More stories

  • in

    Caspar Hare, Georgia Perakis named associate deans of Social and Ethical Responsibilities of Computing

    Caspar Hare and Georgia Perakis have been appointed the new associate deans of the Social and Ethical Responsibilities of Computing (SERC), a cross-cutting initiative in the MIT Stephen A. Schwarzman College of Computing. Their new roles will take effect on Sept. 1.

    “Infusing social and ethical aspects of computing in academic research and education is a critical component of the college mission,” says Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing and the Henry Ellis Warren Professor of Electrical Engineering and Computer Science. “I look forward to working with Caspar and Georgia on continuing to develop and advance SERC and its reach across MIT. Their complementary backgrounds and their broad connections across MIT will be invaluable to this next chapter of SERC.”

    Caspar Hare

    Hare is a professor of philosophy in the Department of Linguistics and Philosophy. A member of the MIT faculty since 2003, his main interests are in ethics, metaphysics, and epistemology. The general theme of his recent work has been to bring ideas about practical rationality and metaphysics to bear on issues in normative ethics and epistemology. He is the author of two books: “On Myself, and Other, Less Important Subjects” (Princeton University Press 2009), about the metaphysics of perspective, and “The Limits of Kindness” (Oxford University Press 2013), about normative ethics.

    Georgia Perakis

    Perakis is the William F. Pounds Professor of Management and professor of operations research, statistics, and operations management at the MIT Sloan School of Management, where she has been a faculty member since 1998. She investigates the theory and practice of analytics and its role in operations problems and is particularly interested in how to solve complex and practical problems in pricing, revenue management, supply chains, health care, transportation, and energy applications, among other areas. Since 2019, she has been the co-director of the Operations Research Center, an interdepartmental PhD program that jointly reports to MIT Sloan and the MIT Schwarzman College of Computing, a role in which she will remain. Perakis will also assume an associate dean role at MIT Sloan in recognition of her leadership.

    Hare and Perakis succeed David Kaiser, the Germeshausen Professor of the History of Science and professor of physics, and Julie Shah, the H.N. Slater Professor of Aeronautics and Astronautics, who will be stepping down from their roles at the conclusion of their three-year term on Aug. 31.

    “My deepest thanks to Dave and Julie for their tremendous leadership of SERC and contributions to the college as associate deans,” says Huttenlocher.

    SERC impact

    As the inaugural associate deans of SERC, Kaiser and Shah have been responsible for advancing a mission to incorporate humanist, social science, social responsibility, and civic perspectives into MIT’s teaching, research, and implementation of computing. In doing so, they have engaged dozens of faculty members and thousands of students from across MIT during these first three years of the initiative.

    They have brought together people from a broad array of disciplines to collaborate on crafting original materials such as active learning projects, homework assignments, and in-class demonstrations. A collection of these materials was recently published and is now freely available to the world via MIT OpenCourseWare.

    In February 2021, they launched the MIT Case Studies in Social and Ethical Responsibilities of Computing for undergraduate instruction across a range of classes and fields of study. The specially commissioned and peer-reviewed cases are based on original research and are brief by design. Three issues have been published to date and a fourth will be released later this summer. Kaiser will continue to oversee the successful new series as editor.

    Last year, 60 undergraduates, graduate students, and postdocs joined a community of SERC Scholars to help advance SERC efforts in the college. The scholars participate in unique opportunities throughout, such as the summer Experiential Ethics program. A multidisciplinary team of graduate students last winter worked with the instructors and teaching assistants of class 6.036 (Introduction to Machine Learning), MIT’s largest machine learning course, to infuse weekly labs with material covering ethical computing, data and model bias, and fairness in machine learning through SERC.

    Through efforts such as these, SERC has had a substantial impact at MIT and beyond. Over the course of their tenure, Kaiser and Shah have engaged about 80 faculty members, and more than 2,100 students took courses that included new SERC content in the last year alone. SERC’s reach extended well beyond engineering students, with about 500 exposed to SERC content through courses offered in the School of Humanities, Arts, and Social Sciences, the MIT Sloan School of Management, and the School of Architecture and Planning. More

  • in

    MIT ReACT welcomes first Afghan cohort to its largest-yet certificate program

    Through the championing support of the faculty and leadership of the MIT Afghan Working Group convened last September by Provost Martin Schmidt and chaired by Associate Provost for International Activities Richard Lester, MIT has come together to support displaced Afghan learners and scholars in a time of crisis. The MIT Refugee Action Hub (ReACT) has opened opportunities for 25 talented Afghan learners to participate in the hub’s certificate program in computer and data science (CDS), now in its fourth year, welcoming its largest and most diverse cohort to date — 136 learners from 29 countries.

