More stories

  • in

    A new way to integrate data with physical objects

    To get a sense of what StructCode is all about, says Mustafa Doğa Doğan, think of Superman. Not the “faster than a speeding bullet” and “more powerful than a locomotive” version, but a Superman, or Superwoman, who sees the world differently from ordinary mortals — someone who can look around a room and glean all kinds of information about ordinary objects that is not apparent to people with less penetrating faculties.

    That, in a nutshell, is “the high-level idea behind StructCode,” explains Doğan, a PhD student in electrical engineering and computer science at MIT and an affiliate of the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL). “The goal is to change the way we interact with objects” — to make those interactions more meaningful and more meaning-laden — “by embedding information into objects in ways that can be readily accessed.”

    StructCode grew out of an effort called InfraredTags, which Doğan and other colleagues introduced in 2022. That work, as well as the current project, was carried out in the laboratory of MIT Associate Professor Stefanie Mueller — Doğan’s advisor, who has taken part in both projects. In last year’s approach, “invisible” tags — that can only be seen with cameras capable of detecting infrared light — were used to reveal information about physical objects. The drawback there was that many cameras cannot perceive infrared light. Moreover, the method for fabricating these objects and affixing the tags to their surfaces relied on 3D printers, which tend to be very slow and often can only make objects that are small.

    StructCode, at least in its original version, relies on objects produced with laser-cutting techniques that can be manufactured within minutes, rather than the hours it might take on a 3D printer. Information can be extracted from these objects, moreover, with the RGB cameras that are commonly found in smartphones; the ability to operate in the infrared range of the spectrum is not required.

    In their initial demonstrations of the idea, the MIT-led team decided to construct their objects out of wood, making pieces such as furniture, picture frames, flowerpots, or toys that are well suited to laser-cut fabrication. A key question that had to be resolved was this: How can information be stored in a way that is unobtrusive and durable, as compared to externally-attached bar codes and QR codes, and also will not undermine an object’s structural integrity?

    The solution that the team has come up with, for now, is to rely on joints, which are ubiquitous in wooden objects made out of more than one component. Perhaps the most familiar is the finger joint, which has a kind of zigzag pattern whereby two wooden pieces adjoin at right angles such that every protruding “finger” along the joint of the first piece fits into a corresponding “gap” in the joint of the second piece and, similarly, every gap in the joint of the first piece is filled with a finger from the second.

    “Joints have these repeating features, which are like repeating bits,” Dogan says. To create a code, the researchers slightly vary the length of the gaps or fingers. A standard size length is accorded a 1. A slightly shorter length is assigned a 0, and a slightly longer length is assigned a 2. The encoding scheme is based on the sequence of these numbers, or bits, that can be observed along a joint. For every string of four bits, there are 81 (34) possible variations.

    The team also demonstrated ways of encoding messages in “living hinges” — a kind of joint that is made by taking a flat, rigid piece of material and making it bendable by cutting a series of parallel, vertical lines. As with the finger joints, the distance between these lines can be varied: 1 being the standard length, 0 being a slightly shorter length, and 2 being slightly longer. And in this way, a code can be assembled from an object that contains a living hinge.

    The idea is described in a paper, “StructCode: Leveraging Fabrication Artifacts to Store Data in Laser-Cut Objects,” that was presented this month at the 2023 ACM Symposium on Computational Fabrication in New York City. Doğan, the paper’s first author, is joined by Mueller and four coauthors — recent MIT alumna Grace Tang ’23, MNG ’23; MIT undergraduate Richard Qi; University of California at Berkeley graduate student Vivian Hsinyueh Chan; and Cornell University Assistant Professor Thijs Roumen.

    “In the realm of materials and design, there is often an inclination to associate novelty and innovation with entirely new materials or manufacturing techniques,” notes Elvin Karana, a professor of materials innovation and design at the Delft University of Technology. One of the things that impresses Karana most about StructCode is that it provides a novel means of storing data by “applying a commonly used technique like laser cutting and a material as ubiquitous as wood.”

    The idea for StructCode, adds University of Colorado computer scientist Ellen Yi-Luen Do, “is “simple, elegant, and totally makes sense. It’s like having the Rosetta Stone to help decipher Egyptian hieroglyphs.”

    Patrick Baudisch, a computer scientist at the Hasso Plattner Institute in Germany, views StructCode as “a great step forward for personal fabrication. It takes a key piece of functionality that’s only offered today for mass-produced goods and brings it to custom objects.”

    Here, in brief, is how it works: First, a laser cutter — guided by a model created via StructCode — fabricates an object into which encoded information has been embedded. After downloading a StructCode app, an user can decode the hidden message by pointing a cellphone camera at the object, which can (aided by StructCode software) detect subtle variations in length found in an object’s outward-facing joints or living hinges.

    The process is even easier if the user is equipped with augmented reality glasses, Doğan says. “In that case, you don’t need to point a camera. The information comes up automatically.” And that can give people more of the “superpowers” that the designers of StructCode hope to confer.

    “The object doesn’t need to contain a lot of information,” Doğan adds. “Just enough — in the form of, say, URLs — to direct people to places they can find out what they need to know.”

