More stories

  • in

    Study finds health risks in switching ships from diesel to ammonia fuel

    As container ships the size of city blocks cross the oceans to deliver cargo, their huge diesel engines emit large quantities of air pollutants that drive climate change and have human health impacts. It has been estimated that maritime shipping accounts for almost 3 percent of global carbon dioxide emissions and the industry’s negative impacts on air quality cause about 100,000 premature deaths each year.Decarbonizing shipping to reduce these detrimental effects is a goal of the International Maritime Organization, a U.N. agency that regulates maritime transport. One potential solution is switching the global fleet from fossil fuels to sustainable fuels such as ammonia, which could be nearly carbon-free when considering its production and use.But in a new study, an interdisciplinary team of researchers from MIT and elsewhere caution that burning ammonia for maritime fuel could worsen air quality further and lead to devastating public health impacts, unless it is adopted alongside strengthened emissions regulations.Ammonia combustion generates nitrous oxide (N2O), a greenhouse gas that is about 300 times more potent than carbon dioxide. It also emits nitrogen in the form of nitrogen oxides (NO and NO2, referred to as NOx), and unburnt ammonia may slip out, which eventually forms fine particulate matter in the atmosphere. These tiny particles can be inhaled deep into the lungs, causing health problems like heart attacks, strokes, and asthma.The new study indicates that, under current legislation, switching the global fleet to ammonia fuel could cause up to about 600,000 additional premature deaths each year. However, with stronger regulations and cleaner engine technology, the switch could lead to about 66,000 fewer premature deaths than currently caused by maritime shipping emissions, with far less impact on global warming.“Not all climate solutions are created equal. There is almost always some price to pay. We have to take a more holistic approach and consider all the costs and benefits of different climate solutions, rather than just their potential to decarbonize,” says Anthony Wong, a postdoc in the MIT Center for Global Change Science and lead author of the study.His co-authors include Noelle Selin, an MIT professor in the Institute for Data, Systems, and Society and the Department of Earth, Atmospheric and Planetary Sciences (EAPS); Sebastian Eastham, a former principal research scientist who is now a senior lecturer at Imperial College London; Christine Mounaïm-Rouselle, a professor at the University of Orléans in France; Yiqi Zhang, a researcher at the Hong Kong University of Science and Technology; and Florian Allroggen, a research scientist in the MIT Department of Aeronautics and Astronautics. The research appears this week in Environmental Research Letters.Greener, cleaner ammoniaTraditionally, ammonia is made by stripping hydrogen from natural gas and then combining it with nitrogen at extremely high temperatures. This process is often associated with a large carbon footprint. The maritime shipping industry is betting on the development of “green ammonia,” which is produced by using renewable energy to make hydrogen via electrolysis and to generate heat.“In theory, if you are burning green ammonia in a ship engine, the carbon emissions are almost zero,” Wong says.But even the greenest ammonia generates nitrous oxide (N2O), nitrogen oxides (NOx) when combusted, and some of the ammonia may slip out, unburnt. This nitrous oxide would escape into the atmosphere, where the greenhouse gas would remain for more than 100 years. At the same time, the nitrogen emitted as NOx and ammonia would fall to Earth, damaging fragile ecosystems. As these emissions are digested by bacteria, additional N2O  is produced.NOx and ammonia also mix with gases in the air to form fine particulate matter. A primary contributor to air pollution, fine particulate matter kills an estimated 4 million people each year.“Saying that ammonia is a ‘clean’ fuel is a bit of an overstretch. Just because it is carbon-free doesn’t necessarily mean it is clean and good for public health,” Wong says.A multifaceted modelThe researchers wanted to paint the whole picture, capturing the environmental and public health impacts of switching the global fleet to ammonia fuel. To do so, they designed scenarios to measure how pollutant impacts change under certain technology and policy assumptions.From a technological point of view, they considered two ship engines. The first burns pure ammonia, which generates higher levels of unburnt ammonia but emits fewer nitrogen oxides. The second engine technology involves mixing ammonia with hydrogen to improve combustion and optimize the performance of a catalytic converter, which controls both nitrogen oxides and unburnt ammonia pollution.They also considered three policy scenarios: current regulations, which only limit NOx emissions in some parts of the world; a scenario that adds ammonia emission limits over North America and Western Europe; and a scenario that adds global limits on ammonia and NOx emissions.The researchers used a ship track model to calculate how pollutant emissions change under each scenario and then fed the results into an air quality model. The air quality model calculates the impact of ship emissions on particulate matter and ozone pollution. Finally, they estimated the effects on global public health.One of the biggest challenges came from a lack of real-world data, since no ammonia-powered ships are yet sailing the seas. Instead, the researchers relied on experimental ammonia combustion data from collaborators to build their model.“We had to come up with some clever ways to make that data useful and informative to both the technology and regulatory situations,” he says.A range of outcomesIn the end, they found that with no new regulations and ship engines that burn pure ammonia, switching the entire fleet would cause 681,000 additional premature deaths each year.“While a scenario with no new regulations is not very realistic, it serves as a good warning of how dangerous ammonia emissions could be. And unlike NOx, ammonia emissions from shipping are currently unregulated,” Wong says.However, even without new regulations, using cleaner engine technology would cut the number of premature deaths down to about 80,000, which is about 20,000 fewer than are currently attributed to maritime shipping emissions. With stronger global regulations and cleaner engine technology, the number of people killed by air pollution from shipping could be reduced by about 66,000.“The results of this study show the importance of developing policies alongside new technologies,” Selin says. “There is a potential for ammonia in shipping to be beneficial for both climate and air quality, but that requires that regulations be designed to address the entire range of potential impacts, including both climate and air quality.”Ammonia’s air quality impacts would not be felt uniformly across the globe, and addressing them fully would require coordinated strategies across very different contexts. Most premature deaths would occur in East Asia, since air quality regulations are less stringent in this region. Higher levels of existing air pollution cause the formation of more particulate matter from ammonia emissions. In addition, shipping volume over East Asia is far greater than elsewhere on Earth, compounding these negative effects.In the future, the researchers want to continue refining their analysis. They hope to use these findings as a starting point to urge the marine industry to share engine data they can use to better evaluate air quality and climate impacts. They also hope to inform policymakers about the importance and urgency of updating shipping emission regulations.This research was funded by the MIT Climate and Sustainability Consortium. More