    ”Even in the face of extreme disruption, education and scholarship must continue, and MIT is committed to providing resources and safe forums for displaced scholars,” says Lester. “We greatly appreciate MIT ReACT’s work to create learning opportunities for Afghan students whose lives have been upended by the crisis in their homeland.”

    Currently, more than 3.5 million Afghans are internally displaced, while 2.5 million are registered refugees residing in other parts of the world. With millions in Afghanistan facing famine, poverty, and civil unrest in what has become the world’s largest humanitarian crisis, the United Nations predicts the number of Afghans forced to flee their homes will continue to rise. 

    “Forced displacement is on the rise, fueled not only by constant political, economical, and social turmoil worldwide, but also by the ongoing climate change crisis, which threatens costly disruptions to society and has potential to create unprecedented displacement internationally,” says associate professor of civil and environmental engineering and ReACT’s faculty founder Admir Masic. During the orientation for the new CDS cohort in January, Masic emphasized the great need for educational programs like ReACT’s that address the specific challenges refugees and displaced learners face.

    A former Bosnian refugee, Masic spent his teenage years in Croatia, where educational opportunities were limited for young people with refugee status. His experience motivated him to found ReACT, which launched in 2017. Housed within Open Learning, ReACT is an MIT-wide effort to deliver global education and professional development programs to underserved communities, including refugees and migrants. ReACT’s signature program, CDS is a year-long, online program that combines MITx courses in programming and data science, personal and professional development workshops including MIT Bootcamps, and opportunities for practical experience.

    ReACT’s group of 25 learners from Afghanistan, 52 percent of whom are women, joins the larger CDS cohort in the program. They will receive support from their new colleagues as well as members of ReACT’s mentor and alumni network. While the majority of the group are residing around the world, including in Europe, North America, and neighboring countries, several still remain in Afghanistan. With the support of the Afghan Working Group, ReACT is working to connect with communities from the region to provide safe and inclusive learning environments for the cohort. ​​

    Building community and confidence

    Selected from more than 1,000 applicants, the new CDS cohort reflected on their personal and professional goals during a weeklong orientation.

    “I am here because I want to change my career and learn basics in this field to then obtain networks that I wouldn’t have got if it weren’t for this program,” said Samiullah Ajmal, who is joining the program from Afghanistan.

    Interactive workshops on topics such as leadership development and virtual networking rounded out the week’s events. Members of ReACT’s greater community — which has grown in recent years to include a network of external collaborators including nonprofits, philanthropic supporters, universities, and alumni — helped facilitate these workshops and other orientation activities.

    For instance, Na’amal, a social enterprise that connects refugees to remote work opportunities, introduced the CDS learners to strategies for making career connections remotely. “We build confidence while doing,” says Susan Mulholland, a leadership and development coach with Na’amal who led the networking workshop.

    Along with the CDS program’s cohort-based model, ReACT also uses platforms that encourage regular communication between participants and with the larger ReACT network — making connections a critical component of the program.

    “I not only want to meet new people and make connections for my professional career, but I also want to test my communication and social skills,” says Pablo Andrés Uribe, a learner who lives in Colombia, describing ReACT’s emphasis on community-building. 

    Over the last two years, ReACT has expanded its geographic presence, growing from a hub in Jordan into a robust global community of many hubs, including in Colombia and Uganda. These regional sites connect talented refugees and displaced learners to internships and employment, startup networks and accelerators, and pathways to formal undergraduate and graduate education.

    This expansion is thanks to the generous support internally from the MIT Office of the Provost and Associate Provost Richard Lester and external organizations including the Western Union Foundation. ReACT will build new hubs this year in Greece, Uruguay, and Afghanistan, as a result of gifts from the Hatsopoulos family and the Pfeffer family.