    Users might be sent to a website where they can obtain information about the object — how to care for it, and perhaps eventually how to disassemble it and recycle (or safely dispose of) its contents. A flowerpot that was made with living hinges might inform a user, based on records that are maintained online, as to when the plant inside the pot was last watered and when it needs to be watered again. Children examining a toy crocodile could, through StructCode, learn scientific details about various parts of the animal’s anatomy. A picture frame made with finger joints modified by StructCode could help people find out about the painting inside the frame and about the person (or persons) who created the artwork — perhaps linking to a video of an artist talking about this work directly.

    “This technique could pave the way for new applications, such as interactive museum exhibits,” says Raf Ramakers, a computer scientist at Hasselt University in Belgium. “It holds the potential for broadening the scope of how we perceive and interact with everyday objects” — which is precisely the goal that motivates the work of Doğan and his colleagues.

    But StructCode is not the end of the line, as far as Doğan and his collaborators are concerned. The same general approach could be adapted to other manufacturing techniques besides laser cutting, and information storage doesn’t have to be confined to the joints of wooden objects. Data could be represented, for instance, in the texture of leather, within the pattern of woven or knitted pieces, or concealed by other means within an image. Doğan is excited by the breadth of available options and by the fact that their “explorations into this new realm of possibilities, designed to make objects and our world more interactive, are just beginning.” More

  • in

    Improving accessibility of online graphics for blind users

    The beauty of a nice infographic published alongside a news or magazine story is that it makes numeric data more accessible to the average reader. But for blind and visually impaired users, such graphics often have the opposite effect.

    For visually impaired users — who frequently rely on screen-reading software that speaks words or numbers aloud as the user moves a cursor across the screen — a graphic may be nothing more than a few words of alt text, such as a chart’s title. For instance, a map of the United States displaying population rates by county might have alt text in the HTML that says simply, “A map of the United States with population rates by county.” The data has been buried in an image, making it entirely inaccessible.

    “Charts have these various visual features that, as a [sighted] reader, you can shift your attention around, look at high-level patterns, look at individual data points, and you can do this on the fly,” says Jonathan Zong, a 2022 MIT Morningside Academy for Design (MAD) Fellow and PhD student in computer science, who points out that even when a graphic includes alt text that interprets the data, the visually impaired user must accept the findings as presented.

    “If you’re [blind and] using a screen reader, the text description imposes a linear predefined reading order. So, you’re beholden to the decisions that the person who wrote the text made about what information was important to include.”

    While some graphics do include data tables that a screen reader can read, it requires the user to remember all the data from each row and column as they move on to the next one. According to the National Federation of the Blind, Zong says, there are 7 million people living in the United States with visual disabilities, and nearly 97 percent of top-level pages on the internet are not accessible to screen readers. The problem, he points out, is an especially difficult one for blind researchers to get around. Some researchers with visual impairments rely on a sighted collaborator to read and help interpret graphics in peer-reviewed research.

    Working with the Visualization Group at the Computer Science and Artificial Intelligence Lab (CSAIL) on a project led by Associate Professor Arvind Satyanarayan that includes Daniel Hajas, a blind researcher and innovation manager at the Global Disability Innovation Hub in England, Zong and others have written an open-source Javascript software program named Olli that solves this problem when it’s included on a website. Olli is able to go from big-picture analysis of a chart to the finest grain of detail to give the user the ability to select the degree of granularity that interests them.

    “We want to design richer screen-reader experiences for visualization with a hierarchical structure, multiple ways to navigate, and descriptions at varying levels of granularity to provide self-guided, open-ended exploration for the user.”

    Next steps with Olli are incorporating multi-sensory software to integrate text and visuals with sound, such as having a musical note that moves up or down the harmonic scale to indicate the direction of data on a linear graph, and possibly even developing tactile interpretations of data. Like most of the MAD Fellows, Zong integrates his science and engineering skills with design and art to create solutions to real-world problems affecting individuals. He’s been recognized for his work in both the visual arts and computer science. He holds undergraduate degrees in computer science and visual arts with a focus on graphic design from Princeton University, where his research was on the ethics of data collection.

    “The throughline is the idea that design can help us make progress on really tough social and ethical questions,” Zong says, calling software for accessible data visualization an “intellectually rich area for design.” “We’re thinking about ways to translate charts and graphs into text descriptions that can get read aloud as speech, or thinking about other kinds of audio mappings to sonify data, and we’re even exploring some tactile methods to understand data,” he says.

    “I get really excited about design when it’s a way to both create things that are useful to people in everyday life and also make progress on larger conversations about technology and society. I think working in accessibility is a great way to do that.”

    Another problem at the intersection of technology and society is the ethics of taking user data from social media for large-scale studies without the users’ awareness. While working as a summer graduate research fellow at Cornell’s Citizens and Technology Lab, Zong helped create an open-source software called Bartleby that can be used in large anonymous data research studies. After researchers collect data, but before analysis, Bartleby would automatically send an email message to every user whose data was included, alert them to that fact and offer them the choice to review the resulting data table and opt out of the study. Bartleby was honored in the student category of Fast Company’s Innovation by Design Awards for 2022. In November the same year, Forbes magazine named Jonathan Zong in its Forbes 30 Under 30 in Science 2023 list for his work in data visualization accessibility.

