More stories

  • in

    Improving drug development with a vast map of the immune system

    The human immune system is a network made up of trillions of cells that are constantly circulating throughout the body. The cellular network orchestrates interactions with every organ and tissue to carry out an impossibly long list of functions that scientists are still working to understand. All that complexity limits our ability to predict which patients will respond to treatments and which ones might suffer debilitating side effects.

    The issue often leads pharmaceutical companies to stop developing drugs that could help certain patients, halting clinical trials even when drugs show promising results for some people.

    Now, Immunai is helping to predict how patients will respond to treatments by building a comprehensive map of the immune system. The company has assembled a vast database it calls AMICA, that combines multiple layers of gene and protein expression data in cells with clinical trial data to match the right drugs to the right patients.

    “Our starting point was creating what I call the Google Maps for the immune system,” Immunai co-founder and CEO Noam Solomon says. “We started with single-cell RNA sequencing, and over time we’ve added more and more ‘omics’: genomics, proteomics, epigenomics, all to measure the immune system’s cellular expression and function, to measure the immune environment holistically. Then we started working with pharmaceutical companies and hospitals to profile the immune systems of patients undergoing treatments to really get to the root mechanisms of action and resistance for therapeutics.”

    Immunai’s big data foundation is a result of its founders’ unique background. Solomon and co-founder Luis Voloch ’13, SM ’15 hold degrees in mathematics and computer science. In fact, Solomon was a postdoc in MIT’s Department of Mathematics at the time of Immunai’s founding.

    Solomon frames Immunai’s mission as stopping the decades-long divergence of computer science and the life sciences. He believes the single biggest factor driving the explosion of computing has been Moore’s Law — our ability to exponentially increase the number of transistors on a chip over the past 60 years. In the pharmaceutical industry, the reverse is happening: By one estimate, the cost of developing a new drug roughly doubles every nine years. The phenomenon has been dubbed Eroom’s Law (“Eroom” for “Moore” spelled backward).

    Solomon sees the trend eroding the case for developing new drugs, with huge consequences for patients.

    “Why should pharmaceutical companies invest in discovery if they won’t get a return on investment?” Solomon asks. “Today, there’s only a 5 to 10 percent chance that any given clinical trial will be successful. What we’ve built through a very robust and granular mapping of the immune system is a chance to improve the preclinical and clinical stages of drug development.”

    A change in plans

    Solomon entered Tel Aviv University when he was 14 and earned his bachelor’s degree in computer science by 19. He earned two PhDs in Israel, one in computer science and the other in mathematics, before coming to MIT in 2017 as a postdoc to continue his mathematical research career.

    That year Solomon met Voloch, who had already earned bachelor’s and master’s degrees in math and computer science from MIT. But the researchers were soon exposed to a problem that would take them out of their comfort zones and change the course of their careers.

    Voloch’s grandfather was receiving a cocktail of treatments for cancer at the time. The cancer went into remission, but he suffered terrible side effects that caused him to stop taking his medication.

    Voloch and Solomon began wondering if their expertise could help patients like Voloch’s grandfather.

    “When we realized we could make an impact, we made the difficult decision to stop our academic pursuits and start a new journey,” Solomon recalls. “That was the starting point for Immunai.”

    Voloch and Solomon soon partnered with Immunai scientific co-founders Ansu Satpathy, a researcher at Stanford University at the time, and Danny Wells, a researcher at the Parker Institute for Cancer Immunotherapy. Satpathy and Wells had shown that single-cell RNA sequencing could be used to gain insights into why patients respond differently to a common cancer treatment.

    The team began analyzing single-cell RNA sequencing data published in scientific papers, trying to link common biomarkers with patient outcomes. Then they integrated data from the United Kingdom’s Biobank public health database, finding they were able to improve their models’ predictions. Soon they were incorporating data from hospitals, academic research institutions, and pharmaceutical companies, analyzing information about the structure, function, and environment of cells — multiomics — to get a clearer picture of immune activity.

    “Single cell sequencing gives you metrics you can measure in thousands of cells, where you can look at 20,000 different genes, and those metrics give you an immune profile,” Solomon explains. “When you measure all of that over time, especially before and after getting therapy, and compare patients who do respond with patients who don’t, you can apply machine learning models to understand why.”