    Holding space to learn from each other

    In addition to establishing new global hubs, ReACT plans to expand its network of internship and experiential learning opportunities, increasing outreach to new collaborators such as nongovernmental organizations (NGOs), companies, and universities. Jointly with Na’amal and Paper Airplanes, a nonprofit that connects conflict-affected individuals with personal language tutors, ReACT will host the first Migration Summit. Scheduled for April 2022, the month-long global convening invites a broad range of participants, including displaced learners, universities, companies, nonprofits and NGOs, social enterprises, foundations, philanthropists, researchers, policymakers, employers, and governments, to address the key challenges and opportunities for refugee and migrant communities. The theme of the summit is “Education and Workforce Development in Displacement.”

    “The MIT Migration Summit offers a platform to discuss how new educational models, such as those employed in ReACT, can help solve emerging challenges in providing quality education and career opportunities to forcibly displaced and marginalized people around the world,” says Masic. 

    A key goal of the convening is to center the voices of those most directly impacted by displacement, such as ReACT’s learners from Afghanistan and elsewhere, in solution-making. More

  • in

    MIT Center for Real Estate launches the Asia Real Estate Initiative

    To appreciate the explosive urbanization taking place in Asia, consider this analogy: Every 40 days, a city the equivalent size of Boston is built in Asia. Of the $24.7 trillion real estate investment opportunities predicted by 2030 in emerging cities, $17.8 trillion (72 percent) will be in Asia. While this growth is exciting to the real estate industry, it brings with it the attendant social and environmental issues.

    To promote a sustainable and innovative approach to this growth, leadership at the MIT Center for Real Estate (MIT CRE) recently established the Asia Real Estate Initiative (AREI), which aims to become a platform for industry leaders, entrepreneurs, and the academic community to find solutions to the practical concerns of real estate development across these countries.

    “Behind the creation of this initiative is the understanding that Asia is a living lab for the study of future global urban development,” says Hashim Sarkis, dean of the MIT School of Architecture and Planning.

    An investment in cities of the future

    One of the areas in AREI’s scope of focus is connecting sustainability and technology in real estate.

    “We believe the real estate sector should work cooperatively with the energy, science, and technology sectors to solve the climate challenges,” says Richard Lester, the Institute’s associate provost for international activities. “AREI will engage academics and industry leaders, nongovernment organizations, and civic leaders globally and in Asia, to advance sharing knowledge and research.”

    In its effort to understand how trends and new technologies will impact the future of real estate, AREI has received initial support from a prominent alumnus of MIT CRE who wishes to remain anonymous. The gift will support a cohort of researchers working on innovative technologies applicable to advancing real estate sustainability goals, with a special focus on the global and Asia markets. The call for applications is already under way, with AREI seeking to collaborate with scholars who have backgrounds in economics, finance, urban planning, technology, engineering, and other disciplines.

    “The research on real estate sustainability and technology could transform this industry and help invent global real estate of the future,” says Professor Siqi Zheng, faculty director of MIT CRE and AREI faculty chair. “The pairing of real estate and technology often leads to innovative and differential real estate development strategies such as buildings that are green, smart, and healthy.”

    The initiative arrives at a key time to make a significant impact and cement a leadership role in real estate development across Asia. MIT CRE is positioned to help the industry increase its efficiency and social responsibility, with nearly 40 years of pioneering research in the field. Zheng, an established scholar with expertise on urban growth in fast-urbanizing regions, is the former president of the Asia Real Estate Society and sits on the Board of American Real Estate and Urban Economics Association. Her research has been supported by international institutions including the World Bank, the Asian Development Bank, and the Lincoln Institute of Land Policy.

    “The researchers in AREI are now working on three interrelated themes: the future of real estate and live-work-play dynamics; connecting sustainability and technology in real estate; and innovations in real estate finance and business,” says Zheng.

    The first theme has already yielded a book — “Toward Urban Economic Vibrancy: Patterns and Practices in Asia’s New Cities” — recently published by SA+P Press.

    Engaging thought leaders and global stakeholders

    AREI also plans to collaborate with counterparts in Asia to contribute to research, education, and industry dialogue to meet the challenges of sustainable city-making across the continent and identify areas for innovation. Traditionally, real estate has been a very local business with a lengthy value chain, according to Zhengzhen Tan, director of AREI. Most developers focused their career on one particular product type in one particular regional market. AREI is working to change that dynamic.