    The underlying theme to all Zong’s work is the exploration of autonomy and agency, even in his artwork, which is heavily inclusive of text and semiotic play. In “Public Display,” he created a handmade digital display font by erasing parts of celebrity faces that were taken from a facial recognition dataset. The piece was exhibited in 2020 in MIT’s Wiesner Gallery, and received the third-place prize in the MIT Schnitzer Prize in the Visual Arts that year. The work deals not only with the neurological aspects of distinguishing faces from typefaces, but also with the implications for erasing individuals’ identities through the practice of using facial recognition programs that often target individuals in communities of color in unfair ways. Another of his works, “Biometric Sans,” a typography system that stretches letters based on a person’s typing speed, will be included in a show at the Harvard Science Center sometime next fall.

    “MAD, particularly the large events MAD jointly hosted, played a really important function in showing the rest of MIT that this is the kind of work we value. This is what design can look like and is capable of doing. I think it all contributes to that culture shift where this kind of interdisciplinary work can be valued, recognized, and serve the public.

    “There are shared ideas around embodiment and representation that tie these different pursuits together for me,” Zong says. “In the ethics work, and the art on surveillance, I’m thinking about whether data collectors are representing people the way they want to be seen through data. And similarly, the accessibility work is about whether we can make systems that are flexible to the way people want to use them.” More

  • in

    A more effective experimental design for engineering a cell into a new state

    A strategy for cellular reprogramming involves using targeted genetic interventions to engineer a cell into a new state. The technique holds great promise in immunotherapy, for instance, where researchers could reprogram a patient’s T-cells so they are more potent cancer killers. Someday, the approach could also help identify life-saving cancer treatments or regenerative therapies that repair disease-ravaged organs.

    But the human body has about 20,000 genes, and a genetic perturbation could be on a combination of genes or on any of the over 1,000 transcription factors that regulate the genes. Because the search space is vast and genetic experiments are costly, scientists often struggle to find the ideal perturbation for their particular application.   

    Researchers from MIT and Harvard University developed a new, computational approach that can efficiently identify optimal genetic perturbations based on a much smaller number of experiments than traditional methods.

    Their algorithmic technique leverages the cause-and-effect relationship between factors in a complex system, such as genome regulation, to prioritize the best intervention in each round of sequential experiments.

    The researchers conducted a rigorous theoretical analysis to determine that their technique did, indeed, identify optimal interventions. With that theoretical framework in place, they applied the algorithms to real biological data designed to mimic a cellular reprogramming experiment. Their algorithms were the most efficient and effective.

    “Too often, large-scale experiments are designed empirically. A careful causal framework for sequential experimentation may allow identifying optimal interventions with fewer trials, thereby reducing experimental costs,” says co-senior author Caroline Uhler, a professor in the Department of Electrical Engineering and Computer Science (EECS) who is also co-director of the Eric and Wendy Schmidt Center at the Broad Institute of MIT and Harvard, and a researcher at MIT’s Laboratory for Information and Decision Systems (LIDS) and Institute for Data, Systems and Society (IDSS).

    Joining Uhler on the paper, which appears today in Nature Machine Intelligence, are lead author Jiaqi Zhang, a graduate student and Eric and Wendy Schmidt Center Fellow; co-senior author Themistoklis P. Sapsis, professor of mechanical and ocean engineering at MIT and a member of IDSS; and others at Harvard and MIT.

    Active learning

    When scientists try to design an effective intervention for a complex system, like in cellular reprogramming, they often perform experiments sequentially. Such settings are ideally suited for the use of a machine-learning approach called active learning. Data samples are collected and used to learn a model of the system that incorporates the knowledge gathered so far. From this model, an acquisition function is designed — an equation that evaluates all potential interventions and picks the best one to test in the next trial.

    This process is repeated until an optimal intervention is identified (or resources to fund subsequent experiments run out).

    “While there are several generic acquisition functions to sequentially design experiments, these are not effective for problems of such complexity, leading to very slow convergence,” Sapsis explains.

    Acquisition functions typically consider correlation between factors, such as which genes are co-expressed. But focusing only on correlation ignores the regulatory relationships or causal structure of the system. For instance, a genetic intervention can only affect the expression of downstream genes, but a correlation-based approach would not be able to distinguish between genes that are upstream or downstream.

    “You can learn some of this causal knowledge from the data and use that to design an intervention more efficiently,” Zhang explains.

    The MIT and Harvard researchers leveraged this underlying causal structure for their technique. First, they carefully constructed an algorithm so it can only learn models of the system that account for causal relationships.

    Then the researchers designed the acquisition function so it automatically evaluates interventions using information on these causal relationships. They crafted this function so it prioritizes the most informative interventions, meaning those most likely to lead to the optimal intervention in subsequent experiments.

    “By considering causal models instead of correlation-based models, we can already rule out certain interventions. Then, whenever you get new data, you can learn a more accurate causal model and thereby further shrink the space of interventions,” Uhler explains.

    This smaller search space, coupled with the acquisition function’s special focus on the most informative interventions, is what makes their approach so efficient.

    The researchers further improved their acquisition function using a technique known as output weighting, inspired by the study of extreme events in complex systems. This method carefully emphasizes interventions that are likely to be closer to the optimal intervention.

    “Essentially, we view an optimal intervention as an ‘extreme event’ within the space of all possible, suboptimal interventions and use some of the ideas we have developed for these problems,” Sapsis says.    

    Enhanced efficiency

    They tested their algorithms using real biological data in a simulated cellular reprogramming experiment. For this test, they sought a genetic perturbation that would result in a desired shift in average gene expression. Their acquisition functions consistently identified better interventions than baseline methods through every step in the multi-stage experiment.

