my voice is most powerful when it reflects my true convictions, whether I am performing or publicly speaking. I truly believe that this honesty has allowed me to become an effective community organizer. I’d like to believe that this voice is what compels those around me to act.”

    Private musical study is available for students through the Emerson/Harris Program, which offers merit-based financial awards to students of outstanding achievement on their instruments or voice in classical, jazz, or world music. The Emerson/Harris Program is funded by the late Cherry L. Emerson Jr. SM ’41, in response to an appeal from Associate Provost Ellen T. Harris (Class of 1949 professor emeritus of music). More

  • in

    J-WAFS announces 2023 seed grant recipients

    Today, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) announced its ninth round of seed grants to support innovative research projects at MIT. The grants are designed to fund research efforts that tackle challenges related to water and food for human use, with the ultimate goal of creating meaningful impact as the world population continues to grow and the planet undergoes significant climate and environmental changes.Ten new projects led by 15 researchers from seven different departments will be supported this year. The projects address a range of challenges by employing advanced materials, technology innovations, and new approaches to resource management. The new projects aim to remove harmful chemicals from water sources, develop monitoring and other systems to help manage various aquaculture industries, optimize water purification materials, and more.“The seed grant program is J-WAFS’ flagship grant initiative,” says J-WAFS executive director Renee J. Robins. “The funding is intended to spur groundbreaking MIT research addressing complex issues that are challenging our water and food systems. The 10 projects selected this year show great promise, and we look forward to the progress and accomplishments these talented researchers will make,” she adds.The 2023 J-WAFS seed grant researchers and their projects are:Sara Beery, an assistant professor in the Department of Electrical Engineering and Computer Science (EECS), is building the first completely automated system to estimate the size of salmon populations in the Pacific Northwest (PNW).Salmon are a keystone species in the PNW, feeding human populations for the last 7,500 years at least. However, overfishing, habitat loss, and climate change threaten extinction of salmon populations across the region. Accurate salmon counts during their seasonal migration to their natal river to spawn are essential for fisheries’ regulation and management but are limited by human capacity. Fish population monitoring is a widespread challenge in the United States and worldwide. Beery and her team are working to build a system that will provide a detailed picture of the state of salmon populations in unprecedented, spatial, and temporal resolution by combining sonar sensors and computer vision and machine learning (CVML) techniques. The sonar will capture individual fish as they swim upstream and CVML will train accurate algorithms to interpret the sonar video for detecting, tracking, and counting fish automatically while adapting to changing river conditions and fish densities.Another aquaculture project is being led by Michael Triantafyllou, the Henry L. and Grace Doherty Professor in Ocean Science and Engineering in the Department of Mechanical Engineering, and Robert Vincent, the assistant director at MIT’s Sea Grant Program. They are working with Otto Cordero, an associate professor in the Department of Civil and Environmental Engineering, to control harmful bacteria blooms in aquaculture algae feed production.

    Aquaculture in the United States represents a $1.5 billion industry annually and helps support 1.7 million jobs, yet many American hatcheries are not able to keep up with demand. One barrier to aquaculture production is the high degree of variability in survival rates, most likely caused by a poorly controlled microbiome that leads to bacterial infections and sub-optimal feed efficiency. Triantafyllou, Vincent, and Cordero plan to monitor the microbiome composition of a shellfish hatchery in order to identify possible causing agents of mortality, as well as beneficial microbes. They hope to pair microbe data with detail phenotypic information about the animal population to generate rapid diagnostic tests and explore the potential for microbiome therapies to protect larvae and prevent future outbreaks. The researchers plan to transfer their findings and technology to the local and regional aquaculture community to ensure healthy aquaculture production that will support the expansion of the U.S. aquaculture industry.