    “We want to create a cross-border dialogue within Asia and among Asia, North America, and European leaders to exchange knowledge and practices,” says Tan. “The real estate industry’s learning costs are very high compared to other sectors. Collective learning will reduce the cost of failure and have a significant impact on these global issues.”

    The 2021 United Nations Climate Change Conference in Glasgow shed additional light on environmental commitments being made by governments in Asia. With real estate representing 40 percent of global greenhouse gas emissions, the Asian real estate market is undergoing an urgent transformation to deliver on this commitment.

    “One of the most pressing calls is to get to net-zero emissions for real estate development and operation,” says Tan. “Real estate investors and developers are making short- and long-term choices that are locking in environmental footprints for the ‘decisive decade.’ We hope to inspire developers and investors to think differently and get out of their comfort zone.” More

  • in

    Physics and the machine-learning “black box”

    Machine-learning algorithms are often referred to as a “black box.” Once data are put into an algorithm, it’s not always known exactly how the algorithm arrives at its prediction. This can be particularly frustrating when things go wrong. A new mechanical engineering (MechE) course at MIT teaches students how to tackle the “black box” problem, through a combination of data science and physics-based engineering.

    In class 2.C161 (Physical Systems Modeling and Design Using Machine Learning), Professor George Barbastathis demonstrates how mechanical engineers can use their unique knowledge of physical systems to keep algorithms in check and develop more accurate predictions.

    “I wanted to take 2.C161 because machine-learning models are usually a “black box,” but this class taught us how to construct a system model that is informed by physics so we can peek inside,” explains Crystal Owens, a mechanical engineering graduate student who took the course in spring 2021.

    As chair of the Committee on the Strategic Integration of Data Science into Mechanical Engineering, Barbastathis has had many conversations with mechanical engineering students, researchers, and faculty to better understand the challenges and successes they’ve had using machine learning in their work.

    “One comment we heard frequently was that these colleagues can see the value of data science methods for problems they are facing in their mechanical engineering-centric research; yet they are lacking the tools to make the most out of it,” says Barbastathis. “Mechanical, civil, electrical, and other types of engineers want a fundamental understanding of data principles without having to convert themselves to being full-time data scientists or AI researchers.”

    Additionally, as mechanical engineering students move on from MIT to their careers, many will need to manage data scientists on their teams someday. Barbastathis hopes to set these students up for success with class 2.C161.

    Bridging MechE and the MIT Schwartzman College of Computing

    Class 2.C161 is part of the MIT Schwartzman College of Computing “Computing Core.” The goal of these classes is to connect data science and physics-based engineering disciplines, like mechanical engineering. Students take the course alongside 6.C402 (Modeling with Machine Learning: from Algorithms to Applications), taught by professors of electrical engineering and computer science Regina Barzilay and Tommi Jaakkola.

    The two classes are taught concurrently during the semester, exposing students to both fundamentals in machine learning and domain-specific applications in mechanical engineering.

    In 2.C161, Barbastathis highlights how complementary physics-based engineering and data science are. Physical laws present a number of ambiguities and unknowns, ranging from temperature and humidity to electromagnetic forces. Data science can be used to predict these physical phenomena. Meanwhile, having an understanding of physical systems helps ensure the resulting output of an algorithm is accurate and explainable.

    “What’s needed is a deeper combined understanding of the associated physical phenomena and the principles of data science, machine learning in particular, to close the gap,” adds Barbastathis. “By combining data with physical principles, the new revolution in physics-based engineering is relatively immune to the “black box” problem facing other types of machine learning.”

    Equipped with a working knowledge of machine-learning topics covered in class 6.C402 and a deeper understanding of how to pair data science with physics, students are charged with developing a final project that solves for an actual physical system.

    Developing solutions for real-world physical systems

    For their final project, students in 2.C161 are asked to identify a real-world problem that requires data science to address the ambiguity inherent in physical systems. After obtaining all relevant data, students are asked to select a machine-learning method, implement their chosen solution, and present and critique the results.

    Topics this past semester ranged from weather forecasting to the flow of gas in combustion engines, with two student teams drawing inspiration from the ongoing Covid-19 pandemic.

    Owens and her teammates, fellow graduate students Arun Krishnadas and Joshua David John Rathinaraj, set out to develop a model for the Covid-19 vaccine rollout.