    “If you cut the experiment off at any stage, ours would still be more efficient than the baselines. This means you could run fewer experiments and get the same or better results,” Zhang says.

    The researchers are currently working with experimentalists to apply their technique toward cellular reprogramming in the lab.

    Their approach could also be applied to problems outside genomics, such as identifying optimal prices for consumer products or enabling optimal feedback control in fluid mechanics applications.

    In the future, they plan to enhance their technique for optimizations beyond those that seek to match a desired mean. In addition, their method assumes that scientists already understand the causal relationships in their system, but future work could explore how to use AI to learn that information, as well.

    This work was funded, in part, by the Office of Naval Research, the MIT-IBM Watson AI Lab, the MIT J-Clinic for Machine Learning and Health, the Eric and Wendy Schmidt Center at the Broad Institute, a Simons Investigator Award, the Air Force Office of Scientific Research, and a National Science Foundation Graduate Fellowship. More

  • in

    From physics to generative AI: An AI model for advanced pattern generation

    Generative AI, which is currently riding a crest of popular discourse, promises a world where the simple transforms into the complex — where a simple distribution evolves into intricate patterns of images, sounds, or text, rendering the artificial startlingly real. 

    The realms of imagination no longer remain as mere abstractions, as researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have brought an innovative AI model to life. Their new technology integrates two seemingly unrelated physical laws that underpin the best-performing generative models to date: diffusion, which typically illustrates the random motion of elements, like heat permeating a room or a gas expanding into space, and Poisson Flow, which draws on the principles governing the activity of electric charges.

    This harmonious blend has resulted in superior performance in generating new images, outpacing existing state-of-the-art models. Since its inception, the “Poisson Flow Generative Model ++” (PFGM++) has found potential applications in various fields, from antibody and RNA sequence generation to audio production and graph generation.

    The model can generate complex patterns, like creating realistic images or mimicking real-world processes. PFGM++ builds off of PFGM, the team’s work from the prior year. PFGM takes inspiration from the means behind the mathematical equation known as the “Poisson” equation, and then applies it to the data the model tries to learn from. To do this, the team used a clever trick: They added an extra dimension to their model’s “space,” kind of like going from a 2D sketch to a 3D model. This extra dimension gives more room for maneuvering, places the data in a larger context, and helps one approach the data from all directions when generating new samples. 

    “PFGM++ is an example of the kinds of AI advances that can be driven through interdisciplinary collaborations between physicists and computer scientists,” says Jesse Thaler, theoretical particle physicist in MIT’s Laboratory for Nuclear Science’s Center for Theoretical Physics and director of the National Science Foundation’s AI Institute for Artificial Intelligence and Fundamental Interactions (NSF AI IAIFI), who was not involved in the work. “In recent years, AI-based generative models have yielded numerous eye-popping results, from photorealistic images to lucid streams of text. Remarkably, some of the most powerful generative models are grounded in time-tested concepts from physics, such as symmetries and thermodynamics. PFGM++ takes a century-old idea from fundamental physics — that there might be extra dimensions of space-time — and turns it into a powerful and robust tool to generate synthetic but realistic datasets. I’m thrilled to see the myriad of ways ‘physics intelligence’ is transforming the field of artificial intelligence.”

    The underlying mechanism of PFGM isn’t as complex as it might sound. The researchers compared the data points to tiny electric charges placed on a flat plane in a dimensionally expanded world. These charges produce an “electric field,” with the charges looking to move upwards along the field lines into an extra dimension and consequently forming a uniform distribution on a vast imaginary hemisphere. The generation process is like rewinding a videotape: starting with a uniformly distributed set of charges on the hemisphere and tracking their journey back to the flat plane along the electric lines, they align to match the original data distribution. This intriguing process allows the neural model to learn the electric field, and generate new data that mirrors the original. 

    The PFGM++ model extends the electric field in PFGM to an intricate, higher-dimensional framework. When you keep expanding these dimensions, something unexpected happens — the model starts resembling another important class of models, the diffusion models. This work is all about finding the right balance. The PFGM and diffusion models sit at opposite ends of a spectrum: one is robust but complex to handle, the other simpler but less sturdy. The PFGM++ model offers a sweet spot, striking a balance between robustness and ease of use. This innovation paves the way for more efficient image and pattern generation, marking a significant step forward in technology. Along with adjustable dimensions, the researchers proposed a new training method that enables more efficient learning of the electric field. 

    To bring this theory to life, the team resolved a pair of differential equations detailing these charges’ motion within the electric field. They evaluated the performance using the Frechet Inception Distance (FID) score, a widely accepted metric that assesses the quality of images generated by the model in comparison to the real ones. PFGM++ further showcases a higher resistance to errors and robustness toward the step size in the differential equations.

    Looking ahead, they aim to refine certain aspects of the model, particularly in systematic ways to identify the “sweet spot” value of D tailored for specific data, architectures, and tasks by analyzing the behavior of estimation errors of neural networks. They also plan to apply the PFGM++ to the modern large-scale text-to-image/text-to-video generation.

    “Diffusion models have become a critical driving force behind the revolution in generative AI,” says Yang Song, research scientist at OpenAI. “PFGM++ presents a powerful generalization of diffusion models, allowing users to generate higher-quality images by improving the robustness of image generation against perturbations and learning errors. Furthermore, PFGM++ uncovers a surprising connection between electrostatics and diffusion models, providing new theoretical insights into diffusion model research.”

