More stories

  • in

    How quickly do algorithms improve?

    Algorithms are sort of like a parent to a computer. They tell the computer how to make sense of information so they can, in turn, make something useful out of it.

    The more efficient the algorithm, the less work the computer has to do. For all of the technological progress in computing hardware, and the much debated lifespan of Moore’s Law, computer performance is only one side of the picture.

    Behind the scenes a second trend is happening: Algorithms are being improved, so in turn less computing power is needed. While algorithmic efficiency may have less of a spotlight, you’d definitely notice if your trusty search engine suddenly became one-tenth as fast, or if moving through big datasets felt like wading through sludge.

    This led scientists from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) to ask: How quickly do algorithms improve?  

    Existing data on this question were largely anecdotal, consisting of case studies of particular algorithms that were assumed to be representative of the broader scope. Faced with this dearth of evidence, the team set off to crunch data from 57 textbooks and more than 1,110 research papers, to trace the history of when algorithms got better. Some of the research papers directly reported how good new algorithms were, and others needed to be reconstructed by the authors using “pseudocode,” shorthand versions of the algorithm that describe the basic details.

    In total, the team looked at 113 “algorithm families,” sets of algorithms solving the same problem that had been highlighted as most important by computer science textbooks. For each of the 113, the team reconstructed its history, tracking each time a new algorithm was proposed for the problem and making special note of those that were more efficient. Ranging in performance and separated by decades, starting from the 1940s to now, the team found an average of eight algorithms per family, of which a couple improved its efficiency. To share this assembled database of knowledge, the team also created Algorithm-Wiki.org.

    The scientists charted how quickly these families had improved, focusing on the most-analyzed feature of the algorithms — how fast they could guarantee to solve the problem (in computer speak: “worst-case time complexity”). What emerged was enormous variability, but also important insights on how transformative algorithmic improvement has been for computer science.

    For large computing problems, 43 percent of algorithm families had year-on-year improvements that were equal to or larger than the much-touted gains from Moore’s Law. In 14 percent of problems, the improvement to performance from algorithms vastly outpaced those that have come from improved hardware. The gains from algorithm improvement were particularly large for big-data problems, so the importance of those advancements has grown in recent decades.

    The single biggest change that the authors observed came when an algorithm family transitioned from exponential to polynomial complexity. The amount of effort it takes to solve an exponential problem is like a person trying to guess a combination on a lock. If you only have a single 10-digit dial, the task is easy. With four dials like a bicycle lock, it’s hard enough that no one steals your bike, but still conceivable that you could try every combination. With 50, it’s almost impossible — it would take too many steps. Problems that have exponential complexity are like that for computers: As they get bigger they quickly outpace the ability of the computer to handle them. Finding a polynomial algorithm often solves that, making it possible to tackle problems in a way that no amount of hardware improvement can.

    As rumblings of Moore’s Law coming to an end rapidly permeate global conversations, the researchers say that computing users will increasingly need to turn to areas like algorithms for performance improvements. The team says the findings confirm that historically, the gains from algorithms have been enormous, so the potential is there. But if gains come from algorithms instead of hardware, they’ll look different. Hardware improvement from Moore’s Law happens smoothly over time, and for algorithms the gains come in steps that are usually large but infrequent. 

    “This is the first paper to show how fast algorithms are improving across a broad range of examples,” says Neil Thompson, an MIT research scientist at CSAIL and the Sloan School of Management and senior author on the new paper. “Through our analysis, we were able to say how many more tasks could be done using the same amount of computing power after an algorithm improved. As problems increase to billions or trillions of data points, algorithmic improvement becomes substantially more important than hardware improvement. In an era where the environmental footprint of computing is increasingly worrisome, this is a way to improve businesses and other organizations without the downside.”

    Thompson wrote the paper alongside MIT visiting student Yash Sherry. The paper is published in the Proceedings of the IEEE. The work was funded by the Tides foundation and the MIT Initiative on the Digital Economy. More

  • in

    Research collaboration puts climate-resilient crops in sight

    Any houseplant owner knows that changes in the amount of water or sunlight a plant receives can put it under immense stress. A dying plant brings certain disappointment to anyone with a green thumb. 

    But for farmers who make their living by successfully growing plants, and whose crops may nourish hundreds or thousands of people, the devastation of failing flora is that much greater. As climate change is poised to cause increasingly unpredictable weather patterns globally, crops may be subject to more extreme environmental conditions like droughts, fluctuating temperatures, floods, and wildfire. 

    Climate scientists and food systems researchers worry about the stress climate change may put on crops, and on global food security. In an ambitious interdisciplinary project funded by the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), David Des Marais, the Gale Assistant Professor in the Department of Civil and Environmental Engineering at MIT, and Caroline Uhler, an associate professor in the MIT Department of Electrical Engineering and Computer Science and the Institute for Data, Systems, and Society, are investigating how plant genes communicate with one another under stress. Their research results can be used to breed plants more resilient to climate change.