    David Des Marais is the Cecil and Ida Green Career Development Professor in the Department of Civil and Environmental Engineering. His 2023 J-WAFS project seeks to understand plant growth responses to elevated carbon dioxide (CO2) in the atmosphere, in the hopes of identifying breeding strategies that maximize crop yield under future CO2 scenarios.Today’s crop plants experience higher atmospheric CO2 than 20 or 30 years ago. Crops such as wheat, oat, barley, and rice typically increase their growth rate and biomass when grown at experimentally elevated atmospheric CO2. This is known as the so-called “CO2 fertilization effect.” However, not all plant species respond to rising atmospheric CO2 with increased growth, and for the ones that do, increased growth doesn’t necessarily correspond to increased crop yield. Using specially built plant growth chambers that can control the concentration of CO2, Des Marais will explore how CO2 availability impacts the development of tillers (branches) in the grass species Brachypodium. He will study how gene expression controls tiller development, and whether this is affected by the growing environment. The tillering response refers to how many branches a plant produces, which sets a limit on how much grain it can yield. Therefore, optimizing the tillering response to elevated CO2 could greatly increase yield. Des Marais will also look at the complete genome sequence of Brachypodium, wheat, oat, and barley to help identify genes relevant for branch growth.Darcy McRose, an assistant professor in the Department of Civil and Environmental Engineering, is researching whether a combination of plant metabolites and soil bacteria can be used to make mineral-associated phosphorus more bioavailable.The nutrient phosphorus is essential for agricultural plant growth, but when added as a fertilizer, phosphorus sticks to the surface of soil minerals, decreasing bioavailability, limiting plant growth, and accumulating residual phosphorus. Heavily fertilized agricultural soils often harbor large reservoirs of this type of mineral-associated “legacy” phosphorus. Redox transformations are one chemical process that can liberate mineral-associated phosphorus. However, this needs to be carefully controlled, as overly mobile phosphorus can lead to runoff and pollution of natural waters. Ideally, phosphorus would be made bioavailable when plants need it and immobile when they don’t. Many plants make small metabolites called coumarins that might be able to solubilize mineral-adsorbed phosphorus and be activated and inactivated under different conditions. McRose will use laboratory experiments to determine whether a combination of plant metabolites and soil bacteria can be used as a highly efficient and tunable system for phosphorus solubilization. She also aims to develop an imaging platform to investigate exchanges of phosphorus between plants and soil microbes.Many of the 2023 seed grants will support innovative technologies to monitor, quantify, and remediate various kinds of pollutants found in water. Two of the new projects address the problem of per- and polyfluoroalkyl substances (PFAS), human-made chemicals that have recently emerged as a global health threat. Known as “forever chemicals,” PFAS are used in many manufacturing processes. These chemicals are known to cause significant health issues including cancer, and they have become pervasive in soil, dust, air, groundwater, and drinking water. Unfortunately, the physical and chemical properties of PFAS render them difficult to detect and remove.Aristide Gumyusenge, the Merton C. Assistant Professor of Materials Science and Engineering, is using metal-organic frameworks for low-cost sensing and capture of PFAS. Most metal-organic frameworks (MOFs) are synthesized as particles, which complicates their high accuracy sensing performance due to defects such as intergranular boundaries. Thin, film-based electronic devices could enable the use of MOFs for many applications, especially chemical sensing. Gumyusenge’s project aims to design test kits based on two-dimensional conductive MOF films for detecting PFAS in drinking water. In early demonstrations, Gumyusenge and his team showed that these MOF films can sense PFAS at low concentrations. They will continue to iterate using a computation-guided approach to tune sensitivity and selectivity of the kits with the goal of deploying them in real-world scenarios.Carlos Portela, the Brit (1961) and Alex (1949) d’Arbeloff Career Development Professor in the Department of Mechanical Engineering, and Ariel Furst, the Cook Career Development Professor in the Department of Chemical Engineering, are building novel architected materials to act as filters for the removal of PFAS from water. Portela and Furst will design and fabricate nanoscale materials that use activated carbon and porous polymers to create a physical adsorption system. They will engineer the materials to have tunable porosities and morphologies that can maximize interactions between contaminated water and functionalized surfaces, while providing a mechanically robust system.Rohit Karnik is a Tata Professor and interim co-department head of the Department of Mechanical Engineering. He is working on another technology, his based on microbead sensors, to rapidly measure and monitor trace contaminants in water.Water pollution from both biological and chemical contaminants contributes to an estimated 1.36 million deaths annually. Chemical contaminants include pesticides and herbicides, heavy metals like lead, and compounds used in manufacturing. These emerging contaminants can be found throughout the environment, including in water supplies. The Environmental Protection Agency (EPA) in the United States sets recommended water quality standards, but states are responsible for developing their own monitoring criteria and systems, which must be approved by the EPA every three years. However, the availability of data on regulated chemicals and on candidate pollutants is limited by current testing methods that are either insensitive or expensive and laboratory-based, requiring trained scientists and technicians. Karnik’s project proposes a simple, self-contained, portable system for monitoring trace and emerging pollutants in water, making it suitable for field studies. The concept is based on multiplexed microbead-based sensors that use thermal or gravitational actuation to generate a signal. His proposed sandwich assay, a testing format that is appealing for environmental sensing, will enable both single-use and continuous monitoring. The hope is that the bead-based assays will increase the ease and reach of detecting and quantifying trace contaminants in water for both personal and industrial scale applications.Alexander Radosevich, a professor in the Department of Chemistry, and Timothy Swager, the John D. MacArthur Professor of Chemistry, are teaming up to create rapid, cost-effective, and reliable techniques for on-site arsenic detection in water.Arsenic contamination of groundwater is a problem that affects as many as 500 million people worldwide. Arsenic poisoning can lead to a range of severe health problems from cancer to cardiovascular and neurological impacts. Both the EPA and the World Health Organization have established that 10 parts per billion is a practical threshold for arsenic in drinking water, but measuring arsenic in water at such low levels is challenging, especially in resource-limited environments where access to sensitive laboratory equipment may not be readily accessible. Radosevich and Swager plan to develop reaction-based chemical sensors that bind and extract electrons from aqueous arsenic. In this way, they will exploit the inherent reactivity of aqueous arsenic to selectively detect and quantify it. This work will establish the chemical basis for a new method of detecting trace arsenic in drinking water.Rajeev Ram is a professor in the Department of Electrical Engineering and Computer Science. His J-WAFS research will advance a robust technology for monitoring nitrogen-containing pollutants, which threaten over 15,000 bodies of water in the United States alone.Nitrogen in the form of nitrate, nitrite, ammonia, and urea can run off from agricultural fertilizer and lead to harmful algal blooms that jeopardize human health. Unfortunately, monitoring these contaminants in the environment is challenging, as sensors are difficult to maintain and expensive to deploy. Ram and his students will work to establish limits of detection for nitrate, nitrite, ammonia, and urea in environmental, industrial, and agricultural samples using swept-source Raman spectroscopy. Swept-source Raman spectroscopy is a method of detecting the presence of a chemical by using a tunable, single mode laser that illuminates a sample. This method does not require costly, high-power lasers or a spectrometer. Ram will then develop and demonstrate a portable system that is capable of achieving chemical specificity in complex, natural environments. Data generated by such a system should help regulate polluters and guide remediation.Kripa Varanasi, a professor in the Department of Mechanical Engineering, and Angela Belcher, the James Mason Crafts Professor and head of the Department of Biological Engineering, will join forces to develop an affordable water disinfection technology that selectively identifies, adsorbs, and kills “superbugs” in domestic and industrial wastewater.Recent research predicts that antibiotic-resistance bacteria (superbugs) will result in $100 trillion in health care expenses and 10 million deaths annually by 2050. The prevalence of superbugs in our water systems has increased due to corroded pipes, contamination, and climate change. Current drinking water disinfection technologies are designed to kill all types of bacteria before human consumption. However, for certain domestic and industrial applications there is a need to protect the good bacteria required for ecological processes that contribute to soil and plant health. Varanasi and Belcher will combine material, biological, process, and system engineering principles to design a sponge-based water disinfection technology that can identify and destroy harmful bacteria while leaving the good bacteria unharmed. By modifying the sponge surface with specialized nanomaterials, their approach will be able to kill superbugs faster and more efficiently. The sponge filters can be deployed under very low pressure, making them an affordable technology, especially in resource-constrained communities.In addition to the 10 seed grant projects, J-WAFS will also fund a research initiative led by Greg Sixt. Sixt is the research manager for climate and food systems at J-WAFS, and the director of the J-WAFS-led Food and Climate Systems Transformation (FACT) Alliance. His project focuses on the Lake Victoria Basin (LVB) of East Africa. The second-largest freshwater lake in the world, Lake Victoria straddles three countries (Uganda, Tanzania, and Kenya) and has a catchment area that encompasses two more (Rwanda and Burundi). Sixt will collaborate with Michael Hauser of the University of Natural Resources and Life Sciences, Vienna, and Paul Kariuki, of the Lake Victoria Basin Commission.The group will study how to adapt food systems to climate change in the Lake Victoria Basin. The basin is facing a range of climate threats that could significantly impact livelihoods and food systems in the expansive region. For example, extreme weather events like droughts and floods are negatively affecting agricultural production and freshwater resources. Across the LVB, current approaches to land and water management are unsustainable and threaten future food and water security. The Lake Victoria Basin Commission (LVBC), a specialized institution of the East African Community, wants to play a more vital role in coordinating transboundary land and water management to support transitions toward more resilient, sustainable, and equitable food systems. The primary goal of this research will be to support the LVBC’s transboundary land and water management efforts, specifically as they relate to sustainability and climate change adaptation in food systems. The research team will work with key stakeholders in Kenya, Uganda, and Tanzania to identify specific capacity needs to facilitate land and water management transitions. The two-year project will produce actionable recommendations to the LVBC. More