    “Poisson Flow Generative Models do not only rely on an elegant physics-inspired formulation based on electrostatics, but they also offer state-of-the-art generative modeling performance in practice,” says NVIDIA Senior Research Scientist Karsten Kreis, who was not involved in the work. “They even outperform the popular diffusion models, which currently dominate the literature. This makes them a very powerful generative modeling tool, and I envision their application in diverse areas, ranging from digital content creation to generative drug discovery. More generally, I believe that the exploration of further physics-inspired generative modeling frameworks holds great promise for the future and that Poisson Flow Generative Models are only the beginning.”

    Authors on a paper about this work include three MIT graduate students: Yilun Xu of the Department of Electrical Engineering and Computer Science (EECS) and CSAIL, Ziming Liu of the Department of Physics and the NSF AI IAIFI, and Shangyuan Tong of EECS and CSAIL, as well as Google Senior Research Scientist Yonglong Tian PhD ’23. MIT professors Max Tegmark and Tommi Jaakkola advised the research.

    The team was supported by the MIT-DSTA Singapore collaboration, the MIT-IBM Grand Challenge project, National Science Foundation grants, The Casey and Family Foundation, the Foundational Questions Institute, the Rothberg Family Fund for Cognitive Science, and the ML for Pharmaceutical Discovery and Synthesis Consortium. Their work was presented at the International Conference on Machine Learning this summer. More

  • in

    3 Questions: A new PhD program from the Center for Computational Science and Engineering

    This fall, the Center for Computational Science and Engineering (CCSE), an academic unit in the MIT Schwarzman College of Computing, is introducing a new standalone PhD degree program that will enable students to pursue research in cross-cutting methodological aspects of computational science and engineering. The launch follows approval of the center’s degree program proposal at the May 2023 Institute faculty meeting.

    Doctoral-level graduate study in computational science and engineering (CSE) at MIT has, for the past decade, been offered through an interdisciplinary program in which CSE students are admitted to one of eight participating academic departments in the School of Engineering or School of Science. While this model adds a strong disciplinary component to students’ education, the rapid growth of the CSE field and the establishment of the MIT Schwarzman College of Computing have prompted an exciting expansion of MIT’s graduate-level offerings in computation.

    The new degree, offered by the college, will run alongside MIT’s existing interdisciplinary offerings in CSE, complementing these doctoral training programs and preparing students to contribute to the leading edge of the field. Here, CCSE co-directors Youssef Marzouk and Nicolas Hadjiconstantinou discuss the standalone program and how they expect it to elevate the visibility and impact of CSE research and education at MIT.

    Q: What is computational science and engineering?

    Marzouk: Computational science and engineering focuses on the development and analysis of state-of-the-art methods for computation and their innovative application to problems of science and engineering interest. It has intellectual foundations in applied mathematics, statistics, and computer science, and touches the full range of science and engineering disciplines. Yet, it synthesizes these foundations into a discipline of its own — one that links the digital and physical worlds. It’s an exciting and evolving multidisciplinary field.

    Hadjiconstantinou: Examples of CSE research happening at MIT include modeling and simulation techniques, the underlying computational mathematics, and data-driven modeling of physical systems. Computational statistics and scientific machine learning have become prominent threads within CSE, joining high-performance computing, mathematically-oriented programming languages, and their broader links to algorithms and software. Application domains include energy, environment and climate, materials, health, transportation, autonomy, and aerospace, among others. Some of our researchers focus on general and widely applicable methodology, while others choose to focus on methods and algorithms motivated by a specific domain of application.

    Q: What was the motivation behind creating a standalone PhD program?

    Marzouk: The new degree focuses on a particular class of students whose background and interests are primarily in CSE methodology, in a manner that cuts across the disciplinary research structure represented by our current “with-departments” degree program. There is a strong research demand for such methodologically-focused students among CCSE faculty and MIT faculty in general. Our objective is to create a targeted, coherent degree program in this field that, alongside our other thriving CSE offerings, will create the leading environment for top CSE students worldwide.

    Hadjiconstantinou: One of CCSE’s most important functions is to recruit exceptional students who are trained in and want to work in computational science and engineering. Experience with our CSE master’s program suggests that students with a strong background and interests in the discipline prefer to apply to a pure CSE program for their graduate studies. The standalone degree aims to bring these students to MIT and make them available to faculty across the Institute.

    Q: How will this impact computing education and research at MIT? 

    Hadjiconstantinou: We believe that offering a standalone PhD program in CSE alongside the existing “with-departments” programs will significantly strengthen MIT’s graduate programs in computing. In particular, it will strengthen the methodological core of CSE research and education at MIT, while continuing to support the disciplinary-flavored CSE work taking place in our participating departments, which include Aeronautics and Astronautics; Chemical Engineering; Civil and Environmental Engineering; Materials Science and Engineering; Mechanical Engineering; Nuclear Science and Engineering; Earth, Atmospheric and Planetary Sciences; and Mathematics. Together, these programs will create a stronger CSE student cohort and facilitate deeper exchanges between the college and other units at MIT.