    Crops in trouble

    Governing plants’ responses to environmental stress are gene regulatory networks, or GRNs, which guide the development and behaviors of living things. A GRN may be comprised of thousands of genes and proteins that all communicate with one another. GRNs help a particular cell, tissue, or organism respond to environmental changes by signaling certain genes to turn their expression on or off.

    Even seemingly minor or short-term changes in weather patterns can have large effects on crop yield and food security. An environmental trigger, like a lack of water during a crucial phase of plant development, can turn a gene on or off, and is likely to affect many others in the GRN. For example, without water, a gene enabling photosynthesis may switch off. This can create a domino effect, where the genes that rely on those regulating photosynthesis are silenced, and the cycle continues. As a result, when photosynthesis is halted, the plant may experience other detrimental side effects, like no longer being able to reproduce or defend against pathogens. The chain reaction could even kill a plant before it has the chance to be revived by a big rain.

    Des Marais says he wishes there was a way to stop those genes from completely shutting off in such a situation. To do that, scientists would need to better understand how exactly gene networks respond to different environmental triggers. Bringing light to this molecular process is exactly what he aims to do in this collaborative research effort.

    Solving complex problems across disciplines

    Despite their crucial importance, GRNs are difficult to study because of how complex and interconnected they are. Usually, to understand how a particular gene is affecting others, biologists must silence one gene and see how the others in the network respond. 

    For years, scientists have aspired to an algorithm that could synthesize the massive amount of information contained in GRNs to “identify correct regulatory relationships among genes,” according to a 2019 article in the Encyclopedia of Bioinformatics and Computational Biology. 

    “A GRN can be seen as a large causal network, and understanding the effects that silencing one gene has on all other genes requires understanding the causal relationships among the genes,” says Uhler. “These are exactly the kinds of algorithms my group develops.”

    Des Marais and Uhler’s project aims to unravel these complex communication networks and discover how to breed crops that are more resilient to the increased droughts, flooding, and erratic weather patterns that climate change is already causing globally.

    In addition to climate change, by 2050, the world will demand 70 percent more food to feed a booming population. “Food systems challenges cannot be addressed individually in disciplinary or topic area silos,” says Greg Sixt, J-WAFS’ research manager for climate and food systems. “They must be addressed in a systems context that reflects the interconnected nature of the food system.”

    Des Marais’ background is in biology, and Uhler’s in statistics. “Dave’s project with Caroline was essentially experimental,” says Renee J. Robins, J-WAFS’ executive director. “This kind of exploratory research is exactly what the J-WAFS seed grant program is for.”

    Getting inside gene regulatory networks

    Des Marais and Uhler’s work begins in a windowless basement on MIT’s campus, where 300 genetically identical Brachypodium distachyon plants grow in large, temperature-controlled chambers. The plant, which contains more than 30,000 genes, is a good model for studying important cereal crops like wheat, barley, maize, and millet. For three weeks, all plants receive the same temperature, humidity, light, and water. Then, half are slowly tapered off water, simulating drought-like conditions.

    Six days into the forced drought, the plants are clearly suffering. Des Marais’ PhD student Jie Yun takes tissues from 50 hydrated and 50 dry plants, freezes them in liquid nitrogen to immediately halt metabolic activity, grinds them up into a fine powder, and chemically separates the genetic material. The genes from all 100 samples are then sequenced at a lab across the street.

    The team is left with a spreadsheet listing the 30,000 genes found in each of the 100 plants at the moment they were frozen, and how many copies there were. Uhler’s PhD student Anastasiya Belyaeva inputs the massive spreadsheet into the computer program she developed and runs her novel algorithm. Within a few hours, the group can see which genes were most active in one condition over another, how the genes were communicating, and which were causing changes in others. 

    The methodology captures important subtleties that could allow researchers to eventually alter gene pathways and breed more resilient crops. “When you expose a plant to drought stress, it’s not like there’s some canonical response,” Des Marais says. “There’s lots of things going on. It’s turning this physiologic process up, this one down, this one didn’t exist before, and now suddenly is turned on.” 

    In addition to Des Marais and Uhler’s research, J-WAFS has funded projects in food and water from researchers in 29 departments across all five MIT schools as well as the MIT Schwarzman College of Computing. J-WAFS seed grants typically fund seven to eight new projects every year.

    “The grants are really aimed at catalyzing new ideas, providing the sort of support [for MIT researchers] to be pushing boundaries, and also bringing in faculty who may have some interesting ideas that they haven’t yet applied to water or food concerns,” Robins says. “It’s an avenue for researchers all over the Institute to apply their ideas to water and food.”