  • in

    Making climate models relevant for local decision-makers

    Climate models are a key technology in predicting the impacts of climate change. By running simulations of the Earth’s climate, scientists and policymakers can estimate conditions like sea level rise, flooding, and rising temperatures, and make decisions about how to appropriately respond. But current climate models struggle to provide this information quickly or affordably enough to be useful on smaller scales, such as the size of a city. Now, authors of a new open-access paper published in the Journal of Advances in Modeling Earth Systems have found a method to leverage machine learning to utilize the benefits of current climate models, while reducing the computational costs needed to run them. “It turns the traditional wisdom on its head,” says Sai Ravela, a principal research scientist in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS) who wrote the paper with EAPS postdoc Anamitra Saha. Traditional wisdomIn climate modeling, downscaling is the process of using a global climate model with coarse resolution to generate finer details over smaller regions. Imagine a digital picture: A global model is a large picture of the world with a low number of pixels. To downscale, you zoom in on just the section of the photo you want to look at — for example, Boston. But because the original picture was low resolution, the new version is blurry; it doesn’t give enough detail to be particularly useful. “If you go from coarse resolution to fine resolution, you have to add information somehow,” explains Saha. Downscaling attempts to add that information back in by filling in the missing pixels. “That addition of information can happen two ways: Either it can come from theory, or it can come from data.” Conventional downscaling often involves using models built on physics (such as the process of air rising, cooling, and condensing, or the landscape of the area), and supplementing it with statistical data taken from historical observations. But this method is computationally taxing: It takes a lot of time and computing power to run, while also being expensive. A little bit of both In their new paper, Saha and Ravela have figured out a way to add the data another way. They’ve employed a technique in machine learning called adversarial learning. It uses two machines: One generates data to go into our photo. But the other machine judges the sample by comparing it to actual data. If it thinks the image is fake, then the first machine has to try again until it convinces the second machine. The end-goal of the process is to create super-resolution data. Using machine learning techniques like adversarial learning is not a new idea in climate modeling; where it currently struggles is its inability to handle large amounts of basic physics, like conservation laws. The researchers discovered that simplifying the physics going in and supplementing it with statistics from the historical data was enough to generate the results they needed. “If you augment machine learning with some information from the statistics and simplified physics both, then suddenly, it’s magical,” says Ravela. He and Saha started with estimating extreme rainfall amounts by removing more complex physics equations and focusing on water vapor and land topography. They then generated general rainfall patterns for mountainous Denver and flat Chicago alike, applying historical accounts to correct the output. “It’s giving us extremes, like the physics does, at a much lower cost. And it’s giving us similar speeds to statistics, but at much higher resolution.” Another unexpected benefit of the results was how little training data was needed. “The fact that that only a little bit of physics and little bit of statistics was enough to improve the performance of the ML [machine learning] model … was actually not obvious from the beginning,” says Saha. It only takes a few hours to train, and can produce results in minutes, an improvement over the months other models take to run. Quantifying risk quicklyBeing able to run the models quickly and often is a key requirement for stakeholders such as insurance companies and local policymakers. Ravela gives the example of Bangladesh: By seeing how extreme weather events will impact the country, decisions about what crops should be grown or where populations should migrate to can be made considering a very broad range of conditions and uncertainties as soon as possible.“We can’t wait months or years to be able to quantify this risk,” he says. “You need to look out way into the future and at a large number of uncertainties to be able to say what might be a good decision.”While the current model only looks at extreme precipitation, training it to examine other critical events, such as tropical storms, winds, and temperature, is the next step of the project. With a more robust model, Ravela is hoping to apply it to other places like Boston and Puerto Rico as part of a Climate Grand Challenges project.“We’re very excited both by the methodology that we put together, as well as the potential applications that it could lead to,” he says.  More

  • in

    Study: Global deforestation leads to more mercury pollution

    About 10 percent of human-made mercury emissions into the atmosphere each year are the result of global deforestation, according to a new MIT study.

    The world’s vegetation, from the Amazon rainforest to the savannahs of sub-Saharan Africa, acts as a sink that removes the toxic pollutant from the air. However, if the current rate of deforestation remains unchanged or accelerates, the researchers estimate that net mercury emissions will keep increasing.

    “We’ve been overlooking a significant source of mercury, especially in tropical regions,” says Ari Feinberg, a former postdoc in the Institute for Data, Systems, and Society (IDSS) and lead author of the study.