  • in

    A better way to study ocean currents

    To study ocean currents, scientists release GPS-tagged buoys in the ocean and record their velocities to reconstruct the currents that transport them. These buoy data are also used to identify “divergences,” which are areas where water rises up from below the surface or sinks beneath it.

    By accurately predicting currents and pinpointing divergences, scientists can more precisely forecast the weather, approximate how oil will spread after a spill, or measure energy transfer in the ocean. A new model that incorporates machine learning makes more accurate predictions than conventional models do, a new study reports.

    A multidisciplinary research team including computer scientists at MIT and oceanographers has found that a standard statistical model typically used on buoy data can struggle to accurately reconstruct currents or identify divergences because it makes unrealistic assumptions about the behavior of water.

    The researchers developed a new model that incorporates knowledge from fluid dynamics to better reflect the physics at work in ocean currents. They show that their method, which only requires a small amount of additional computational expense, is more accurate at predicting currents and identifying divergences than the traditional model.

    This new model could help oceanographers make more accurate estimates from buoy data, which would enable them to more effectively monitor the transportation of biomass (such as Sargassum seaweed), carbon, plastics, oil, and nutrients in the ocean. This information is also important for understanding and tracking climate change.

    “Our method captures the physical assumptions more appropriately and more accurately. In this case, we know a lot of the physics already. We are giving the model a little bit of that information so it can focus on learning the things that are important to us, like what are the currents away from the buoys, or what is this divergence and where is it happening?” says senior author Tamara Broderick, an associate professor in MIT’s Department of Electrical Engineering and Computer Science (EECS) and a member of the Laboratory for Information and Decision Systems and the Institute for Data, Systems, and Society.