    Those data and models make up AMICA, what Immunai calls the world’s largest cell-level immune knowledge base. AMICA stands for Annotated Multiomic Immune Cell Atlas. It analyzes single cell multiomic data from almost 10,000 patients and bulk-RNA data from 100,000 patients across more than 800 cell types and 500 diseases.

    At the core of Immunai’s approach is a focus on the immune system, which other companies shy away from because of its complexity.

    “We don’t want to be like other groups that are studying mainly tumor microenvironments,” Solomon says. “We look at the immune system because the immune system is the common denominator. It’s the one system that is implicated in every disease, in your body’s response to everything that you encounter, whether it’s a viral infection or bacterial infection or a drug that you are receiving — even how you are aging.”

    Turning data into better treatments

    Immunai has already partnered with some of the largest pharmaceutical companies in the world to help them identify promising treatments and set up their clinical trials for success. Immunai’s insights can help partners make critical decisions about treatment schedules, dosing, drug combinations, patient selection, and more.

    “Everyone is talking about AI, but I think the most exciting aspect of the platform we have built is the fact that it’s vertically integrated, from wet lab to computational modeling with multiple iterations,” Solomon says. “For example, we may do single-cell immune profiling of patient samples, then we upload that data to the cloud and our computational models come up with insights, and with those insights we do in vitro or in vivo validation to see if our models are right and iteratively improve them.”

    Ultimately Immunai wants to enable a future where lab experiments can more reliably turn into impactful new recommendations and treatments for patients.

    “Scientists can cure nearly every type of cancer, but only in mice,” Solomon says. “In preclinical models we know how to cure cancer. In human beings, in most cases, we still don’t. To overcome that, most scientists are looking for better ex vivo or in vivo models. Our approach is to be more agnostic as to the model system, but feed the machine with more and more data from multiple model systems. We’re demonstrating that our algorithms can repeatedly beat the top benchmarks in identifying the top preclinical immune features that match to patient outcomes.” More

  • in

    2023-24 Takeda Fellows: Advancing research at the intersection of AI and health

    The School of Engineering has selected 13 new Takeda Fellows for the 2023-24 academic year. With support from Takeda, the graduate students will conduct pathbreaking research ranging from remote health monitoring for virtual clinical trials to ingestible devices for at-home, long-term diagnostics.

    Now in its fourth year, the MIT-Takeda Program, a collaboration between MIT’s School of Engineering and Takeda, fuels the development and application of artificial intelligence capabilities to benefit human health and drug development. Part of the Abdul Latif Jameel Clinic for Machine Learning in Health, the program coalesces disparate disciplines, merges theory and practical implementation, combines algorithm and hardware innovations, and creates multidimensional collaborations between academia and industry.

    The 2023-24 Takeda Fellows are:

    Adam Gierlach

    Adam Gierlach is a PhD candidate in the Department of Electrical Engineering and Computer Science. Gierlach’s work combines innovative biotechnology with machine learning to create ingestible devices for advanced diagnostics and delivery of therapeutics. In his previous work, Gierlach developed a non-invasive, ingestible device for long-term gastric recordings in free-moving patients. With the support of a Takeda Fellowship, he will build on this pathbreaking work by developing smart, energy-efficient, ingestible devices powered by application-specific integrated circuits for at-home, long-term diagnostics. These revolutionary devices — capable of identifying, characterizing, and even correcting gastrointestinal diseases — represent the leading edge of biotechnology. Gierlach’s innovative contributions will help to advance fundamental research on the enteric nervous system and help develop a better understanding of gut-brain axis dysfunctions in Parkinson’s disease, autism spectrum disorder, and other prevalent disorders and conditions.

    Vivek Gopalakrishnan

    Vivek Gopalakrishnan is a PhD candidate in the Harvard-MIT Program in Health Sciences and Technology. Gopalakrishnan’s goal is to develop biomedical machine-learning methods to improve the study and treatment of human disease. Specifically, he employs computational modeling to advance new approaches for minimally invasive, image-guided neurosurgery, offering a safe alternative to open brain and spinal procedures. With the support of a Takeda Fellowship, Gopalakrishnan will develop real-time computer vision algorithms that deliver high-quality, 3D intraoperative image guidance by extracting and fusing information from multimodal neuroimaging data. These algorithms could allow surgeons to reconstruct 3D neurovasculature from X-ray angiography, thereby enhancing the precision of device deployment and enabling more accurate localization of healthy versus pathologic anatomy.