    The researchers’ model shows that the Amazon rainforest plays a particularly important role as a mercury sink, contributing about 30 percent of the global land sink. Curbing Amazon deforestation could thus have a substantial impact on reducing mercury pollution.

    The team also estimates that global reforestation efforts could increase annual mercury uptake by about 5 percent. While this is significant, the researchers emphasize that reforestation alone should not be a substitute for worldwide pollution control efforts.

    “Countries have put a lot of effort into reducing mercury emissions, especially northern industrialized countries, and for very good reason. But 10 percent of the global anthropogenic source is substantial, and there is a potential for that to be even greater in the future. [Addressing these deforestation-related emissions] needs to be part of the solution,” says senior author Noelle Selin, a professor in IDSS and MIT’s Department of Earth, Atmospheric and Planetary Sciences.

    Feinberg and Selin are joined on the paper by co-authors Martin Jiskra, a former Swiss National Science Foundation Ambizione Fellow at the University of Basel; Pasquale Borrelli, a professor at Roma Tre University in Italy; and Jagannath Biswakarma, a postdoc at the Swiss Federal Institute of Aquatic Science and Technology. The paper appears today in Environmental Science and Technology.

    Modeling mercury

    Over the past few decades, scientists have generally focused on studying deforestation as a source of global carbon dioxide emissions. Mercury, a trace element, hasn’t received the same attention, partly because the terrestrial biosphere’s role in the global mercury cycle has only recently been better quantified.

    Plant leaves take up mercury from the atmosphere, in a similar way as they take up carbon dioxide. But unlike carbon dioxide, mercury doesn’t play an essential biological function for plants. Mercury largely stays within a leaf until it falls to the forest floor, where the mercury is absorbed by the soil.

    Mercury becomes a serious concern for humans if it ends up in water bodies, where it can become methylated by microorganisms. Methylmercury, a potent neurotoxin, can be taken up by fish and bioaccumulated through the food chain. This can lead to risky levels of methylmercury in the fish humans eat.

    “In soils, mercury is much more tightly bound than it would be if it were deposited in the ocean. The forests are doing a sort of ecosystem service, in that they are sequestering mercury for longer timescales,” says Feinberg, who is now a postdoc in the Blas Cabrera Institute of Physical Chemistry in Spain.

    In this way, forests reduce the amount of toxic methylmercury in oceans.

    Many studies of mercury focus on industrial sources, like burning fossil fuels, small-scale gold mining, and metal smelting. A global treaty, the 2013 Minamata Convention, calls on nations to reduce human-made emissions. However, it doesn’t directly consider impacts of deforestation.

    The researchers launched their study to fill in that missing piece.

    In past work, they had built a model to probe the role vegetation plays in mercury uptake. Using a series of land use change scenarios, they adjusted the model to quantify the role of deforestation.

    Evaluating emissions

    This chemical transport model tracks mercury from its emissions sources to where it is chemically transformed in the atmosphere and then ultimately to where it is deposited, mainly through rainfall or uptake into forest ecosystems.

    They divided the Earth into eight regions and performed simulations to calculate deforestation emissions factors for each, considering elements like type and density of vegetation, mercury content in soils, and historical land use.

    However, good data for some regions were hard to come by.

    They lacked measurements from tropical Africa or Southeast Asia — two areas that experience heavy deforestation. To get around this gap, they used simpler, offline models to simulate hundreds of scenarios, which helped them improve their estimations of potential uncertainties.

    They also developed a new formulation for mercury emissions from soil. This formulation captures the fact that deforestation reduces leaf area, which increases the amount of sunlight that hits the ground and accelerates the outgassing of mercury from soils.

    The model divides the world into grid squares, each of which is a few hundred square kilometers. By changing land surface and vegetation parameters in certain squares to represent deforestation and reforestation scenarios, the researchers can capture impacts on the mercury cycle.

    Overall, they found that about 200 tons of mercury are emitted to the atmosphere as the result of deforestation, or about 10 percent of total human-made emissions. But in tropical and sub-tropical countries, deforestation emissions represent a higher percentage of total emissions. For example, in Brazil deforestation emissions are 40 percent of total human-made emissions.

    In addition, people often light fires to prepare tropical forested areas for agricultural activities, which causes more emissions by releasing mercury stored by vegetation.

    “If deforestation was a country, it would be the second highest emitting country, after China, which emits around 500 tons of mercury a year,” Feinberg adds.

    And since the Minamata Convention is now addressing primary mercury emissions, scientists can expect deforestation to become a larger fraction of human-made emissions in the future.

    “Policies to protect forests or cut them down have unintended effects beyond their target. It is important to consider the fact that these are systems, and they involve human activities, and we need to understand them better in order to actually solve the problems that we know are out there,” Selin says.

    By providing this first estimate, the team hopes to inspire more research in this area.

    In the future, they want to incorporate more dynamic Earth system models into their analysis, which would enable them to interactively track mercury uptake and better model the timescale of vegetation regrowth.

    “This paper represents an important advance in our understanding of global mercury cycling by quantifying a pathway that has long been suggested but not yet quantified. Much of our research to date has focused on primary anthropogenic emissions — those directly resulting from human activity via coal combustion or mercury-gold amalgam burning in artisanal and small-scale gold mining,” says Jackie Gerson, an assistant professor in the Department of Earth and Environmental Sciences at Michigan State University, who was not involved with this research. “This research shows that deforestation can also result in substantial mercury emissions and needs to be considered both in terms of global mercury models and land management policies. It therefore has the potential to advance our field scientifically as well as to promote policies that reduce mercury emissions via deforestation.