    Marzouk: In a broader sense, the new program is designed to help realize one of the key opportunities presented by the college, which is to create a richer variety of graduate degrees in computation and to involve as many faculty and units in these educational endeavors as possible. The standalone CSE PhD will join other distinguished doctoral programs of the college — such as the Department of Electrical Engineering and Computer Science PhD; the Operations Research Center PhD; and the Interdisciplinary Doctoral Program in Statistics and the Social and Engineering Systems PhD within the Institute for Data, Systems, and Society — and grow in a way that is informed by them. The confluence of these academic programs, and natural synergies among them, will make MIT quite unique. More

  • in

    Meet the 2023-24 Accenture Fellows

    The MIT and Accenture Convergence Initiative for Industry and Technology has selected five new research fellows for 2023-24. Now in its third year, the initiative underscores the ways in which industry and research can collaborate to spur technological innovation.

    Through its partnership with the School of Engineering, Accenture provides five annual fellowships awarded to graduate students with the aim of generating powerful new insights on the convergence of business and technology with the potential to transform society. The 2023-24 fellows will conduct research in areas including artificial intelligence, sustainability, and robotics.

    The 2023-24 Accenture Fellows are:

    Yiyue Luo

    Yiyue Luo is a PhD candidate who is developing innovative integrations of tactile sensing and haptics, interactive sensing and AI, digital fabrication, and smart wearables. Her work takes advantage of recent advances in digital manufacturing and AI, and the convergence in advanced sensing and actuation mechanisms, scalable digital manufacturing, and emerging computational techniques, with the goal of creating novel sensing and actuation devices that revolutionize interactions between people and their environments. In past projects, Luo has developed tactile sensing apparel including socks, gloves, and vests, as well as a workflow for computationally designing and digitally fabricating soft textiles-based pneumatic actuators. With the support of an Accenture Fellowship, she will advance her work of combining sensing and actuating devices and explore the development of haptic devices that simulate tactile cues captured by tactile sensors. Her ultimate aim is to build a scalable, textile-based, closed-loop human-machine interface. Luo’s research holds exciting potential to advance ground-breaking applications for smart textiles, health care, artificial and virtual reality, human-machine interactions, and robotics.

    Zanele Munyikwa is a PhD candidate whose research explores foundation models, a class of models that forms the basis of transformative general-purpose technologies (GPTs) such as GPT4. An Accenture Fellowship will enable Munyikwa to conduct research aimed at illuminating the current and potential impact of foundation models (including large language models) on work and tasks common to “high-skilled” knowledge workers in industries such as marketing, legal services, and medicine, in which foundation models are expected to have significant economic and social impacts. A primary goal of her project is to observe the impact of AI augmentation on tasks like copywriting and long-form writing. A second aim is to explore two primary ways that foundation models are driving the convergence of creative and technological industries, namely: reducing the cost of content generation and enabling the development of tools and platforms for education and training. Munyikwa’s work has important implications for the use of foundation models in many fields, from health care and education to legal services, business, and technology.

    Michelle Vaccaro is a PhD candidate in social engineering systems whose research explores human-AI collaboration with the goals of developing a deeper understanding of AI-based technologies (including ChatGPT and DALL-E), evaluating their performance and evolution, and steering their development toward societally beneficial applications, like climate change mitigation. An Accenture Fellowship will support Vaccaro’s current work toward two key objectives: identifying synergies between humans and AI-based software to help design human-AI systems that address persistent problems better than existing approaches; and investigating applications of human-AI collaboration for forecasting technological change, specifically for renewable energy technologies. By integrating the historically distinct domains of AI, systems engineering, and cognitive science with a wide range of industries, technical fields, and social applications, Vaccaro’s work has the potential to advance individual and collective productivity and creativity in all these areas.

    Chonghuan Wang is a PhD candidate in computational science and engineering whose research employs statistical learning, econometrics theory, and experimental design to create efficient, reliable, and sustainable field experiments in various domains. In his current work, Wang is applying statistical learning techniques such as online learning and bandit theory to test the effectiveness of new treatments, vaccinations, and health care interventions. With the support of an Accenture Fellowship, he will design experiments with the specific aim of understanding the trade-off between the loss of a patient’s welfare and the accuracy of estimating the treatment effect. The results of this research could help to save lives and contain disease outbreaks during pandemics like Covid-19. The benefits of enhanced experiment design and the collection of high-quality data extend well beyond health care; for example, these tools could help businesses optimize user engagement, test pricing impacts, and increase the usage of platforms and services. Wang’s research holds exciting potential to harness statistical learning, econometrics theory, and experimental design in support of strong businesses and the greater social good.

    Aaron Michael West Jr. is a PhD candidate whose research seeks to enhance our knowledge of human motor control and robotics. His work aims to advance rehabilitation technologies and prosthetic devices, as well as improve robot dexterity. His previous work has yielded valuable insights into the human ability to extract information solely from visual displays. Specifically, he demonstrated humans’ ability to estimate stiffness based solely on the visual observation of motion. These insights could advance the development of software applications with the same capability (e.g., using machine learning methods applied to video data) and may enable roboticists to develop enhanced motion control such that a robot’s intention is perceivable by humans. An Accenture Fellowship will enable West to continue this work, as well as new investigations into the functionality of the human hand to aid in the design of a prosthetic hand that better replicates human dexterity. By advancing understandings of human bio- and neuro-mechanics, West’s work has the potential to support major advances in robotics and rehabilitation technologies, with profound impacts on human health and well-being. More

  • in

    Helping computer vision and language models understand what they see

    Powerful machine-learning algorithms known as vision and language models, which learn to match text with images, have shown remarkable results when asked to generate captions or summarize videos.