    “We developed a method of combining a neural network with a susceptible-infected-recovered (SIR) epidemiological model to create a physics-informed prediction system for the spread of Covid-19 after vaccinations started,” explains Owens.

    The team accounted for various unknowns including population mobility, weather, and political climate. This combined approach resulted in a prediction of Covid-19’s spread during the vaccine rollout that was more reliable than using either the SIR model or a neural network alone.

    Another team, including graduate student Yiwen Hu, developed a model to predict mutation rates in Covid-19, a topic that became all too pertinent as the delta variant began its global spread.

    “We used machine learning to predict the time-series-based mutation rate of Covid-19, and then incorporated that as an independent parameter into the prediction of pandemic dynamics to see if it could help us better predict the trend of the Covid-19 pandemic,” says Hu.

    Hu, who had previously conducted research into how vibrations on coronavirus protein spikes affect infection rates, hopes to apply the physics-based machine-learning approaches he learned in 2.C161 to his research on de novo protein design.

    Whatever the physical system students addressed in their final projects, Barbastathis was careful to stress one unifying goal: the need to assess ethical implications in data science. While more traditional computing methods like face or voice recognition have proven to be rife with ethical issues, there is an opportunity to combine physical systems with machine learning in a fair, ethical way.

    “We must ensure that collection and use of data are carried out equitably and inclusively, respecting the diversity in our society and avoiding well-known problems that computer scientists in the past have run into,” says Barbastathis.

    Barbastathis hopes that by encouraging mechanical engineering students to be both ethics-literate and well-versed in data science, they can move on to develop reliable, ethically sound solutions and predictions for physical-based engineering challenges. More

  • in

    Finding common ground in Malden

    When disparate groups convene around a common goal, exciting things can happen.

    That is the inspiring story unfolding in Malden, Massachusetts, a city of about 60,000 — nearly half people of color — where a new type of community coalition continues to gain momentum on its plan to build a climate-resilient waterfront park along its river. The Malden River Works (MRW) project, recipient of the inaugural Leventhal City Prize, is seeking to connect to a contiguous greenway network where neighboring cities already have visitors coming to their parks and enjoying recreational boating. More important, the MRW is changing the model for how cities address civic growth, community engagement, equitable climate resilience, and environmental justice.                                                                                        

    The MRW’s steering committee consists of eight resident leaders of color, a resident environmental advocate, and three city representatives. One of the committee’s primary responsibilities is providing direction to the MRW’s project team, which includes urban designers, watershed and climate resilience planners, and a community outreach specialist. MIT’s Kathleen Vandiver, director of the Community Outreach Education and Engagement Core at MIT’s Center for Environmental Health Sciences (CEHS), and Marie Law Adams MArch ’06, a lecturer in the School of Architecture and Planning’s Department of Urban Studies and Planning (DUSP), serve on the project team.

    “This governance structure is somewhat unusual,” says Adams. “More typical is having city government as the primary decision-maker. It is important that one of the first things our team did was build a steering committee that is the decision maker on this project.”

    Evan Spetrini ’18 is the senior planner and policy manager for the Malden Redevelopment Authority and sits on both the steering committee and project team. He says placing the decision-making power with the steering committee and building it to be representative of marginalized communities was intentional. 

    “Changing that paradigm of power and decision-making in planning processes was the way we approached social resilience,” says Spetrini. “We have always intended this project to be a model for future planning projects in Malden.”

    This model ushers in a new history chapter for a city founded in 1640.

    Located about six miles north of Boston, Malden was home to mills and factories that used the Malden River for power, and a site for industrial waste over the last two centuries. Decades after the city’s industrial decline, there is little to no public access to the river. Many residents were not even aware there was a river in their city. Before the project was under way, Vandiver initiated a collaborative effort to evaluate the quality of the river’s water. Working with the Mystic River Watershed Association, Gradient Corporation, and CEHS, water samples were tested and a risk analysis conducted.

    “Having the study done made it clear the public could safely enjoy boating on the water,” says Vandiver. “It was a breakthrough that allowed people to see the river as an amenity.”

    A team effort

    Marcia Manong had never seen the river, but the Malden resident was persuaded to join the steering committee with the promise the project would be inclusive and of value to the community. Manong has been involved with civic engagement most of her life in the United States and for 20 years in South Africa.