    This work was funded, in part, by the U.S. National Science Foundation, the Swiss National Science Foundation, and Swiss Federal Institute of Aquatic Science and Technology. More

  • in

    Co-creating climate futures with real-time data and spatial storytelling

    Virtual story worlds and game engines aren’t just for video games anymore. They are now tools for scientists and storytellers to digitally twin existing physical spaces and then turn them into vessels to dream up speculative climate stories and build collective designs of the future. That’s the theory and practice behind the MIT WORLDING initiative.

    Twice this year, WORLDING matched world-class climate story teams working in XR (extended reality) with relevant labs and researchers across MIT. One global group returned for a virtual gathering online in partnership with Unity for Humanity, while another met for one weekend in person, hosted at the MIT Media Lab.

    “We are witnessing the birth of an emergent field that fuses climate science, urban planning, real-time 3D engines, nonfiction storytelling, and speculative fiction, and it is all fueled by the urgency of the climate crises,” says Katerina Cizek, lead designer of the WORLDING initiative at the Co-Creation Studio of MIT Open Documentary Lab. “Interdisciplinary teams are forming and blossoming around the planet to collectively imagine and tell stories of healthy, livable worlds in virtual 3D spaces and then finding direct ways to translate that back to earth, literally.”

    At this year’s virtual version of WORLDING, five multidisciplinary teams were selected from an open call. In a week-long series of research and development gatherings, the teams met with MIT scientists, staff, fellows, students, and graduates, as well as other leading figures in the field. Guests ranged from curators at film festivals such as Sundance and Venice, climate policy specialists, and award-winning media creators to software engineers and renowned Earth and atmosphere scientists. The teams heard from MIT scholars in diverse domains, including geomorphology, urban planning as acts of democracy, and climate researchers at MIT Media Lab.

    Mapping climate data

    “We are measuring the Earth’s environment in increasingly data-driven ways. Hundreds of terabytes of data are taken every day about our planet in order to study the Earth as a holistic system, so we can address key questions about global climate change,” explains Rachel Connolly, an MIT Media Lab research scientist focused in the “Future Worlds” research theme, in a talk to the group. “Why is this important for your work and storytelling in general? Having the capacity to understand and leverage this data is critical for those who wish to design for and successfully operate in the dynamic Earth environment.”

    Making sense of billions of data points was a key theme during this year’s sessions. In another talk, Taylor Perron, an MIT professor of Earth, atmospheric and planetary sciences, shared how his team uses computational modeling combined with many other scientific processes to better understand how geology, climate, and life intertwine to shape the surfaces of Earth and other planets. His work resonated with one WORLDING team in particular, one aiming to digitally reconstruct the pre-Hispanic Lake Texcoco — where current day Mexico City is now situated — as a way to contrast and examine the region’s current water crisis.

    Democratizing the future

    While WORLDING approaches rely on rigorous science and the interrogation of large datasets, they are also founded on democratizing community-led approaches.

    MIT Department of Urban Studies and Planning graduate Lafayette Cruise MCP ’19 met with the teams to discuss how he moved his own practice as a trained urban planner to include a futurist component involving participatory methods. “I felt we were asking the same limited questions in regards to the future we were wanting to produce. We’re very limited, very constrained, as to whose values and comforts are being centered. There are so many possibilities for how the future could be.”

    Scaling to reach billions

    This work scales from the very local to massive global populations. Climate policymakers are concerned with reaching billions of people in the line of fire. “We have a goal to reach 1 billion people with climate resilience solutions,” says Nidhi Upadhyaya, deputy director at Atlantic Council’s Adrienne Arsht-Rockefeller Foundation Resilience Center. To get that reach, Upadhyaya is turning to games. “There are 3.3 billion-plus people playing video games across the world. Half of these players are women. This industry is worth $300 billion. Africa is currently among the fastest-growing gaming markets in the world, and 55 percent of the global players are in the Asia Pacific region.” She reminded the group that this conversation is about policy and how formats of mass communication can be used for policymaking, bringing about change, changing behavior, and creating empathy within audiences.

    Socially engaged game development is also connected to education at Unity Technologies, a game engine company. “We brought together our education and social impact work because we really see it as a critical flywheel for our business,” said Jessica Lindl, vice president and global head of social impact/education at Unity Technologies, in the opening talk of WORLDING. “We upscale about 900,000 students, in university and high school programs around the world, and about 800,000 adults who are actively learning and reskilling and upskilling in Unity. Ultimately resulting in our mission of the ‘world is a better place with more creators in it,’ millions of creators who reach billions of consumers — telling the world stories, and fostering a more inclusive, sustainable, and equitable world.”

    Access to these technologies is key, especially the hardware. “Accessibility has been missing in XR,” explains Reginé Gilbert, who studies and teaches accessibility and disability in user experience design at New York University. “XR is being used in artificial intelligence, assistive technology, business, retail, communications, education, empathy, entertainment, recreation, events, gaming, health, rehabilitation meetings, navigation, therapy, training, video programming, virtual assistance wayfinding, and so many other uses. This is a fun fact for folks: 97.8 percent of the world hasn’t tried VR [virtual reality] yet, actually.”