    Alison Gold is a student in MIT’s Graduate Program in Science Writing. More

  • in

    A universal system for decoding any type of data sent across a network

    Every piece of data that travels over the internet — from paragraphs in an email to 3D graphics in a virtual reality environment — can be altered by the noise it encounters along the way, such as electromagnetic interference from a microwave or Bluetooth device. The data are coded so that when they arrive at their destination, a decoding algorithm can undo the negative effects of that noise and retrieve the original data.

    Since the 1950s, most error-correcting codes and decoding algorithms have been designed together. Each code had a structure that corresponded with a particular, highly complex decoding algorithm, which often required the use of dedicated hardware.

    Researchers at MIT, Boston University, and Maynooth University in Ireland have now created the first silicon chip that is able to decode any code, regardless of its structure, with maximum accuracy, using a universal decoding algorithm called Guessing Random Additive Noise Decoding (GRAND). By eliminating the need for multiple, computationally complex decoders, GRAND enables increased efficiency that could have applications in augmented and virtual reality, gaming, 5G networks, and connected devices that rely on processing a high volume of data with minimal delay.

    The research at MIT is led by Muriel Médard, the Cecil H. and Ida Green Professor in the Department of Electrical Engineering and Computer Science, and was co-authored by Amit Solomon and Wei Ann, both graduate students at MIT; Rabia Tugce Yazicigil, assistant professor of electrical and computer engineering at Boston University; Arslan Riaz and Vaibhav Bansal, both graduate students at Boston University; Ken R. Duffy, director of the Hamilton Institute at the National University of Ireland at Maynooth; and Kevin Galligan, a Maynooth graduate student. The research will be presented at the European Solid-States Device Research and Circuits Conference next week.

    Focus on noise

    One way to think of these codes is as redundant hashes (in this case, a series of 1s and 0s) added to the end of the original data. The rules for the creation of that hash are stored in a specific codebook.

    As the encoded data travel over a network, they are affected by noise, or energy that disrupts the signal, which is often generated by other electronic devices. When that coded data and the noise that affected them arrive at their destination, the decoding algorithm consults its codebook and uses the structure of the hash to guess what the stored information is.

    Instead, GRAND works by guessing the noise that affected the message, and uses the noise pattern to deduce the original information. GRAND generates a series of noise sequences in the order they are likely to occur, subtracts them from the received data, and checks to see if the resulting codeword is in a codebook.

    While the noise appears random in nature, it has a probabilistic structure that allows the algorithm to guess what it might be.

    “In a way, it is similar to troubleshooting. If someone brings their car into the shop, the mechanic doesn’t start by mapping the entire car to blueprints. Instead, they start by asking, ‘What is the most likely thing to go wrong?’ Maybe it just needs gas. If that doesn’t work, what’s next? Maybe the battery is dead?” Médard says.

    Novel hardware

    The GRAND chip uses a three-tiered structure, starting with the simplest possible solutions in the first stage and working up to longer and more complex noise patterns in the two subsequent stages. Each stage operates independently, which increases the throughput of the system and saves power.

    The device is also designed to switch seamlessly between two codebooks. It contains two static random-access memory chips, one that can crack codewords, while the other loads a new codebook and then switches to decoding without any downtime.

    The researchers tested the GRAND chip and found it could effectively decode any moderate redundancy code up to 128 bits in length, with only about a microsecond of latency.

    Médard and her collaborators had previously demonstrated the success of the algorithm, but this new work showcases the effectiveness and efficiency of GRAND in hardware for the first time.

    Developing hardware for the novel decoding algorithm required the researchers to first toss aside their preconceived notions, Médard says.

    “We couldn’t go out and reuse things that had already been done. This was like a complete whiteboard. We had to really think about every single component from scratch. It was a journey of reconsideration. And I think when we do our next chip, there will be things with this first chip that we’ll realize we did out of habit or assumption that we can do better,” she says.

    A chip for the future

    Since GRAND only uses codebooks for verification, the chip not only works with legacy codes but could also be used with codes that haven’t even been introduced yet.

    In the lead-up to 5G implementation, regulators and communications companies struggled to find consensus as to which codes should be used in the new network. Regulators ultimately chose to use two types of traditional codes for 5G infrastructure in different situations. Using GRAND could eliminate the need for that rigid standardization in the future, Médard says.

    The GRAND chip could even open the field of coding to a wave of innovation.

    “For reasons I’m not quite sure of, people approach coding with awe, like it is black magic. The process is mathematically nasty, so people just use codes that already exist. I’m hoping this will recast the discussion so it is not so standards-oriented, enabling people to use codes that already exist and create new codes,” she says.