    Hao He

    Hao He is a PhD candidate in the Department of Electrical Engineering and Computer Science. His research interests lie at the intersection of generative AI, machine learning, and their applications in medicine and human health, with a particular emphasis on passive, continuous, remote health monitoring to support virtual clinical trials and health-care management. More specifically, He aims to develop trustworthy AI models that promote equitable access and deliver fair performance independent of race, gender, and age. In his past work, He has developed monitoring systems applied in clinical studies of Parkinson’s disease, Alzheimer’s disease, and epilepsy. Supported by a Takeda Fellowship, He will develop a novel technology for the passive monitoring of sleep stages (using radio signaling) that seeks to address existing gaps in performance across different demographic groups. His project will tackle the problem of imbalance in available datasets and account for intrinsic differences across subpopulations, using generative AI and multi-modality/multi-domain learning, with the goal of learning robust features that are invariant to different subpopulations. He’s work holds great promise for delivering advanced, equitable health-care services to all people and could significantly impact health care and AI.

    Chengyi Long

    Chengyi Long is a PhD candidate in the Department of Civil and Environmental Engineering. Long’s interdisciplinary research integrates the methodology of physics, mathematics, and computer science to investigate questions in ecology. Specifically, Long is developing a series of potentially groundbreaking techniques to explain and predict the temporal dynamics of ecological systems, including human microbiota, which are essential subjects in health and medical research. His current work, supported by a Takeda Fellowship, is focused on developing a conceptual, mathematical, and practical framework to understand the interplay between external perturbations and internal community dynamics in microbial systems, which may serve as a key step toward finding bio solutions to health management. A broader perspective of his research is to develop AI-assisted platforms to anticipate the changing behavior of microbial systems, which may help to differentiate between healthy and unhealthy hosts and design probiotics for the prevention and mitigation of pathogen infections. By creating novel methods to address these issues, Long’s research has the potential to offer powerful contributions to medicine and global health.

    Omar Mohd

    Omar Mohd is a PhD candidate in the Department of Electrical Engineering and Computer Science. Mohd’s research is focused on developing new technologies for the spatial profiling of microRNAs, with potentially important applications in cancer research. Through innovative combinations of micro-technologies and AI-enabled image analysis to measure the spatial variations of microRNAs within tissue samples, Mohd hopes to gain new insights into drug resistance in cancer. This work, supported by a Takeda Fellowship, falls within the emerging field of spatial transcriptomics, which seeks to understand cancer and other diseases by examining the relative locations of cells and their contents within tissues. The ultimate goal of Mohd’s current project is to find multidimensional patterns in tissues that may have prognostic value for cancer patients. One valuable component of his work is an open-source AI program developed with collaborators at Beth Israel Deaconess Medical Center and Harvard Medical School to auto-detect cancer epithelial cells from other cell types in a tissue sample and to correlate their abundance with the spatial variations of microRNAs. Through his research, Mohd is making innovative contributions at the interface of microsystem technology, AI-based image analysis, and cancer treatment, which could significantly impact medicine and human health.

    Sanghyun Park

    Sanghyun Park is a PhD candidate in the Department of Mechanical Engineering. Park specializes in the integration of AI and biomedical engineering to address complex challenges in human health. Drawing on his expertise in polymer physics, drug delivery, and rheology, his research focuses on the pioneering field of in-situ forming implants (ISFIs) for drug delivery. Supported by a Takeda Fellowship, Park is currently developing an injectable formulation designed for long-term drug delivery. The primary goal of his research is to unravel the compaction mechanism of drug particles in ISFI formulations through comprehensive modeling and in-vitro characterization studies utilizing advanced AI tools. He aims to gain a thorough understanding of this unique compaction mechanism and apply it to drug microcrystals to achieve properties optimal for long-term drug delivery. Beyond these fundamental studies, Park’s research also focuses on translating this knowledge into practical applications in a clinical setting through animal studies specifically aimed at extending drug release duration and improving mechanical properties. The innovative use of AI in developing advanced drug delivery systems, coupled with Park’s valuable insights into the compaction mechanism, could contribute to improving long-term drug delivery. This work has the potential to pave the way for effective management of chronic diseases, benefiting patients, clinicians, and the pharmaceutical industry.