    Broderick’s co-authors include lead author Renato Berlinghieri, an electrical engineering and computer science graduate student; Brian L. Trippe, a postdoc at Columbia University; David R. Burt and Ryan Giordano, MIT postdocs; Kaushik Srinivasan, an assistant researcher in atmospheric and ocean sciences at the University of California at Los Angeles; Tamay Özgökmen, professor in the Department of Ocean Sciences at the University of Miami; and Junfei Xia, a graduate student at the University of Miami. The research will be presented at the International Conference on Machine Learning.

    Diving into the data

    Oceanographers use data on buoy velocity to predict ocean currents and identify “divergences” where water rises to the surface or sinks deeper.

    To estimate currents and find divergences, oceanographers have used a machine-learning technique known as a Gaussian process, which can make predictions even when data are sparse. To work well in this case, the Gaussian process must make assumptions about the data to generate a prediction.

    A standard way of applying a Gaussian process to oceans data assumes the latitude and longitude components of the current are unrelated. But this assumption isn’t physically accurate. For instance, this existing model implies that a current’s divergence and its vorticity (a whirling motion of fluid) operate on the same magnitude and length scales. Ocean scientists know this is not true, Broderick says. The previous model also assumes the frame of reference matters, which means fluid would behave differently in the latitude versus the longitude direction.

    “We were thinking we could address these problems with a model that incorporates the physics,” she says.

    They built a new model that uses what is known as a Helmholtz decomposition to accurately represent the principles of fluid dynamics. This method models an ocean current by breaking it down into a vorticity component (which captures the whirling motion) and a divergence component (which captures water rising or sinking).

    In this way, they give the model some basic physics knowledge that it uses to make more accurate predictions.

    This new model utilizes the same data as the old model. And while their method can be more computationally intensive, the researchers show that the additional cost is relatively small.

    Buoyant performance

    They evaluated the new model using synthetic and real ocean buoy data. Because the synthetic data were fabricated by the researchers, they could compare the model’s predictions to ground-truth currents and divergences. But simulation involves assumptions that may not reflect real life, so the researchers also tested their model using data captured by real buoys released in the Gulf of Mexico.

    This shows the trajectories of approximately 300 buoys released during the Grand LAgrangian Deployment (GLAD) in the Gulf of Mexico in the summer of 2013, to learn about ocean surface currents around the Deepwater Horizon oil spill site. The small, regular clockwise rotations are due to Earth’s rotation.Credit: Consortium of Advanced Research for Transport of Hydrocarbons in the Environment

    In each case, their method demonstrated superior performance for both tasks, predicting currents and identifying divergences, when compared to the standard Gaussian process and another machine-learning approach that used a neural network. For example, in one simulation that included a vortex adjacent to an ocean current, the new method correctly predicted no divergence while the previous Gaussian process method and the neural network method both predicted a divergence with very high confidence.

    The technique is also good at identifying vortices from a small set of buoys, Broderick adds.

    Now that they have demonstrated the effectiveness of using a Helmholtz decomposition, the researchers want to incorporate a time element into their model, since currents can vary over time as well as space. In addition, they want to better capture how noise impacts the data, such as winds that sometimes affect buoy velocity. Separating that noise from the data could make their approach more accurate.

    “Our hope is to take this noisily observed field of velocities from the buoys, and then say what is the actual divergence and actual vorticity, and predict away from those buoys, and we think that our new technique will be helpful for this,” she says.

    “The authors cleverly integrate known behaviors from fluid dynamics to model ocean currents in a flexible model,” says Massimiliano Russo, an associate biostatistician at Brigham and Women’s Hospital and instructor at Harvard Medical School, who was not involved with this work. “The resulting approach retains the flexibility to model the nonlinearity in the currents but can also characterize phenomena such as vortices and connected currents that would only be noticed if the fluid dynamic structure is integrated into the model. This is an excellent example of where a flexible model can be substantially improved with a well thought and scientifically sound specification.”

    This research is supported, in part, by the Office of Naval Research, a National Science Foundation (NSF) CAREER Award, and the Rosenstiel School of Marine, Atmospheric, and Earth Science at the University of Miami. More

  • in

    Study: AI models fail to reproduce human judgements about rule violations

    In an effort to improve fairness or reduce backlogs, machine-learning models are sometimes designed to mimic human decision making, such as deciding whether social media posts violate toxic content policies.

    But researchers from MIT and elsewhere have found that these models often do not replicate human decisions about rule violations. If models are not trained with the right data, they are likely to make different, often harsher judgements than humans would.

    In this case, the “right” data are those that have been labeled by humans who were explicitly asked whether items defy a certain rule. Training involves showing a machine-learning model millions of examples of this “normative data” so it can learn a task.

    But data used to train machine-learning models are typically labeled descriptively — meaning humans are asked to identify factual features, such as, say, the presence of fried food in a photo. If “descriptive data” are used to train models that judge rule violations, such as whether a meal violates a school policy that prohibits fried food, the models tend to over-predict rule violations.

    This drop in accuracy could have serious implications in the real world. For instance, if a descriptive model is used to make decisions about whether an individual is likely to reoffend, the researchers’ findings suggest it may cast stricter judgements than a human would, which could lead to higher bail amounts or longer criminal sentences.