    “It wasn’t going to be a marginalized, token-ized engagement,” says Manong. “It was clear to me that they were looking for people that would actually be sitting at the table.”

    Manong agreed to recruit additional people of color to join the team. From the beginning, she says, language was a huge barrier, given that nearly half of Malden’s residents do not speak English at home. Finding the translation efforts at their public events to be inadequate, the steering committee directed more funds to be made available for translation in several languages when public meetings began being held over Zoom this past year.

    “It’s unusual for most cities to spend this money, but our population is so diverse that we require it,” says Manong. “We have to do it. If the steering committee wasn’t raising this issue with the rest of the team, perhaps this would be overlooked.”

    Another alteration the steering committee has made is how the project engages with the community. While public attendance at meetings had been successful before the pandemic, Manong says they are “constantly working” to reach new people. One method has been to request invitations to attend the virtual meetings of other organizations to keep them apprised of the project.

    “We’ve said that people feel most comfortable when they’re in their own surroundings, so why not go where the people are instead of trying to get them to where we are,” says Manong.

    Buoyed by the $100,000 grant from MIT’s Norman B. Leventhal Center for Advanced Urbanism (LCAU) in 2019, the project team worked with Malden’s Department of Public Works, which is located along the river, to redesign its site and buildings and to study how to create a flood-resistant public open space as well as an elevated greenway path, connecting with other neighboring cities’ paths. The park’s plans also call for 75 new trees to reduce urban heat island effect, open lawn for gathering, and a dock for boating on the river.

    “The storm water infrastructure in these cities is old and isn’t going to be able to keep up with increased precipitation,” says Adams. “We’re looking for ways to store as much water as possible on the DPW site so we can hold it and release it more gradually into the river to avoid flooding.”

    The project along the 2.3-mile-long river continues to receive attention. Recently, the city of Malden was awarded a 2021 Accelerating Climate Resilience Grant of more than $50,000 from the state’s Metropolitan Area Planning Council and the Barr Foundation to support the project. Last fall, the project was awarded a $150,015 Municipal Vulnerability Preparedness Action Grant. Both awards are being directed to fund engineering work to refine the project’s design.

    “We — and in general, the planning profession — are striving to create more community empowerment in decision-making as to what happens to their community,” says Spetrini. “Putting the power in the community ensures that it’s actually responding to the needs of the community.”

    Contagious enthusiasm

    Manong says she’s happy she got involved with the project and believes the new governance structure is making a difference.

    “This project is definitely engaging with communities of color in a manner that is transformative and that is looking to build a long-lasting power dynamic built on trust,” she says. “It’s a new energized civic engagement and we’re making that happen. It’s very exciting.”

    Spetrini finds the challenge of creating an open space that’s publicly accessible and alongside an active work site professionally compelling.

    “There is a way to preserve the industrial employment base while also giving the public greater access to this natural resource,” he says. “It has real implications for other communities to follow this type of model.”

    Despite the pandemic this past year, enthusiasm for the project is palpable. For Spetrini, a Malden resident, it’s building “the first significant piece of what has been envisioned as the Malden River Greenway.” Adams sees the total project as a way to build social resilience as well as garnering community interest in climate resilience. For Vandiver, it’s the implications for improved community access.

    “From a health standpoint, everybody has learned from Covid-19 that the health aspects of walking in nature are really restorative,” says Vandiver. “Creating greater green space gives more attention to health issues. These are seemingly small side benefits, but they’re huge for mental health benefits.”

    Leventhal City Prize’s next cycle

    The Leventhal City Prize was established by the LCAU to catalyze innovative, interdisciplinary urban design, and planning approaches worldwide to improve both the environment and the quality of life for residents. Support for the LCAU was provided by the Muriel and Norman B. Leventhal Family Foundation and the Sherry and Alan Leventhal Family Foundation.

    “We’re thrilled with inaugural recipients of the award and the extensive work they’ve undertaken that is being held up as an exemplary model for others to learn from,” says Sarah Williams, LCAU director and a professor in DUSP. “Their work reflects the prize’s intent. We look forward to catalyzing these types of collaborative partnership in the next prize cycle.”

    Submissions for the next cycle of the Leventhal City Prize will open in early 2022.    More