    Huaiyao Peng

    Huaiyao Peng is a PhD candidate in the Department of Biological Engineering. Peng’s research interests are focused on engineered tissue, microfabrication platforms, cancer metastasis, and the tumor microenvironment. Specifically, she is advancing novel AI techniques for the development of pre-cancer organoid models of high-grade serous ovarian cancer (HGSOC), an especially lethal and difficult-to-treat cancer, with the goal of gaining new insights into progression and effective treatments. Peng’s project, supported by a Takeda Fellowship, will be one of the first to use cells from serous tubal intraepithelial carcinoma lesions found in the fallopian tubes of many HGSOC patients. By examining the cellular and molecular changes that occur in response to treatment with small molecule inhibitors, she hopes to identify potential biomarkers and promising therapeutic targets for HGSOC, including personalized treatment options for HGSOC patients, ultimately improving their clinical outcomes. Peng’s work has the potential to bring about important advances in cancer treatment and spur innovative new applications of AI in health care. 

    Priyanka Raghavan

    Priyanka Raghavan is a PhD candidate in the Department of Chemical Engineering. Raghavan’s research interests lie at the frontier of predictive chemistry, integrating computational and experimental approaches to build powerful new predictive tools for societally important applications, including drug discovery. Specifically, Raghavan is developing novel models to predict small-molecule substrate reactivity and compatibility in regimes where little data is available (the most realistic regimes). A Takeda Fellowship will enable Raghavan to push the boundaries of her research, making innovative use of low-data and multi-task machine learning approaches, synthetic chemistry, and robotic laboratory automation, with the goal of creating an autonomous, closed-loop system for the discovery of high-yielding organic small molecules in the context of underexplored reactions. Raghavan’s work aims to identify new, versatile reactions to broaden a chemist’s synthetic toolbox with novel scaffolds and substrates that could form the basis of essential drugs. Her work has the potential for far-reaching impacts in early-stage, small-molecule discovery and could help make the lengthy drug-discovery process significantly faster and cheaper.

    Zhiye Song

    Zhiye “Zoey” Song is a PhD candidate in the Department of Electrical Engineering and Computer Science. Song’s research integrates cutting-edge approaches in machine learning (ML) and hardware optimization to create next-generation, wearable medical devices. Specifically, Song is developing novel approaches for the energy-efficient implementation of ML computation in low-power medical devices, including a wearable ultrasound “patch” that captures and processes images for real-time decision-making capabilities. Her recent work, conducted in collaboration with clinicians, has centered on bladder volume monitoring; other potential applications include blood pressure monitoring, muscle diagnosis, and neuromodulation. With the support of a Takeda Fellowship, Song will build on that promising work and pursue key improvements to existing wearable device technologies, including developing low-compute and low-memory ML algorithms and low-power chips to enable ML on smart wearable devices. The technologies emerging from Song’s research could offer exciting new capabilities in health care, enabling powerful and cost-effective point-of-care diagnostics and expanding individual access to autonomous and continuous medical monitoring.

    Peiqi Wang

    Peiqi Wang is a PhD candidate in the Department of Electrical Engineering and Computer Science. Wang’s research aims to develop machine learning methods for learning and interpretation from medical images and associated clinical data to support clinical decision-making. He is developing a multimodal representation learning approach that aligns knowledge captured in large amounts of medical image and text data to transfer this knowledge to new tasks and applications. Supported by a Takeda Fellowship, Wang will advance this promising line of work to build robust tools that interpret images, learn from sparse human feedback, and reason like doctors, with potentially major benefits to important stakeholders in health care.

    Oscar Wu

    Haoyang “Oscar” Wu is a PhD candidate in the Department of Chemical Engineering. Wu’s research integrates quantum chemistry and deep learning methods to accelerate the process of small-molecule screening in the development of new drugs. By identifying and automating reliable methods for finding transition state geometries and calculating barrier heights for new reactions, Wu’s work could make it possible to conduct the high-throughput ab initio calculations of reaction rates needed to screen the reactivity of large numbers of active pharmaceutical ingredients (APIs). A Takeda Fellowship will support his current project to: (1) develop open-source software for high-throughput quantum chemistry calculations, focusing on the reactivity of drug-like molecules, and (2) develop deep learning models that can quantitatively predict the oxidative stability of APIs. The tools and insights resulting from Wu’s research could help to transform and accelerate the drug-discovery process, offering significant benefits to the pharmaceutical and medical fields and to patients.