    “I think most artificial intelligence/machine-learning researchers assume that the human judgements in data and labels are biased, but this result is saying something worse. These models are not even reproducing already-biased human judgments because the data they’re being trained on has a flaw: Humans would label the features of images and text differently if they knew those features would be used for a judgment. This has huge ramifications for machine learning systems in human processes,” says Marzyeh Ghassemi, an assistant professor and head of the Healthy ML Group in the Computer Science and Artificial Intelligence Laboratory (CSAIL).

    Ghassemi is senior author of a new paper detailing these findings, which was published today in Science Advances. Joining her on the paper are lead author Aparna Balagopalan, an electrical engineering and computer science graduate student; David Madras, a graduate student at the University of Toronto; David H. Yang, a former graduate student who is now co-founder of ML Estimation; Dylan Hadfield-Menell, an MIT assistant professor; and Gillian K. Hadfield, Schwartz Reisman Chair in Technology and Society and professor of law at the University of Toronto.

    Labeling discrepancy

    This study grew out of a different project that explored how a machine-learning model can justify its predictions. As they gathered data for that study, the researchers noticed that humans sometimes give different answers if they are asked to provide descriptive or normative labels about the same data.

    To gather descriptive labels, researchers ask labelers to identify factual features — does this text contain obscene language? To gather normative labels, researchers give labelers a rule and ask if the data violates that rule — does this text violate the platform’s explicit language policy?

    Surprised by this finding, the researchers launched a user study to dig deeper. They gathered four datasets to mimic different policies, such as a dataset of dog images that could be in violation of an apartment’s rule against aggressive breeds. Then they asked groups of participants to provide descriptive or normative labels.

    In each case, the descriptive labelers were asked to indicate whether three factual features were present in the image or text, such as whether the dog appears aggressive. Their responses were then used to craft judgements. (If a user said a photo contained an aggressive dog, then the policy was violated.) The labelers did not know the pet policy. On the other hand, normative labelers were given the policy prohibiting aggressive dogs, and then asked whether it had been violated by each image, and why.

    The researchers found that humans were significantly more likely to label an object as a violation in the descriptive setting. The disparity, which they computed using the absolute difference in labels on average, ranged from 8 percent on a dataset of images used to judge dress code violations to 20 percent for the dog images.

    “While we didn’t explicitly test why this happens, one hypothesis is that maybe how people think about rule violations is different from how they think about descriptive data. Generally, normative decisions are more lenient,” Balagopalan says.

    Yet data are usually gathered with descriptive labels to train a model for a particular machine-learning task. These data are often repurposed later to train different models that perform normative judgements, like rule violations.

    Training troubles

    To study the potential impacts of repurposing descriptive data, the researchers trained two models to judge rule violations using one of their four data settings. They trained one model using descriptive data and the other using normative data, and then compared their performance.

    They found that if descriptive data are used to train a model, it will underperform a model trained to perform the same judgements using normative data. Specifically, the descriptive model is more likely to misclassify inputs by falsely predicting a rule violation. And the descriptive model’s accuracy was even lower when classifying objects that human labelers disagreed about.

    “This shows that the data do really matter. It is important to match the training context to the deployment context if you are training models to detect if a rule has been violated,” Balagopalan says.

    It can be very difficult for users to determine how data have been gathered; this information can be buried in the appendix of a research paper or not revealed by a private company, Ghassemi says.

    Improving dataset transparency is one way this problem could be mitigated. If researchers know how data were gathered, then they know how those data should be used. Another possible strategy is to fine-tune a descriptively trained model on a small amount of normative data. This idea, known as transfer learning, is something the researchers want to explore in future work.

    They also want to conduct a similar study with expert labelers, like doctors or lawyers, to see if it leads to the same label disparity.

    “The way to fix this is to transparently acknowledge that if we want to reproduce human judgment, we must only use data that were collected in that setting. Otherwise, we are going to end up with systems that are going to have extremely harsh moderations, much harsher than what humans would do. Humans would see nuance or make another distinction, whereas these models don’t,” Ghassemi says.

    This research was funded, in part, by the Schwartz Reisman Institute for Technology and Society, Microsoft Research, the Vector Institute, and a Canada Research Council Chain. More

  • in

    Researchers create a tool for accurately simulating complex systems

    Researchers often use simulations when designing new algorithms, since testing ideas in the real world can be both costly and risky. But since it’s impossible to capture every detail of a complex system in a simulation, they typically collect a small amount of real data that they replay while simulating the components they want to study.

    Known as trace-driven simulation (the small pieces of real data are called traces), this method sometimes results in biased outcomes. This means researchers might unknowingly choose an algorithm that is not the best one they evaluated, and which will perform worse on real data than the simulation predicted that it should.

    MIT researchers have developed a new method that eliminates this source of bias in trace-driven simulation. By enabling unbiased trace-driven simulations, the new technique could help researchers design better algorithms for a variety of applications, including improving video quality on the internet and increasing the performance of data processing systems.

    The researchers’ machine-learning algorithm draws on the principles of causality to learn how the data traces were affected by the behavior of the system. In this way, they can replay the correct, unbiased version of the trace during the simulation.

    When compared to a previously developed trace-driven simulator, the researchers’ simulation method correctly predicted which newly designed algorithm would be best for video streaming — meaning the one that led to less rebuffering and higher visual quality. Existing simulators that do not account for bias would have pointed researchers to a worse-performing algorithm.