    Moving forward, Médard and her collaborators plan to tackle the problem of soft detection with a retooled version of the GRAND chip. In soft detection, the received data are less precise.

    They also plan to test the ability of GRAND to crack longer, more complex codes and adjust the structure of the silicon chip to improve its energy efficiency.

    The research was funded by the Battelle Memorial Institute and Science Foundation of Ireland. More

  • in

    MIT welcomes nine MLK Visiting Professors and Scholars for 2021-22

    In its 31st year, the Martin Luther King Jr. (MLK) Visiting Professors and Scholars Program will host nine outstanding scholars from across the Americas. The flagship program honors the life and legacy of Martin Luther King Jr. by increasing the presence and recognizing the contributions of underrepresented minority scholars at MIT. Throughout the year, the cohort will enhance their scholarship through intellectual engagement with the MIT community and enrich the cultural, academic, and professional experience of students.

    The 2021-22 scholars

    Sanford Biggers is an interdisciplinary artist hosted by the Department of Architecture. His work is an interplay of narrative, perspective, and history that speaks to current social, political, and economic happenings while examining their contexts. His diverse practice positions him as a collaborator with the past through explorations of often-overlooked cultural and political narratives from American history. Through collaboration with his faculty host, Brandon Clifford, he will spend the year contributing to projects with Architecture; Art, Culture and Technology; the Transmedia Storytelling initiatives; and community workshops and engagement with local K-12 education.

    Kristen Dorsey is an assistant professor of engineering at Smith College. She will be hosted by the Program in Media Arts and Sciences at the MIT Media Lab. Her research focuses on the fabrication and characterization of microscale sensors and microelectromechanical systems. Dorsey tries to understand “why things go wrong” by investigating device reliability and stability. At MIT, Dorsey is interested in forging collaborations to consider issues of access and equity as they apply to wearable health care devices.

    Omolola “Lola” Eniola-Adefeso is the associate dean for graduate and professional education and associate professor of chemical engineering at the University of Michigan. She will join MIT’s Department of Chemical Engineering (ChemE). Eniola-Adefeso will work with Professor Paula Hammond on developing electrostatically assembled nanoparticle coatings that enable targeting of specific immune cell types. A co-founder and chief scientific officer of Asalyxa Bio, she is interested in the interactions between blood leukocytes and endothelial cells in vessel lumen lining, and how they change during inflammation response. Eniola-Adefeso will also work with the Diversity in Chemical Engineering (DICE) graduate student group in ChemE and the National Organization of Black Chemists and Chemical Engineers.

    Robert Gilliard Jr. is an assistant professor of chemistry at the University of Virginia and will join the MIT chemistry department, working closely with faculty host Christopher Cummins. His research focuses on various aspects of group 15 element chemistry. He was a founding member of the National Organization of Black Chemists and Chemical Engineers UGA section, and he has served as an American Chemical Society (ACS) Bridge Program mentor as well as an ACS Project Seed mentor. Gilliard has also collaborated with the Cleveland Public Library to expose diverse young scholars to STEM fields.

    Valencia Joyner Koomson ’98, MNG ’99 will return for the second semester of her appointment this fall in MIT’s Department of Electrical Engineering and Computer Science. Based at Tufts University, where she is an associate professor in the Department of Electrical and Computer Engineering, Koomson has focused her research on microelectronic systems for cell analysis and biomedical applications. In the past semester, she has served as a judge for the Black Alumni/ae of MIT Research Slam and worked closely with faculty host Professor Akintunde Akinwande.

    Luis Gilberto Murillo-Urrutia will continue his appointment in MIT’s Environmental Solutions Initiative. He has 30 years of experience in public policy design, implementation, and advocacy, most notably in the areas of sustainable regional development, environmental protection and management of natural resources, social inclusion, and peace building. At MIT, he has continued his research on environmental justice, with a focus on carbon policy and its impacts on Afro-descendant communities in Colombia.

    Sonya T. Smith was the first female professor of mechanical engineering at Howard University. She will join the Department of Aeronautics and Astronautics at MIT. Her research involves computational fluid dynamics and thermal management of electronics for air and space vehicles. She is looking forward to serving as a mentor to underrepresented students across MIT and fostering new research collaborations with her home lab at Howard.

    Lawrence Udeigwe is an associate professor of mathematics at Manhattan College and will join MIT’s Department of Brain and Cognitive Sciences. He plans to co-teach a graduate seminar course with Professor James DiCarlo to explore practical and philosophical questions regarding the use of simulations to build theories in neuroscience. Udeigwe also leads the Lorens Chuno group; as a singer-songwriter, his work tackles intersectionality issues faced by contemporary Africans.