    Soojung Yang

    Soojung Yang is a PhD candidate in the Department of Materials Science and Engineering. Yang’s research applies cutting-edge methods in geometric deep learning and generative modeling, along with atomistic simulations, to better understand and model protein dynamics. Specifically, Yang is developing novel tools in generative AI to explore protein conformational landscapes that offer greater speed and detail than physics-based simulations at a substantially lower cost. With the support of a Takeda Fellowship, she will build upon her successful work on the reverse transformation of coarse-grained proteins to the all-atom resolution, aiming to build machine-learning models that bridge multiple size scales of protein conformation diversity (all-atom, residue-level, and domain-level). Yang’s research holds the potential to provide a powerful and widely applicable new tool for researchers who seek to understand the complex protein functions at work in human diseases and to design drugs to treat and cure those diseases.

    Yuzhe Yang

    Yuzhe Yang is a PhD candidate in the Department of Electrical Engineering and Computer Science. Yang’s research interests lie at the intersection of machine learning and health care. In his past and current work, Yang has developed and applied innovative machine-learning models that address key challenges in disease diagnosis and tracking. His many notable achievements include the creation of one of the first machine learning-based solutions using nocturnal breathing signals to detect Parkinson’s disease (PD), estimate disease severity, and track PD progression. With the support of a Takeda Fellowship, Yang will expand this promising work to develop an AI-based diagnosis model for Alzheimer’s disease (AD) using sleep-breathing data that is significantly more reliable, flexible, and economical than current diagnostic tools. This passive, in-home, contactless monitoring system — resembling a simple home Wi-Fi router — will also enable remote disease assessment and continuous progression tracking. Yang’s groundbreaking work has the potential to advance the diagnosis and treatment of prevalent diseases like PD and AD, and it offers exciting possibilities for addressing many health challenges with reliable, affordable machine-learning tools.  More

  • in

    An “oracle” for predicting the evolution of gene regulation

    Despite the sheer number of genes that each human cell contains, these so-called “coding” DNA sequences comprise just 1 percent of our entire genome. The remaining 99 percent is made up of “non-coding” DNA — which, unlike coding DNA, does not carry the instructions to build proteins.

    One vital function of this non-coding DNA, also called “regulatory” DNA, is to help turn genes on and off, controlling how much (if any) of a protein is made. Over time, as cells replicate their DNA to grow and divide, mutations often crop up in these non-coding regions — sometimes tweaking their function and changing the way they control gene expression. Many of these mutations are trivial, and some are even beneficial. Occasionally, though, they can be associated with increased risk of common diseases, such as Type 2 diabetes, or more life-threatening ones, including cancer.

    To better understand the repercussions of such mutations, researchers have been hard at work on mathematical maps that allow them to look at an organism’s genome, predict which genes will be expressed, and determine how that expression will affect the organism’s observable traits. These maps, called fitness landscapes, were conceptualized roughly a century ago to understand how genetic makeup influences one common measure of organismal fitness in particular: reproductive success. Early fitness landscapes were very simple, often focusing on a limited number of mutations. Much richer datasets are now available, but researchers still require additional tools to characterize and visualize such complex data. This ability would not only facilitate a better understanding of how individual genes have evolved over time, but would also help to predict what sequence and expression changes might occur in the future.

    In a new study published on March 9 in Nature, a team of scientists has developed a framework for studying the fitness landscapes of regulatory DNA. They created a neural network model that, when trained on hundreds of millions of experimental measurements, was capable of predicting how changes to these non-coding sequences in yeast affected gene expression. They also devised a unique way of representing the landscapes in two dimensions, making it easy to understand the past and forecast the future evolution of non-coding sequences in organisms beyond yeast — and even design custom gene expression patterns for gene therapies and industrial applications.