    “Data are not the only thing that matter. The story behind how the data are generated and collected is also important. If you want to answer a counterfactual question, you need to know the underlying data generation story so you only intervene on those things that you really want to simulate,” says Arash Nasr-Esfahany, an electrical engineering and computer science (EECS) graduate student and co-lead author of a paper on this new technique.

    He is joined on the paper by co-lead authors and fellow EECS graduate students Abdullah Alomar and Pouya Hamadanian; recent graduate student Anish Agarwal PhD ’21; and senior authors Mohammad Alizadeh, an associate professor of electrical engineering and computer science; and Devavrat Shah, the Andrew and Erna Viterbi Professor in EECS and a member of the Institute for Data, Systems, and Society and of the Laboratory for Information and Decision Systems. The research was recently presented at the USENIX Symposium on Networked Systems Design and Implementation.

    Specious simulations

    The MIT researchers studied trace-driven simulation in the context of video streaming applications.

    In video streaming, an adaptive bitrate algorithm continually decides the video quality, or bitrate, to transfer to a device based on real-time data on the user’s bandwidth. To test how different adaptive bitrate algorithms impact network performance, researchers can collect real data from users during a video stream for a trace-driven simulation.

    They use these traces to simulate what would have happened to network performance had the platform used a different adaptive bitrate algorithm in the same underlying conditions.

    Researchers have traditionally assumed that trace data are exogenous, meaning they aren’t affected by factors that are changed during the simulation. They would assume that, during the period when they collected the network performance data, the choices the bitrate adaptation algorithm made did not affect those data.

    But this is often a false assumption that results in biases about the behavior of new algorithms, making the simulation invalid, Alizadeh explains.

    “We recognized, and others have recognized, that this way of doing simulation can induce errors. But I don’t think people necessarily knew how significant those errors could be,” he says.

    To develop a solution, Alizadeh and his collaborators framed the issue as a causal inference problem. To collect an unbiased trace, one must understand the different causes that affect the observed data. Some causes are intrinsic to a system, while others are affected by the actions being taken.

    In the video streaming example, network performance is affected by the choices the bitrate adaptation algorithm made — but it’s also affected by intrinsic elements, like network capacity.

    “Our task is to disentangle these two effects, to try to understand what aspects of the behavior we are seeing are intrinsic to the system and how much of what we are observing is based on the actions that were taken. If we can disentangle these two effects, then we can do unbiased simulations,” he says.

    Learning from data

    But researchers often cannot directly observe intrinsic properties. This is where the new tool, called CausalSim, comes in. The algorithm can learn the underlying characteristics of a system using only the trace data.

    CausalSim takes trace data that were collected through a randomized control trial, and estimates the underlying functions that produced those data. The model tells the researchers, under the exact same underlying conditions that a user experienced, how a new algorithm would change the outcome.

    Using a typical trace-driven simulator, bias might lead a researcher to select a worse-performing algorithm, even though the simulation indicates it should be better. CausalSim helps researchers select the best algorithm that was tested.

    The MIT researchers observed this in practice. When they used CausalSim to design an improved bitrate adaptation algorithm, it led them to select a new variant that had a stall rate that was nearly 1.4 times lower than a well-accepted competing algorithm, while achieving the same video quality. The stall rate is the amount of time a user spent rebuffering the video.

    By contrast, an expert-designed trace-driven simulator predicted the opposite. It indicated that this new variant should cause a stall rate that was nearly 1.3 times higher. The researchers tested the algorithm on real-world video streaming and confirmed that CausalSim was correct.

    “The gains we were getting in the new variant were very close to CausalSim’s prediction, while the expert simulator was way off. This is really exciting because this expert-designed simulator has been used in research for the past decade. If CausalSim can so clearly be better than this, who knows what we can do with it?” says Hamadanian.

    During a 10-month experiment, CausalSim consistently improved simulation accuracy, resulting in algorithms that made about half as many errors as those designed using baseline methods.

    In the future, the researchers want to apply CausalSim to situations where randomized control trial data are not available or where it is especially difficult to recover the causal dynamics of the system. They also want to explore how to design and monitor systems to make them more amenable to causal analysis. More

  • in

    Researchers develop novel AI-based estimator for manufacturing medicine

    When medical companies manufacture the pills and tablets that treat any number of illnesses, aches, and pains, they need to isolate the active pharmaceutical ingredient from a suspension and dry it. The process requires a human operator to monitor an industrial dryer, agitate the material, and watch for the compound to take on the right qualities for compressing into medicine. The job depends heavily on the operator’s observations.   

    Methods for making that process less subjective and a lot more efficient are the subject of a recent Nature Communications paper authored by researchers at MIT and Takeda. The paper’s authors devise a way to use physics and machine learning to categorize the rough surfaces that characterize particles in a mixture. The technique, which uses a physics-enhanced autocorrelation-based estimator (PEACE), could change pharmaceutical manufacturing processes for pills and powders, increasing efficiency and accuracy and resulting in fewer failed batches of pharmaceutical products.  

    “Failed batches or failed steps in the pharmaceutical process are very serious,” says Allan Myerson, a professor of practice in the MIT Department of Chemical Engineering and one of the study’s authors. “Anything that improves the reliability of the pharmaceutical manufacturing, reduces time, and improves compliance is a big deal.”