    S. Craig Watkins is an internationally recognized expert in media and a professor at the University of Texas at Austin. He will join MIT’s Institute for Data, Systems, and Society to assist in researching the role of big data in enabling deep structural changes with regard to systemic racism. He will continue to expand on his work as founding director of the Institute for Media Innovation at the University of Texas at Austin, exploring the intersections of critical AI studies, critical race studies, and design. He will also work with MIT’s Center for Advanced Virtuality to develop computational systems that support social perspective-taking.

    Community engagement

    Throughout the 2021-22 academic year, MLK professors and scholars will be presenting their research at a monthly speaker series. Events will be held in an in-person/Zoom hybrid environment. All members of the MIT community are encouraged to attend and hear directly from this year’s cohort of outstanding scholars. To hear more about upcoming events, subscribe to their mailing list.

    On Sept. 15, all are invited to join the Institute Community and Equity Office in welcoming the scholars to campus by attending a welcome luncheon. More

  • in

    Using adversarial attacks to refine molecular energy predictions

    Neural networks (NNs) are increasingly being used to predict new materials, the rate and yield of chemical reactions, and drug-target interactions, among others. For these applications, they are orders of magnitude faster than traditional methods such as quantum mechanical simulations. 

    The price for this agility, however, is reliability. Because machine learning models only interpolate, they may fail when used outside the domain of training data.

    But the part that worried Rafael Gómez-Bombarelli, the Jeffrey Cheah Career Development Professor in the MIT Department of Materials Science and Engineering, and graduate students Daniel Schwalbe-Koda and Aik Rui Tan was that establishing the limits of these machine learning (ML) models is tedious and labor-intensive. 

    This is particularly true for predicting ‘‘potential energy surfaces” (PES), or the map of a molecule’s energy in all its configurations. These surfaces encode the complexities of a molecule into flatlands, valleys, peaks, troughs, and ravines. The most stable configurations of a system are usually in the deep pits — quantum mechanical chasms from which atoms and molecules typically do not escape. 

    In a recent Nature Communications paper, the research team presented a way to demarcate the “safe zone” of a neural network by using “adversarial attacks.” Adversarial attacks have been studied for other classes of problems, such as image classification, but this is the first time that they are being used to sample molecular geometries in a PES. 

    “People have been using uncertainty for active learning for years in ML potentials. The key difference is that they need to run the full ML simulation and evaluate if the NN was reliable, and if it wasn’t, acquire more data, retrain and re-simulate. Meaning that it takes a long time to nail down the right model, and one has to run the ML simulation many times” explains Gómez-Bombarelli.

    The Gómez-Bombarelli lab at MIT works on a synergistic synthesis of first-principles simulation and machine learning that greatly speeds up this process. The actual simulations are run only for a small fraction of these molecules, and all those data are fed into a neural network that learns how to predict the same properties for the rest of the molecules. They have successfully demonstrated these methods for a growing class of novel materials that includes catalysts for producing hydrogen from water, cheaper polymer electrolytes for electric vehicles,  zeolites for molecular sieving, magnetic materials, and more. 

    The challenge, however, is that these neural networks are only as smart as the data they are trained on.  Considering the PES map, 99 percent of the data may fall into one pit, totally missing valleys that are of more interest. 

    Such wrong predictions can have disastrous consequences — think of a self-driving car that fails to identify a person crossing the street.

    One way to find out the uncertainty of a model is to run the same data through multiple versions of it. 

    For this project, the researchers had multiple neural networks predict the potential energy surface from the same data. Where the network is fairly sure of the prediction, the variation between the outputs of different networks is minimal and the surfaces largely converge. When the network is uncertain, the predictions of different models vary widely, producing a range of outputs, any of which could be the correct surface. 

    The spread in the predictions of a “committee of neural networks” is the “uncertainty” at that point. A good model should not just indicate the best prediction, but also indicates the uncertainty about each of these predictions. It’s like the neural network says “this property for material A will have a value of X and I’m highly confident about it.”

    This could have been an elegant solution but for the sheer scale of the combinatorial space. “Each simulation (which is ground feed for the neural network) may take from tens to thousands of CPU hours,” explains Schwalbe-Koda. For the results to be meaningful, multiple models must be run over a sufficient number of points in the PES, an extremely time-consuming process. 

    Instead, the new approach only samples data points from regions of low prediction confidence, corresponding to specific geometries of a molecule. These molecules are then stretched or deformed slightly so that the uncertainty of the neural network committee is maximized. Additional data are computed for these molecules through simulations and then added to the initial training pool. 

    The neural networks are trained again, and a new set of uncertainties are calculated. This process is repeated until the uncertainty associated with various points on the surface becomes well-defined and cannot be decreased any further. 