    Meanwhile, new hardware is on its way. The WORLDING group got early insights into the highly anticipated Apple Vision Pro headset, which promises to integrate many forms of XR and personal computing in one device. “They’re really pushing this kind of pass-through or mixed reality,” said Dan Miller, a Unity engineer on the poly spatial team, collaborating with Apple, who described the experience of the device as “You are viewing the real world. You’re pulling up windows, you’re interacting with content. It’s a kind of spatial computing device where you have multiple apps open, whether it’s your email client next to your messaging client with a 3D game in the middle. You’re interacting with all these things in the same space and at different times.”

    “WORLDING combines our passion for social-impact storytelling and incredible innovative storytelling,” said Paisley Smith of the Unity for Humanity Program at Unity Technologies. She added, “This is an opportunity for creators to incubate their game-changing projects and connect with experts across climate, story, and technology.”

    Meeting at MIT

    In a new in-person iteration of WORLDING this year, organizers collaborated closely with Connolly at the MIT Media Lab to co-design an in-person weekend conference Oct. 25 – Nov. 7 with 45 scholars and professionals who visualize climate data at NASA, the National Oceanic and Atmospheric Administration, planetariums, and museums across the United States.

    A participant said of the event, “An incredible workshop that had had a profound effect on my understanding of climate data storytelling and how to combine different components together for a more [holistic] solution.”

    “With this gathering under our new Future Worlds banner,” says Dava Newman, director of the MIT Media Lab and Apollo Program Professor of Astronautics chair, “the Media Lab seeks to affect human behavior and help societies everywhere to improve life here on Earth and in worlds beyond, so that all — the sentient, natural, and cosmic — worlds may flourish.” 

    “WORLDING’s virtual-only component has been our biggest strength because it has enabled a true, international cohort to gather, build, and create together. But this year, an in-person version showed broader opportunities that spatial interactivity generates — informal Q&As, physical worksheets, and larger-scale ideation, all leading to deeper trust-building,” says WORLDING producer Srushti Kamat SM ’23.

    The future and potential of WORLDING lies in the ongoing dialogue between the virtual and physical, both in the work itself and in the format of the workshops. More

  • in

    Rewarding excellence in open data

    The second annual MIT Prize for Open Data, which included a $2,500 cash prize, was recently awarded to 10 individual and group research projects. Presented jointly by the School of Science and the MIT Libraries, the prize highlights the value of open data — research data that is openly accessible and reusable — at the Institute. The prize winners and 12 honorable mention recipients were honored at the Open Data @ MIT event held Oct. 24 at Hayden Library. 

    Conceived by Chris Bourg, director of MIT Libraries, and Rebecca Saxe, associate dean of the School of Science and the John W. Jarve (1978) Professor of Brain and Cognitive Sciences, the prize program was launched in 2022. It recognizes MIT-affiliated researchers who use or share open data, create infrastructure for open data sharing, or theorize about open data. Nominations were solicited from across the Institute, with a focus on trainees: undergraduate and graduate students, postdocs, and research staff. 

    “The prize is explicitly aimed at early-career researchers,” says Bourg. “Supporting and encouraging the next generation of researchers will help ensure that the future of scholarship is characterized by a norm of open sharing.”

    The 2023 awards were presented at a celebratory event held during International Open Access Week. Winners gave five-minute presentations on their projects and the role that open data plays in their research. The program also included remarks from Bourg and Anne White, School of Engineering Distinguished Professor of Engineering, vice provost, and associate vice president for research administration. White reflected on the ways in which MIT has demonstrated its values with the open sharing of research and scholarship and acknowledged the efforts of the honorees and advocates gathered at the event: “Thank you for the active role you’re all playing in building a culture of openness in research,” she said. “It benefits us all.” 

    Winners were chosen from more than 80 nominees, representing all five MIT schools, the MIT Schwarzman College of Computing, and several research centers across the Institute. A committee composed of faculty, staff, and graduate students made the selections:

    Hammaad Adam, graduate student in the Institute for Data, Systems, and Society, accepted on behalf of the team behind Organ Retrieval and Collection of Health Information for Donation (ORCHID), the first ever multi-center dataset dedicated to the organ procurement process. ORCHID provides the first opportunity to quantitatively analyze organ procurement organization decisions and identify operational inefficiencies.
    Adam Atanas, postdoc in the Department of Brain and Cognitive Sciences (BCS), and Jungsoo Kim, graduate student in BCS, created WormWideWeb.org. The site, allowing researchers to easily browse and download C. elegans whole-brain datasets, will be useful to C. elegans neuroscientists and theoretical/computational neuroscientists. 
    Paul Berube, research scientist in the Department of Civil and Environmental Engineering, and Steven Biller, assistant professor of biological sciences at Wellesley College, won for “Unlocking Marine Microbiomes with Open Data.” Open data of genomes and metagenomes for marine ecosystems, with a focus on cyanobacteria, leverage the power of contemporaneous data from GEOTRACES and other long-standing ocean time-series programs to provide underlying information to answer questions about marine ecosystem function. 
    Jack Cavanagh, Sarah Kopper, and Diana Horvath of the Abdul Latif Jameel Poverty Action Lab (J-PAL) were recognized for J-PAL’s Data Publication Infrastructure, which includes a trusted repository of open-access datasets, a dedicated team of data curators, and coding tools and training materials to help other teams publish data in an efficient and ethical manner. 
    Jerome Patrick Cruz, graduate student in the Department of Political Science, won for OpenAudit, leveraging advances in natural language processing and machine learning to make data in public audit reports more usable for academics and policy researchers, as well as governance practitioners, watchdogs, and reformers. This work was done in collaboration with colleagues at Ateneo de Manila University in the Philippines. 
    Undergraduate student Daniel Kurlander created a tool for planetary scientists to rapidly access and filter images of the comet 67P/Churyumov-Gerasimenko. The web-based tool enables searches by location and other properties, does not require a time-intensive download of a massive dataset, allows analysis of the data independent of the speed of one’s computer, and does not require installation of a complex set of programs. 
    Halie Olson, postdoc in BCS, was recognized for sharing data from a functional magnetic resonance imaging (fMRI) study on language processing. The study used video clips from “Sesame Street” in which researchers manipulated the comprehensibility of the speech stream, allowing them to isolate a “language response” in the brain.
    Thomas González Roberts, graduate student in the Department of Aeronautics and Astronautics, won for the International Telecommunication Union Compliance Assessment Monitor. This tool combats the heritage of secrecy in outer space operations by creating human- and machine-readable datasets that succinctly describe the international agreements that govern satellite operations. 
    Melissa Kline Struhl, research scientist in BCS, was recognized for Children Helping Science, a free, open-source platform for remote studies with babies and children that makes it possible for researchers at more than 100 institutions to conduct reproducible studies. 
    JS Tan, graduate student in the Department of Urban Studies and Planning, developed the Collective Action in Tech Archive in collaboration with Nataliya Nedzhvetskaya of the University of California at Berkeley. It is an open database of all publicly recorded collective actions taken by workers in the global tech industry. 
    A complete list of winning projects and honorable mentions, including links to the research data, is available on the MIT Libraries website. More

  • in

    Forging climate connections across the Institute

    Climate change is the ultimate cross-cutting issue: Not limited to any one discipline, it ranges across science, technology, policy, culture, human behavior, and well beyond. The response to it likewise requires an all-of-MIT effort.

    Now, to strengthen such an effort, a new grant program spearheaded by the Climate Nucleus, the faculty committee charged with the oversight and implementation of Fast Forward: MIT’s Climate Action Plan for the Decade, aims to build up MIT’s climate leadership capacity while also supporting innovative scholarship on diverse climate-related topics and forging new connections across the Institute.

    Called the Fast Forward Faculty Fund (F^4 for short), the program has named its first cohort of six faculty members after issuing its inaugural call for proposals in April 2023. The cohort will come together throughout the year for climate leadership development programming and networking. The program provides financial support for graduate students who will work with the faculty members on the projects — the students will also participate in leadership-building activities — as well as $50,000 in flexible, discretionary funding to be used to support related activities. 

    “Climate change is a crisis that truly touches every single person on the planet,” says Noelle Selin, co-chair of the nucleus and interim director of the Institute for Data, Systems, and Society. “It’s therefore essential that we build capacity for every member of the MIT community to make sense of the problem and help address it. Through the Fast Forward Faculty Fund, our aim is to have a cohort of climate ambassadors who can embed climate everywhere at the Institute.”

    F^4 supports both faculty who would like to begin doing climate-related work, as well as faculty members who are interested in deepening their work on climate. The program has the core goal of developing cohorts of F^4 faculty and graduate students who, in addition to conducting their own research, will become climate leaders at MIT, proactively looking for ways to forge new climate connections across schools, departments, and disciplines.

    One of the projects, “Climate Crisis and Real Estate: Science-based Mitigation and Adaptation Strategies,” led by Professor Siqi Zheng of the MIT Center for Real Estate in collaboration with colleagues from the MIT Sloan School of Management, focuses on the roughly 40 percent of carbon dioxide emissions that come from the buildings and real estate sector. Zheng notes that this sector has been slow to respond to climate change, but says that is starting to change, thanks in part to the rising awareness of climate risks and new local regulations aimed at reducing emissions from buildings.

    Using a data-driven approach, the project seeks to understand the efficient and equitable market incentives, technology solutions, and public policies that are most effective at transforming the real estate industry. Johnattan Ontiveros, a graduate student in the Technology and Policy Program, is working with Zheng on the project.

    “We were thrilled at the incredible response we received from the MIT faculty to our call for proposals, which speaks volumes about the depth and breadth of interest in climate at MIT,” says Anne White, nucleus co-chair and vice provost and associate vice president for research. “This program makes good on key commitments of the Fast Forward plan, supporting cutting-edge new work by faculty and graduate students while helping to deepen the bench of climate leaders at MIT.”

    During the 2023-24 academic year, the F^4 faculty and graduate student cohorts will come together to discuss their projects, explore opportunities for collaboration, participate in climate leadership development, and think proactively about how to deepen interdisciplinary connections among MIT community members interested in climate change.

    The six inaugural F^4 awardees are:

    Professor Tristan Brown, History Section: Humanistic Approaches to the Climate Crisis  

    With this project, Brown aims to create a new community of practice around narrative-centric approaches to environmental and climate issues. Part of a broader humanities initiative at MIT, it brings together a global working group of interdisciplinary scholars, including Serguei Saavedra (Department of Civil and Environmental Engineering) and Or Porath (Tel Aviv University; Religion), collectively focused on examining the historical and present links between sacred places and biodiversity for the purposes of helping governments and nongovernmental organizations formulate better sustainability goals. Boyd Ruamcharoen, a PhD student in the History, Anthropology, and Science, Technology, and Society (HASTS) program, will work with Brown on this project.