    The team’s work is part of an ongoing collaboration between Takeda and MIT, launched in 2020. The MIT-Takeda Program aims to leverage the experience of both MIT and Takeda to solve problems at the intersection of medicine, artificial intelligence, and health care.

    In pharmaceutical manufacturing, determining whether a compound is adequately mixed and dried ordinarily requires stopping an industrial-sized dryer and taking samples off the manufacturing line for testing. Researchers at Takeda thought artificial intelligence could improve the task and reduce stoppages that slow down production. Originally the research team planned to use videos to train a computer model to replace a human operator. But determining which videos to use to train the model still proved too subjective. Instead, the MIT-Takeda team decided to illuminate particles with a laser during filtration and drying, and measure particle size distribution using physics and machine learning. 

    “We just shine a laser beam on top of this drying surface and observe,” says Qihang Zhang, a doctoral student in MIT’s Department of Electrical Engineering and Computer Science and the study’s first author. 

    Play video

    A physics-derived equation describes the interaction between the laser and the mixture, while machine learning characterizes the particle sizes. The process doesn’t require stopping and starting the process, which means the entire job is more secure and more efficient than standard operating procedure, according to George Barbastathis, professor of mechanical engineering at MIT and corresponding author of the study.

    The machine learning algorithm also does not require many datasets to learn its job, because the physics allows for speedy training of the neural network.

    “We utilize the physics to compensate for the lack of training data, so that we can train the neural network in an efficient way,” says Zhang. “Only a tiny amount of experimental data is enough to get a good result.”

    Today, the only inline processes used for particle measurements in the pharmaceutical industry are for slurry products, where crystals float in a liquid. There is no method for measuring particles within a powder during mixing. Powders can be made from slurries, but when a liquid is filtered and dried its composition changes, requiring new measurements. In addition to making the process quicker and more efficient, using the PEACE mechanism makes the job safer because it requires less handling of potentially highly potent materials, the authors say. 

    The ramifications for pharmaceutical manufacturing could be significant, allowing drug production to be more efficient, sustainable, and cost-effective, by reducing the number of experiments companies need to conduct when making products. Monitoring the characteristics of a drying mixture is an issue the industry has long struggled with, according to Charles Papageorgiou, the director of Takeda’s Process Chemistry Development group and one of the study’s authors. 

    “It is a problem that a lot of people are trying to solve, and there isn’t a good sensor out there,” says Papageorgiou. “This is a pretty big step change, I think, with respect to being able to monitor, in real time, particle size distribution.”

    Papageorgiou said that the mechanism could have applications in other industrial pharmaceutical operations. At some point, the laser technology may be able to train video imaging, allowing manufacturers to use a camera for analysis rather than laser measurements. The company is now working to assess the tool on different compounds in its lab. 

    The results come directly from collaboration between Takeda and three MIT departments: Mechanical Engineering, Chemical Engineering, and Electrical Engineering and Computer Science. Over the last three years, researchers at MIT and Takeda have worked together on 19 projects focused on applying machine learning and artificial intelligence to problems in the health-care and medical industry as part of the MIT-Takeda Program. 

    Often, it can take years for academic research to translate to industrial processes. But researchers are hopeful that direct collaboration could shorten that timeline. Takeda is a walking distance away from MIT’s campus, which allowed researchers to set up tests in the company’s lab, and real-time feedback from Takeda helped MIT researchers structure their research based on the company’s equipment and operations. 

    Combining the expertise and mission of both entities helps researchers ensure their experimental results will have real-world implications. The team has already filed for two patents and has plans to file for a third.   More

  • in

    Driving toward data justice

    As a person with a mixed-race background who has lived in four different cities, Amelia Dogan describes her early life as “growing up in a lot of in-betweens.” Now an MIT senior, she continues to link different perspectives together, working at the intersection of urban planning, computer science, and social justice.

    Dogan was born in Canada but spent her high school years in Philadelphia, where she developed a strong affinity for the city.  

    “I love Philadelphia to death,” says Dogan. “It’s my favorite place in the world. The energy in the city is amazing — I’m so sad I wasn’t there for the Super Bowl this year — but it is a city with really big disparities. That drives me to do the research that I do and shapes the things that I care about.”

    Dogan is double-majoring in urban science and planning with computer science and in American studies. She decided on the former after participating in the pre-orientation program offered by the Department of Urban Studies and Planning, which provides an introduction to both the department and the city of Boston. She followed that up with a UROP research project with the West Philadelphia Landscape Project, putting together historical census data on housing and race to find patterns for use in community advocacy.

    After taking WGS.231 (Writing About Race), a course offered by the Program in Women’s and Gender Studies, her first year at MIT, Dogan realized there was a lot of crosstalk between urban planning, computer science, and the social sciences.

    “There’s a lot of critical social theory that I want to have background in to make me a better planner or a better computer scientist,” says Dogan. “There’s also a lot of issues around fairness and participation in computer science, and a lot of computer scientists are trying to reinvent the wheel when there’s already really good, critical social science research and theory behind this.”