    Gómez-Bombarelli explains, “We aspire to have a model that is perfect in the regions we care about (i.e., the ones that the simulation will visit) without having had to run the full ML simulation, by making sure that we make it very good in high-likelihood regions where it isn’t.”

    The paper presents several examples of this approach, including predicting complex supramolecular interactions in zeolites. These materials are cavernous crystals that act as molecular sieves with high shape selectivity. They find applications in catalysis, gas separation, and ion exchange, among others.

    Because performing simulations of large zeolite structures is very costly, the researchers show how their method can provide significant savings in computational simulations. They used more than 15,000 examples to train a neural network to predict the potential energy surfaces for these systems. Despite the large cost required to generate the dataset, the final results are mediocre, with only around 80 percent of the neural network-based simulations being successful. To improve the performance of the model using traditional active learning methods, the researchers calculated an additional 5,000 data points, which improved the performance of the neural network potentials to 92 percent.

    However, when the adversarial approach is used to retrain the neural networks, the authors saw a performance jump to 97 percent using only 500 extra points. That’s a remarkable result, the researchers say, especially considering that each of these extra points takes hundreds of CPU hours. 

    This could be the most realistic method to probe the limits of models that researchers use to predict the behavior of materials and the progress of chemical reactions. More

  • in

    Helping companies optimize their websites and mobile apps

    Creating a good customer experience increasingly means creating a good digital experience. But metrics like pageviews and clicks offer limited insight into how much customers actually like a digital product.

    That’s the problem the digital optimization company Amplitude is solving. Amplitude gives companies a clearer picture into how users interact with their digital products to help them understand exactly which features to promote or improve.

    “It’s all about using product data to drive your business,” says Amplitude CEO Spenser Skates ’10, who co-founded the company with Curtis Liu ’10 and Stanford University graduate Jeffrey Wang. “Mobile apps and websites are really complex. The average app or website will have thousands of things you can do with it. The question is how you know which of those things are driving a great user experience and which parts are really frustrating for users.”

    Amplitude’s database can gather millions of details about how users behave inside an app or website and allow customers to explore that information without needing data science degrees.

    “It provides an interface for very easy, accessible ways of looking at your data, understanding your data, and asking questions of that data,” Skates says.

    Amplitude, which recently announced it will be going public, is already helping 23 of the 100 largest companies in the U.S. Customers include media companies like NBC, tech companies like Twitter, and retail companies like Walmart.

    “Our platform helps businesses understand how people are using their apps and websites so they can create better versions of their products,” Skates says. “It’s all about creating a really compelling product.”

    Learning entrepreneurship

    The founders say their years at MIT were among the best of their lives. Skates and Liu were undergraduates from 2006 to 2010. Skates majored in biological engineering while Liu majored in mathematics and electrical engineering and computer science. The two first met as opponents in MIT’s Battlecode competition, in which students use artificial intelligence algorithms to control teams of robots that compete in a strategy game against other teams. The following year they teamed up.

    “There are a lot of parallels between what you’re trying to do in Battlecode and what you end up having to do in the early stages of a startup,” Liu says. “You have limited resources, limited time, and you’re trying to accomplish a goal. What we found is trying a lot of different things, putting our ideas out there and testing them with real data, really helped us focus on the things that actually mattered. That method of iteration and continual improvement set the foundation for how we approach building products and startups.”

    Liu and Skates next participated in the MIT $100K Entrepreneurship Competition with an idea for a cloud-based music streaming service. After graduation, Skates began working in finance and Liu got a job at Google, but they continued pursuing startup ideas on the side, including a website that let alumni see where their classmates ended up and a marketplace for finding photographers.

    A year after graduation, the founders decided to quit their jobs and work on a startup full time. Skates moved into Liu’s apartment in San Francisco, setting up a mattress on the floor, and they began working on a project that became Sonalight, a voice recognition app. As part of the project, the founders built an internal system to understand where users got stuck in the app and what features were used the most.

    Despite getting over 100,000 downloads, the founders decided Sonalight was a little too early for its time and started thinking their analytics feature could be useful to other companies. They spoke with about 30 different product teams to learn more about what companies wanted from their digital analytics. Amplitude was officially founded in 2012.

    Amplitude gathers fine details about digital product usage, parsing out individual features and actions to give customers a better view of how their products are being used. Using the data in Amplitude’s intuitive, no-code interface, customers can make strategic decisions like whether to launch a feature or change a distribution channel.

    The platform is designed to ease the bottlenecks that arise when executives, product teams, salespeople, and marketers want to answer questions about customer experience or behavior but need the data science team to crunch the numbers for them.

    “It’s a very collaborative interface to encourage customers to work together to understand how users are engaging with their apps,” Skates says.