    Professor Kerri Cahoy, departments of Aeronautics and Astronautics and Earth, Atmospheric, and Planetary Sciences (AeroAstro): Onboard Autonomous AI-driven Satellite Sensor Fusion for Coastal Region Monitoring

    The motivation for this project is the need for much better data collection from satellites, where technology can be “20 years behind,” says Cahoy. As part of this project, Cahoy will pursue research in the area of autonomous artificial intelligence-enabled rapid sensor fusion (which combines data from different sensors, such as radar and cameras) onboard satellites to improve understanding of the impacts of climate change, specifically sea-level rise and hurricanes and flooding in coastal regions. Graduate students Madeline Anderson, a PhD student in electrical engineering and computer science (EECS), and Mary Dahl, a PhD student in AeroAstro, will work with Cahoy on this project.

    Professor Priya Donti, Department of Electrical Engineering and Computer Science: Robust Reinforcement Learning for High-Renewables Power Grids 

    With renewables like wind and solar making up a growing share of electricity generation on power grids, Donti’s project focuses on improving control methods for these distributed sources of electricity. The research will aim to create a realistic representation of the characteristics of power grid operations, and eventually inform scalable operational improvements in power systems. It will “give power systems operators faith that, OK, this conceptually is good, but it also actually works on this grid,” says Donti. PhD candidate Ana Rivera from EECS is the F^4 graduate student on the project.

    Professor Jason Jackson, Department of Urban Studies and Planning (DUSP): Political Economy of the Climate Crisis: Institutions, Power and Global Governance

    This project takes a political economy approach to the climate crisis, offering a distinct lens to examine, first, the political governance challenge of mobilizing climate action and designing new institutional mechanisms to address the global and intergenerational distributional aspects of climate change; second, the economic challenge of devising new institutional approaches to equitably finance climate action; and third, the cultural challenge — and opportunity — of empowering an adaptive socio-cultural ecology through traditional knowledge and local-level social networks to achieve environmental resilience. Graduate students Chen Chu and Mrinalini Penumaka, both PhD students in DUSP, are working with Jackson on the project.

    Professor Haruko Wainwright, departments of Nuclear Science and Engineering (NSE) and Civil and Environmental Engineering: Low-cost Environmental Monitoring Network Technologies in Rural Communities for Addressing Climate Justice 

    This project will establish a community-based climate and environmental monitoring network in addition to a data visualization and analysis infrastructure in rural marginalized communities to better understand and address climate justice issues. The project team plans to work with rural communities in Alaska to install low-cost air and water quality, weather, and soil sensors. Graduate students Kay Whiteaker, an MS candidate in NSE, and Amandeep Singh, and MS candidate in System Design and Management at Sloan, are working with Wainwright on the project, as is David McGee, professor in earth, atmospheric, and planetary sciences.

    Professor Siqi Zheng, MIT Center for Real Estate and DUSP: Climate Crisis and Real Estate: Science-based Mitigation and Adaptation Strategies 

    See the text above for the details on this project. More

  • in

    Improving US air quality, equitably

    Decarbonization of national economies will be key to achieving global net-zero emissions by 2050, a major stepping stone to the Paris Agreement’s long-term goal of keeping global warming well below 2 degrees Celsius (and ideally 1.5 C), and thereby averting the worst consequences of climate change. Toward that end, the United States has pledged to reduce its greenhouse gas emissions by 50-52 percent from 2005 levels by 2030, backed by its implementation of the 2022 Inflation Reduction Act. This strategy is consistent with a 50-percent reduction in carbon dioxide (CO2) by the end of the decade.

    If U.S. federal carbon policy is successful, the nation’s overall air quality will also improve. Cutting CO2 emissions reduces atmospheric concentrations of air pollutants that lead to the formation of fine particulate matter (PM2.5), which causes more than 200,000 premature deaths in the United States each year. But an average nationwide improvement in air quality will not be felt equally; air pollution exposure disproportionately harms people of color and lower-income populations.

    How effective are current federal decarbonization policies in reducing U.S. racial and economic disparities in PM2.5 exposure, and what changes will be needed to improve their performance? To answer that question, researchers at MIT and Stanford University recently evaluated a range of policies which, like current U.S. federal carbon policies, reduce economy-wide CO2 emissions by 40-60 percent from 2005 levels by 2030. Their findings appear in an open-access article in the journal Nature Communications.

    First, they show that a carbon-pricing policy, while effective in reducing PM2.5 exposure for all racial/ethnic groups, does not significantly mitigate relative disparities in exposure. On average, the white population undergoes far less exposure than Black, Hispanic, and Asian populations. This policy does little to reduce exposure disparities because the CO2 emissions reductions that it achieves primarily occur in the coal-fired electricity sector. Other sectors, such as industry and heavy-duty diesel transportation, contribute far more PM2.5-related emissions.

    The researchers then examine thousands of different reduction options through an optimization approach to identify whether any possible combination of carbon dioxide reductions in the range of 40-60 percent can mitigate disparities. They find that that no policy scenario aligned with current U.S. carbon dioxide emissions targets is likely to significantly reduce current PM2.5 exposure disparities.