    Data science and feminism

    Dogan’s first year at MIT was interrupted by the onset of the Covid-19 pandemic, but there was a silver lining. An influx of funding to keep students engaged while attending school virtually enabled her to join the Data + Feminism Lab to work on a case study examining three places in Philadelphia with historical names that were renamed after activist efforts.

    In her first year at MIT, Dogan worked several UROPs to hone her own skills and find the best research fit. Besides the West Philadelphia Land Project, she worked on two projects within the MIT Sloan School of Management. The first involved searching for connections between entrepreneurship and immigration among Fortune 500 founders. The second involved interviewing warehouse workers and writing a report on their quality of life.

    Dogan has now spent three years in the Data + Feminism Lab under Associate Professor Catherine D’Ignazio, where she is particularly interested in how technology can be used by marginalized communities to invert historical power imbalances. A key concept in the lab’s work is that of counterdata, which are produced by civil society groups or individuals in order to counter missing data or to challenge existing official data.

    Most recently, she completed a SuperUROP project investigating how femicide data activist organizations use social media. She analyzed 600 social media posts by organizations across the U.S. and Canada. The work built off the lab’s greater body of work with these groups, which Dogan has contributed to by annotating news articles for machine-learning models.

    “Catherine works a lot at the intersection of data issues and feminism. It just seemed like the right fit for me,” says Dogan. “She’s my academic advisor, she’s my research advisor, and is also a really good mentor.”

    Advocating for the student experience

    Outside of the classroom, Dogan is a strong advocate for improving the student experience, particularly when it intersects with identity. An executive board member of the Asian American Initiative (AAI), she also sits on the student advisory council for the Office of Minority Education.

    “Doing that institutional advocacy has been important to me, because it’s for things that I expected coming into college and had not come in prepared to fight for,” says Dogan. As a high schooler, she participated in programs run by the University of Pennsylvania’s Pan-Asian American Community House and was surprised to find that MIT did not have an equivalent organization.

    “Building community based upon identity is something that I’ve been really passionate about,” says Dogan. “For the past two years, I’ve been working with AAI on a list of recommendations for MIT. I’ve talked to alums from the ’90s who were a part of an Asian American caucus who were asking for the same things.”

    She also holds a leadership role with MIXED @ MIT, a student group focused on creating space for mixed-heritage students to explore and discuss their identities.

    Following graduation, Dogan plans to pursue a PhD in information science at the University of Washington. Her breadth of skills has given her a range of programs to choose from. No matter where she goes next, Dogan wants to pursue a career where she can continue to make a tangible impact.

    “I would love to be doing community-engaged research around data justice, using citizen science and counterdata for policy and social change,” she says. More

  • in

    Martin Wainwright named director of the Institute for Data, Systems, and Society

    Martin Wainwright, the Cecil H. Green Professor in MIT’s departments of Electrical Engineering and Computer Science (EECS) and Mathematics, has been named the new director of the Institute for Data, Systems, and Society (IDSS), effective July 1.

    “Martin is a widely recognized leader in statistics and machine learning — both in research and in education. In taking on this leadership role in the college, Martin will work to build up the human and institutional behavior component of IDSS, while strengthening initiatives in both policy and statistics, and collaborations within the institute, across MIT, and beyond,” says Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing and the Henry Ellis Warren Professor of Electrical Engineering and Computer Science. “I look forward to working with him and supporting his efforts in this next chapter for IDSS.”

    “Martin holds a strong belief in the value of theoretical, experimental, and computational approaches to research and in facilitating connections between them. He also places much importance in having practical, as well as academic, impact,” says Asu Ozdaglar, deputy dean of academics for the MIT Schwarzman College of Computing, department head of EECS, and the MathWorks Professor of Electrical Engineering and Computer Science. “As the new director of IDSS, he will undoubtedly bring these tenets to the role in advancing the mission of IDSS and helping to shape its future.”

    A principal investigator in the Laboratory for Information and Decision Systems and the Statistics and Data Science Center, Wainwright joined the MIT faculty in July 2022 from the University of California at Berkeley, where he held the Howard Friesen Chair with a joint appointment between the departments of Electrical Engineering and Computer Science and Statistics.

    Wainwright received his bachelor’s degree in mathematics from the University of Waterloo, Canada, and doctoral degree in electrical engineering and computer science from MIT. He has received a number of awards and recognition, including an Alfred P. Sloan Foundation Fellowship, and best paper awards from the IEEE Signal Processing Society, IEEE Communications Society, and IEEE Information Theory and Communication Societies. He has also been honored with the Medallion Lectureship and Award from the Institute of Mathematical Statistics, and the COPSS Presidents’ Award from the Joint Statistical Societies. He was a section lecturer with the International Congress of Mathematicians in 2014 and received the Blackwell Award from the Institute of Mathematical Statistics in 2017.

    He is the author of “High-dimensional Statistics: A Non-Asymptotic Viewpoint” (Cambridge University Press, 2019), and is coauthor on several books, including on graphical models and on sparse statistical modeling.

    Wainwright succeeds Munther Dahleh, the William A. Coolidge Professor in EECS, who has helmed IDSS since its founding in 2015.

    “I am grateful to Munther and thank him for his leadership of IDSS. As the founding director, he has led the creation of a remarkable new part of MIT,” says Huttenlocher. More