    Amplitude’s database also uses machine learning to segment users, predict user outcomes, and uncover novel correlations. Earlier this year, the company unveiled a service called Recommend that helps companies create personalized user experiences across their entire platform in minutes. The service goes beyond demographics to personalize customer experiences based on what users have done or seen before within the product.

    “We’re very conscious on the privacy front,” Skates says. “A lot of analytics companies will resell your data to third parties or use it for advertising purposes. We don’t do any of that. We’re only here to provide product insights to our customers. We’re not using data to track you across the web. Everyone expects Netflix to use the data on what you’ve watched before to recommend what to watch next. That’s effectively what we’re helping other companies do.”

    Optimizing digital experiences

    The meditation app Calm is on a mission to help users build habits that improve their mental wellness. Using Amplitude, the company learned that users most often use the app to get better sleep and reduce stress. The insights helped Calm’s team double down on content geared toward those goals, launching “sleep stories” to help users unwind at the end of each day and adding content around anxiety relief and relaxation. Sleep stories are now Calm’s most popular type of content, and Calm has grown rapidly to millions of people around the world.

    Calm’s story shows the power of letting user behavior drive product decisions. Amplitude has also helped the online fundraising site GoFundMe increase donations by showing users more compelling campaigns and the exercise bike company Peloton realize the importance of social features like leaderboards.

    Moving forward, the founders believe Amplitude’s platform will continue helping companies adapt to an increasingly digital world in which users expect more compelling, personalized experiences.

    “If you think about the online experience for companies today compared to 10 years ago, now [digital] is the main point of contact, whether you’re a media company streaming content, a retail company, or a finance company,” Skates says. “That’s only going to continue. That’s where we’re trying to help.” More

  • in

    Exact symbolic artificial intelligence for faster, better assessment of AI fairness

    The justice system, banks, and private companies use algorithms to make decisions that have profound impacts on people’s lives. Unfortunately, those algorithms are sometimes biased — disproportionately impacting people of color as well as individuals in lower income classes when they apply for loans or jobs, or even when courts decide what bail should be set while a person awaits trial.

    MIT researchers have developed a new artificial intelligence programming language that can assess the fairness of algorithms more exactly, and more quickly, than available alternatives.

    Their Sum-Product Probabilistic Language (SPPL) is a probabilistic programming system. Probabilistic programming is an emerging field at the intersection of programming languages and artificial intelligence that aims to make AI systems much easier to develop, with early successes in computer vision, common-sense data cleaning, and automated data modeling. Probabilistic programming languages make it much easier for programmers to define probabilistic models and carry out probabilistic inference — that is, work backward to infer probable explanations for observed data.

    “There are previous systems that can solve various fairness questions. Our system is not the first; but because our system is specialized and optimized for a certain class of models, it can deliver solutions thousands of times faster,” says Feras Saad, a PhD student in electrical engineering and computer science (EECS) and first author on a recent paper describing the work. Saad adds that the speedups are not insignificant: The system can be up to 3,000 times faster than previous approaches.

    SPPL gives fast, exact solutions to probabilistic inference questions such as “How likely is the model to recommend a loan to someone over age 40?” or “Generate 1,000 synthetic loan applicants, all under age 30, whose loans will be approved.” These inference results are based on SPPL programs that encode probabilistic models of what kinds of applicants are likely, a priori, and also how to classify them. Fairness questions that SPPL can answer include “Is there a difference between the probability of recommending a loan to an immigrant and nonimmigrant applicant with the same socioeconomic status?” or “What’s the probability of a hire, given that the candidate is qualified for the job and from an underrepresented group?”

    SPPL is different from most probabilistic programming languages, as SPPL only allows users to write probabilistic programs for which it can automatically deliver exact probabilistic inference results. SPPL also makes it possible for users to check how fast inference will be, and therefore avoid writing slow programs. In contrast, other probabilistic programming languages such as Gen and Pyro allow users to write down probabilistic programs where the only known ways to do inference are approximate — that is, the results include errors whose nature and magnitude can be hard to characterize.

    Error from approximate probabilistic inference is tolerable in many AI applications. But it is undesirable to have inference errors corrupting results in socially impactful applications of AI, such as automated decision-making, and especially in fairness analysis.

    Jean-Baptiste Tristan, associate professor at Boston College and former research scientist at Oracle Labs, who was not involved in the new research, says, “I’ve worked on fairness analysis in academia and in real-world, large-scale industry settings. SPPL offers improved flexibility and trustworthiness over other PPLs on this challenging and important class of problems due to the expressiveness of the language, its precise and simple semantics, and the speed and soundness of the exact symbolic inference engine.”