    “We now have an ‘oracle’ that can be queried to ask: What if we tried all possible mutations of this sequence? Or, what new sequence should we design to give us a desired expression?” says Aviv Regev, a professor of biology at MIT (on leave), core member of the Broad Institute of Harvard and MIT (on leave), head of Genentech Research and Early Development, and the study’s senior author. “Scientists can now use the model for their own evolutionary question or scenario, and for other problems like making sequences that control gene expression in desired ways. I am also excited about the possibilities for machine learning researchers interested in interpretability; they can ask their questions in reverse, to better understand the underlying biology.”

    Prior to this study, many researchers had simply trained their models on known mutations (or slight variations thereof) that exist in nature. However, Regev’s team wanted to go a step further by creating their own unbiased models capable of predicting an organism’s fitness and gene expression based on any possible DNA sequence — even sequences they’d never seen before. This would also enable researchers to use such models to engineer cells for pharmaceutical purposes, including new treatments for cancer and autoimmune disorders.

    To accomplish this goal, Eeshit Dhaval Vaishnav, a graduate student at MIT and co-first author; Carl de Boer, now an assistant professor at the University of British Columbia; and their colleagues created a neural network model to predict gene expression. They trained it on a dataset generated by inserting millions of totally random non-coding DNA sequences into yeast, and observing how each random sequence affected gene expression. They focused on a particular subset of non-coding DNA sequences called promoters, which serve as binding sites for proteins that can switch nearby genes on or off.

    “This work highlights what possibilities open up when we design new kinds of experiments to generate the right data to train models,” Regev says. “In the broader sense, I believe these kinds of approaches will be important for many problems — like understanding genetic variants in regulatory regions that confer disease risk in the human genome, but also for predicting the impact of combinations of mutations, or designing new molecules.”

    Regev, Vaishnav, de Boer, and their coauthors went on to test their model’s predictive abilities in a variety of ways, in order to show how it could help demystify the evolutionary past — and possible future — of certain promoters. “Creating an accurate model was certainly an accomplishment, but, to me, it was really just a starting point,” Vaishnav explains.

    First, to determine whether their model could help with synthetic biology applications like producing antibiotics, enzymes, and food, the researchers practiced using it to design promoters that could generate desired expression levels for any gene of interest. They then scoured other scientific papers to identify fundamental evolutionary questions, in order to see if their model could help answer them. The team even went so far as to feed their model a real-world population dataset from one existing study, which contained genetic information from yeast strains around the world. In doing so, they were able to delineate thousands of years of past selection pressures that sculpted the genomes of today’s yeast.

    But, in order to create a powerful tool that could probe any genome, the researchers knew they’d need to find a way to forecast the evolution of non-coding sequences even without such a comprehensive population dataset. To address this goal, Vaishnav and his colleagues devised a computational technique that allowed them to plot the predictions from their framework onto a two-dimensional graph. This helped them show, in a remarkably simple manner, how any non-coding DNA sequence would affect gene expression and fitness, without needing to conduct any time-consuming experiments at the lab bench.

    “One of the unsolved problems in fitness landscapes was that we didn’t have an approach for visualizing them in a way that meaningfully captured the evolutionary properties of sequences,” Vaishnav explains. “I really wanted to find a way to fill that gap, and contribute to the long-standing vision of creating a complete fitness landscape.”

    Martin Taylor, a professor of genetics at the University of Edinburgh’s Medical Research Council Human Genetics Unit who was not involved in the research, says the study shows that artificial intelligence can not only predict the effect of regulatory DNA changes, but also reveal the underlying principles that govern millions of years of evolution.

    Despite the fact that the model was trained on just a fraction of yeast regulatory DNA in a few growth conditions, he’s impressed that it’s capable of making such useful predictions about the evolution of gene regulation in mammals.

    “There are obvious near-term applications, such as the custom design of regulatory DNA for yeast in brewing, baking, and biotechnology,” he explains. “But extensions of this work could also help identify disease mutations in human regulatory DNA that are currently difficult to find and largely overlooked in the clinic. This work suggests there is a bright future for AI models of gene regulation trained on richer, more complex, and more diverse datasets.”

    Even before the study was formally published, Vaishnav began receiving queries from other researchers hoping to use the model to devise non-coding DNA sequences for use in gene therapies.

    “People have been studying regulatory evolution and fitness landscapes for decades now,” Vaishnav says. “I think our framework will go a long way in answering fundamental, open questions about the evolution and evolvability of gene regulatory DNA — and even help us design biological sequences for exciting new applications.” More