    While these models excel at identifying objects, they often struggle to understand concepts, like object attributes or the arrangement of items in a scene. For instance, a vision and language model might recognize the cup and table in an image, but fail to grasp that the cup is sitting on the table.

    Researchers from MIT, the MIT-IBM Watson AI Lab, and elsewhere have demonstrated a new technique that utilizes computer-generated data to help vision and language models overcome this shortcoming.

    The researchers created a synthetic dataset of images that depict a wide range of scenarios, object arrangements, and human actions, coupled with detailed text descriptions. They used this annotated dataset to “fix” vision and language models so they can learn concepts more effectively. Their technique ensures these models can still make accurate predictions when they see real images.

    When they tested models on concept understanding, the researchers found that their technique boosted accuracy by up to 10 percent. This could improve systems that automatically caption videos or enhance models that provide natural language answers to questions about images, with applications in fields like e-commerce or health care.

    “With this work, we are going beyond nouns in the sense that we are going beyond just the names of objects to more of the semantic concept of an object and everything around it. Our idea was that, when a machine-learning model sees objects in many different arrangements, it will have a better idea of how arrangement matters in a scene,” says Khaled Shehada, a graduate student in the Department of Electrical Engineering and Computer Science and co-author of a paper on this technique.

    Shehada wrote the paper with lead author Paola Cascante-Bonilla, a computer science graduate student at Rice University; Aude Oliva, director of strategic industry engagement at the MIT Schwarzman College of Computing, MIT director of the MIT-IBM Watson AI Lab, and a senior research scientist in the Computer Science and Artificial Intelligence Laboratory (CSAIL); senior author Leonid Karlinsky, a research staff member in the MIT-IBM Watson AI Lab; and others at MIT, the MIT-IBM Watson AI Lab, Georgia Tech, Rice University, École des Ponts, Weizmann Institute of Science, and IBM Research. The paper will be presented at the International Conference on Computer Vision.

    Focusing on objects

    Vision and language models typically learn to identify objects in a scene, and can end up ignoring object attributes, such as color and size, or positional relationships, such as which object is on top of another object.

    This is due to the method with which these models are often trained, known as contrastive learning. This training method involves forcing a model to predict the correspondence between images and text. When comparing natural images, the objects in each scene tend to cause the most striking differences. (Perhaps one image shows a horse in a field while the second shows a sailboat on the water.)

    “Every image could be uniquely defined by the objects in the image. So, when you do contrastive learning, just focusing on the nouns and objects would solve the problem. Why would the model do anything differently?” says Karlinsky.

    The researchers sought to mitigate this problem by using synthetic data to fine-tune a vision and language model. The fine-tuning process involves tweaking a model that has already been trained to improve its performance on a specific task.

    They used a computer to automatically create synthetic videos with diverse 3D environments and objects, such as furniture and luggage, and added human avatars that interacted with the objects.

    Using individual frames of these videos, they generated nearly 800,000 photorealistic images, and then paired each with a detailed caption. The researchers developed a methodology for annotating every aspect of the image to capture object attributes, positional relationships, and human-object interactions clearly and consistently in dense captions.

    Because the researchers created the images, they could control the appearance and position of objects, as well as the gender, clothing, poses, and actions of the human avatars.

    “Synthetic data allows a lot of diversity. With real images, you might not have a lot of elephants in a room, but with synthetic data, you could actually have a pink elephant in a room with a human, if you want,” Cascante-Bonilla says.

    Synthetic data have other advantages, too. They are cheaper to generate than real data, yet the images are highly photorealistic. They also preserve privacy because no real humans are shown in the images. And, because data are produced automatically by a computer, they can be generated quickly in massive quantities.

    By using different camera viewpoints, or slightly changing the positions or attributes of objects, the researchers created a dataset with a far wider variety of scenarios than one would find in a natural dataset.

    Fine-tune, but don’t forget

    However, when one fine-tunes a model with synthetic data, there is a risk that model might “forget” what it learned when it was originally trained with real data.

    The researchers employed a few techniques to prevent this problem, such as adjusting the synthetic data so colors, lighting, and shadows more closely match those found in natural images. They also made adjustments to the model’s inner-workings after fine-tuning to further reduce any forgetfulness.

    Their synthetic dataset and fine-tuning strategy improved the ability of popular vision and language models to accurately recognize concepts by up to 10 percent. At the same time, the models did not forget what they had already learned.

    Now that they have shown how synthetic data can be used to solve this problem, the researchers want to identify ways to improve the visual quality and diversity of these data, as well as the underlying physics that makes synthetic scenes look realistic. In addition, they plan to test the limits of scalability, and investigate whether model improvement starts to plateau with larger and more diverse synthetic datasets.

    This research is funded, in part, by the U.S. Defense Advanced Research Projects Agency, the National Science Foundation, and the MIT-IBM Watson AI Lab. More

  • in

    M’Care and MIT students join forces to improve child health in Nigeria

    Through a collaboration between M’Care, a 2021 Health Security and Pandemics Solver team, and students from MIT, the landscape of child health care in Nigeria could undergo a transformative change, wherein the power of data is harnessed to improve child health outcomes in economically disadvantaged communities. 