    SPPL avoids errors by restricting to a carefully designed class of models that still includes a broad class of AI algorithms, including the decision tree classifiers that are widely used for algorithmic decision-making. SPPL works by compiling probabilistic programs into a specialized data structure called a “sum-product expression.” SPPL further builds on the emerging theme of using probabilistic circuits as a representation that enables efficient probabilistic inference. This approach extends prior work on sum-product networks to models and queries expressed via a probabilistic programming language. However, Saad notes that this approach comes with limitations: “SPPL is substantially faster for analyzing the fairness of a decision tree, for example, but it can’t analyze models like neural networks. Other systems can analyze both neural networks and decision trees, but they tend to be slower and give inexact answers.”

    “SPPL shows that exact probabilistic inference is practical, not just theoretically possible, for a broad class of probabilistic programs,” says Vikash Mansinghka, an MIT principal research scientist and senior author on the paper. “In my lab, we’ve seen symbolic inference driving speed and accuracy improvements in other inference tasks that we previously approached via approximate Monte Carlo and deep learning algorithms. We’ve also been applying SPPL to probabilistic programs learned from real-world databases, to quantify the probability of rare events, generate synthetic proxy data given constraints, and automatically screen data for probable anomalies.”

    The new SPPL probabilistic programming language was presented in June at the ACM SIGPLAN International Conference on Programming Language Design and Implementation (PLDI), in a paper that Saad co-authored with MIT EECS Professor Martin Rinard and Mansinghka. SPPL is implemented in Python and is available open source. More

  • in

    Contact-aware robot design

    Adequate biomimicry in robotics necessitates a delicate balance between design and control, an integral part of making our machines more like us. Advanced dexterity in humans is wrapped up in a long evolutionary tale of how our fists of fury evolved to accomplish complex tasks. With machines, designing a new robotic manipulator could mean long, manual iteration cycles of designing, fabricating, and evaluating guided by human intuition. 

    Most robotic hands are designed for general purposes, as it’s very tedious to make task-specific hands. Existing methods battle trade-offs between the complexity of designs critical for contact-rich tasks, and the practical constraints of manufacturing, and contact handling. 

    This led researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) to create a new method to computationally optimize the shape and control of a robotic manipulator for a specific task. Their system uses software to manipulate the design, simulate the robot doing a task, and then provide an optimization score to assess the design and control. 

    Such task-driven manipulator optimization has potential for a wide range of applications in manufacturing and warehouse robot systems, where each task needs to be performed repeatedly, but different manipulators would be suitable for individual tasks. 

    Play video

    A new method to represent robotic manipulators helps optimize complex and organic shapes for future machines.

    Seeking to test the functionality of the system, the team first created a single robotic finger design to flip over a box on the ground. The fingertip structure, which looked something like Captain Hook’s left hand, was automatically optimized by an algorithm to hook onto the box’s back surface and flip it. They also developed a model for an assembly task, where a two-finger design put a small cube into a larger, movable mount. Since the fingers were two different lengths, they could reach two objects of different sizes, and the larger and flatter surfaces of the fingers helped stably push the object. 

    Traditionally, this joint optimization process consists of using simple, more primitive shapes to approximate each component of a robot design. When creating a three-segment robotic finger, for example, it would likely be approximated by three connected cylinders, where the algorithm optimizes the length and radius to achieve the desired design and shape. While this would simplify the optimization problem, oversimplifying the shape would be limiting for more complex designs, and ultimately complex tasks. 

    To create more involved manipulators, the team’s method used a technique called “cage-based deformation,” which essentially lets the user change or deform the geometry of a shape in real-time.

    Using the software, you’d put something that looks like a cage around the robotic finger, for example. The algorithm can automatically change the cage dimensions to make more sophisticated, natural shapes. The different variations of designs still keep their integrity, so they can be easily fabricated.

    A simulator was developed by the team to simulate the manipulator design and control on a task, which then provides a performance score.

    “Using these simulation tools, we don’t need to evaluate the design by manufacturing and testing it in the real world,” says Jie Xu, MIT PhD student and lead author on a new paper about the research. “In contrast to reinforcement learning algorithms that are popular for manipulation, but are data-inefficient, the proposed cage-based representation and the simulator allows for the use of powerful gradient-based methods. We not only find better solutions, but also find them faster. As a result we can quickly score the design, thus significantly shortening the design cycle.”

    In the future, the team plans to extend the software to optimize the manipulators concurrently for multiple tasks.

    Xu wrote the paper alongside MIT PhD student Tao Chen, MIT graduate student Lara Zlokapa, MIT research scientist Michael Foshey, MIT Professor Wojciech Matusik, Texas A&M University Assistant professor Shinjiro Sueda, and MIT Professor Pulkit Agrawal. They presented the paper virtually at the 2021 Robotic Science and Systems conference last week. The work is supported by the Toyota Research Institute. More