    “Policies that address only about 50 percent of CO2 emissions leave many polluting sources in place, and those that prioritize reductions for minorities tend to benefit the entire population,” says Noelle Selin, supervising author of the study and a professor at MIT’s Institute for Data, Systems and Society and Department of Earth, Atmospheric and Planetary Sciences. “This means that a large range of policies that reduce CO2 can improve air quality overall, but can’t address long-standing inequities in air pollution exposure.”

    So if climate policy alone cannot adequately achieve equitable air quality results, what viable options remain? The researchers suggest that more ambitious carbon policies could narrow racial and economic PM2.5 exposure disparities in the long term, but not within the next decade. To make a near-term difference, they recommend interventions designed to reduce PM2.5 emissions resulting from non-CO2 sources, ideally at the economic sector or community level.

    “Achieving improved PM2.5 exposure for populations that are disproportionately exposed across the United States will require thinking that goes beyond current CO2 policy strategies, most likely involving large-scale structural changes,” says Selin. “This could involve changes in local and regional transportation and housing planning, together with accelerated efforts towards decarbonization.” More

  • in

    3 Questions: A new PhD program from the Center for Computational Science and Engineering

    This fall, the Center for Computational Science and Engineering (CCSE), an academic unit in the MIT Schwarzman College of Computing, is introducing a new standalone PhD degree program that will enable students to pursue research in cross-cutting methodological aspects of computational science and engineering. The launch follows approval of the center’s degree program proposal at the May 2023 Institute faculty meeting.

    Doctoral-level graduate study in computational science and engineering (CSE) at MIT has, for the past decade, been offered through an interdisciplinary program in which CSE students are admitted to one of eight participating academic departments in the School of Engineering or School of Science. While this model adds a strong disciplinary component to students’ education, the rapid growth of the CSE field and the establishment of the MIT Schwarzman College of Computing have prompted an exciting expansion of MIT’s graduate-level offerings in computation.

    The new degree, offered by the college, will run alongside MIT’s existing interdisciplinary offerings in CSE, complementing these doctoral training programs and preparing students to contribute to the leading edge of the field. Here, CCSE co-directors Youssef Marzouk and Nicolas Hadjiconstantinou discuss the standalone program and how they expect it to elevate the visibility and impact of CSE research and education at MIT.

    Q: What is computational science and engineering?

    Marzouk: Computational science and engineering focuses on the development and analysis of state-of-the-art methods for computation and their innovative application to problems of science and engineering interest. It has intellectual foundations in applied mathematics, statistics, and computer science, and touches the full range of science and engineering disciplines. Yet, it synthesizes these foundations into a discipline of its own — one that links the digital and physical worlds. It’s an exciting and evolving multidisciplinary field.

    Hadjiconstantinou: Examples of CSE research happening at MIT include modeling and simulation techniques, the underlying computational mathematics, and data-driven modeling of physical systems. Computational statistics and scientific machine learning have become prominent threads within CSE, joining high-performance computing, mathematically-oriented programming languages, and their broader links to algorithms and software. Application domains include energy, environment and climate, materials, health, transportation, autonomy, and aerospace, among others. Some of our researchers focus on general and widely applicable methodology, while others choose to focus on methods and algorithms motivated by a specific domain of application.

    Q: What was the motivation behind creating a standalone PhD program?

    Marzouk: The new degree focuses on a particular class of students whose background and interests are primarily in CSE methodology, in a manner that cuts across the disciplinary research structure represented by our current “with-departments” degree program. There is a strong research demand for such methodologically-focused students among CCSE faculty and MIT faculty in general. Our objective is to create a targeted, coherent degree program in this field that, alongside our other thriving CSE offerings, will create the leading environment for top CSE students worldwide.

    Hadjiconstantinou: One of CCSE’s most important functions is to recruit exceptional students who are trained in and want to work in computational science and engineering. Experience with our CSE master’s program suggests that students with a strong background and interests in the discipline prefer to apply to a pure CSE program for their graduate studies. The standalone degree aims to bring these students to MIT and make them available to faculty across the Institute.

    Q: How will this impact computing education and research at MIT? 

    Hadjiconstantinou: We believe that offering a standalone PhD program in CSE alongside the existing “with-departments” programs will significantly strengthen MIT’s graduate programs in computing. In particular, it will strengthen the methodological core of CSE research and education at MIT, while continuing to support the disciplinary-flavored CSE work taking place in our participating departments, which include Aeronautics and Astronautics; Chemical Engineering; Civil and Environmental Engineering; Materials Science and Engineering; Mechanical Engineering; Nuclear Science and Engineering; Earth, Atmospheric and Planetary Sciences; and Mathematics. Together, these programs will create a stronger CSE student cohort and facilitate deeper exchanges between the college and other units at MIT.

    Marzouk: In a broader sense, the new program is designed to help realize one of the key opportunities presented by the college, which is to create a richer variety of graduate degrees in computation and to involve as many faculty and units in these educational endeavors as possible. The standalone CSE PhD will join other distinguished doctoral programs of the college — such as the Department of Electrical Engineering and Computer Science PhD; the Operations Research Center PhD; and the Interdisciplinary Doctoral Program in Statistics and the Social and Engineering Systems PhD within the Institute for Data, Systems, and Society — and grow in a way that is informed by them. The confluence of these academic programs, and natural synergies among them, will make MIT quite unique. More