    M’Care is a mobile application of Promane and Promade Limited, developed by Opeoluwa Ashimi, which gives community health workers in Nigeria real-time diagnostic and treatment support. The application also creates a dashboard that is available to government health officials to help identify disease trends and deploy timely interventions. As part of its work, M’Care is working to mitigate malnutrition by providing micronutrient powder, vitamin A, and zinc to children below the age of 5. To help deepen its impact, Ashimi decided to work with students in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) course 6.S897 (Machine Learning for Healthcare) — instructed by professors Peter Szolovits and Manolis Kellis — to leverage data in order to improve nutrient delivery to children across Nigeria. The collaboration also enabled students to see real-world applications for data analysis in the health care space.

    A meeting of minds: M’Care, MIT, and national health authorities

    “Our primary goal for collaborating with the ML for Health team was to spot the missing link in the continuum of care. With over 1 million cumulative consultations that qualify for a continuum of care evaluation, it was important to spot why patients could be lost to followup, prevent this, and ensure completion of care to successfully address the health needs of our patients,” says Ashimi, founder and CEO of M’Care.

    In May 2023, Ashimi attended a meeting that brought together key national stakeholders, including the representatives of the National Ministry of Health in Nigeria. This gathering served as a platform to discuss the profound impact of M’Care’s and ML for Health team’s collaboration — bolstered by data analysis provided on dosage regimens and a child’s age to enhance continuum of care with its attendant impact on children’s health, particularly in relation to brain development with regards to the use of essential micronutrients. The data analyzed by the students using ML methods that were shared during the meeting provided strong supporting evidence to individualize dosage regimens for children based on their age in months for the ANRIN project — a national nutrition project supported by the World Bank — as well as policy decisions to extend months of coverage for children, redefining health care practices in Nigeria.

    MIT students drive change by harnessing the power of data

    At the heart of this collaboration lies the contribution of MIT students. Armed with their dedication and skill in data analysis and machine learning, they played a pivotal role in helping M’Care analyze their data and prepare for their meeting with the Ministry of Health. Their most significant findings included ways to identify patients at risk of not completing their full course of micronutrient powder and/or vitamin A, and identifying gaps in M’Care’s data, such as postdated delivery dates and community demographics. These findings are already helping M’Care better plan its resources and adjust the scope of its program to ensure more children complete the intervention.

    Darcy Kim, an undergraduate at Wellesley College studying math and computer science, who is cross-registered for the MIT machine learning course, expresses enthusiasm about the practical applications found within the project: “To me, data and math is storytelling, and the story is why I love studying it. … I learned that data exploration involves asking questions about how the data is collected, and that surprising patterns that arise often have a qualitative explanation. Impactful research requires radical collaboration with the people the research intends to help. Otherwise, these qualitative explanations get lost in the numbers.”

    Joyce Luo, a first-year operations research PhD student at the Operations Research Center at MIT, shares similar thoughts about the project: “I learned the importance of understanding the context behind data to figure out what kind of analysis might be most impactful. This involves being in frequent contact with the company or organization who provides the data to learn as much as you can about how the data was collected and the people the analysis could help. Stepping back and looking at the bigger picture, rather than just focusing on accuracy or metrics, is extremely important.”

    Insights to implementation: A new era for micronutrient dosing

    As a direct result of M’Care’s collaboration with MIT, policymakers revamped the dosing scheme for essential micronutrient administration for children in Nigeria to prevent malnutrition. M’Care and MIT’s data analysis unearthed critical insights into the limited frequency of medical visits caused by late-age enrollment. 

    “One big takeaway for me was that the data analysis portion of the project — doing a deep dive into the data; understanding, analyzing, visualizing, and summarizing the data — can be just as important as building the machine learning models. M’Care shared our data analysis with the National Ministry of Health, and the insights from it drove them to change their dosing scheme and schedule for delivering micronutrient powder to young children. This really showed us the value of understanding and knowing your data before modeling,” shares Angela Lin, a second-year PhD student at the Operations Research Center.

    Armed with this knowledge, policymakers are eager to develop an optimized dosing scheme that caters to the unique needs of children in disadvantaged communities, ensuring maximum impact on their brain development and overall well-being.

    Siddharth Srivastava, M’Care’s corporate technology liaison, shares his gratitude for the MIT student’s input. “Collaborating with enthusiastic and driven students was both empowering and inspiring. Each of them brought unique perspectives and technical skills to the table. Their passion for applying machine learning to health care was evident in their unwavering dedication and proactive approach to problem-solving.”

    Forging a path to impact

    The collaboration between M’Care and MIT exemplifies the remarkable achievements that arise when academia, innovative problem-solvers, and policy authorities unite. By merging academic rigor with real-world expertise, this partnership has the potential to revolutionize child health care not only in Nigeria but also in similar contexts worldwide.

    “I believe applying innovative methods of machine learning, data gathering, instrumentation, and planning to real problems in the developing world can be highly effective for those countries and highly motivating for our students. I was happy to have such a project in our class portfolio this year and look forward to future opportunities,” says Peter Szolovits, professor of computer science and engineering at MIT.

    By harnessing the power of data, innovation, and collective expertise, this collaboration between M’Care and MIT has the potential to improve equitable child health care in Nigeria. “It has been so fulfilling to see how our team’s work has been able to create even the smallest positive impact in such a short period of time, and it has been amazing to work with a company like Promane and Promade Limited that is so knowledgeable and caring for the communities that they serve,” shares Elizabeth Whittier, a second-year PhD electrical engineering student at MIT. More