More stories

  • in

    2023-24 Takeda Fellows: Advancing research at the intersection of AI and health

    The School of Engineering has selected 13 new Takeda Fellows for the 2023-24 academic year. With support from Takeda, the graduate students will conduct pathbreaking research ranging from remote health monitoring for virtual clinical trials to ingestible devices for at-home, long-term diagnostics.

    Now in its fourth year, the MIT-Takeda Program, a collaboration between MIT’s School of Engineering and Takeda, fuels the development and application of artificial intelligence capabilities to benefit human health and drug development. Part of the Abdul Latif Jameel Clinic for Machine Learning in Health, the program coalesces disparate disciplines, merges theory and practical implementation, combines algorithm and hardware innovations, and creates multidimensional collaborations between academia and industry.

    The 2023-24 Takeda Fellows are:

    Adam Gierlach

    Adam Gierlach is a PhD candidate in the Department of Electrical Engineering and Computer Science. Gierlach’s work combines innovative biotechnology with machine learning to create ingestible devices for advanced diagnostics and delivery of therapeutics. In his previous work, Gierlach developed a non-invasive, ingestible device for long-term gastric recordings in free-moving patients. With the support of a Takeda Fellowship, he will build on this pathbreaking work by developing smart, energy-efficient, ingestible devices powered by application-specific integrated circuits for at-home, long-term diagnostics. These revolutionary devices — capable of identifying, characterizing, and even correcting gastrointestinal diseases — represent the leading edge of biotechnology. Gierlach’s innovative contributions will help to advance fundamental research on the enteric nervous system and help develop a better understanding of gut-brain axis dysfunctions in Parkinson’s disease, autism spectrum disorder, and other prevalent disorders and conditions.

    Vivek Gopalakrishnan

    Vivek Gopalakrishnan is a PhD candidate in the Harvard-MIT Program in Health Sciences and Technology. Gopalakrishnan’s goal is to develop biomedical machine-learning methods to improve the study and treatment of human disease. Specifically, he employs computational modeling to advance new approaches for minimally invasive, image-guided neurosurgery, offering a safe alternative to open brain and spinal procedures. With the support of a Takeda Fellowship, Gopalakrishnan will develop real-time computer vision algorithms that deliver high-quality, 3D intraoperative image guidance by extracting and fusing information from multimodal neuroimaging data. These algorithms could allow surgeons to reconstruct 3D neurovasculature from X-ray angiography, thereby enhancing the precision of device deployment and enabling more accurate localization of healthy versus pathologic anatomy.

    Hao He

    Hao He is a PhD candidate in the Department of Electrical Engineering and Computer Science. His research interests lie at the intersection of generative AI, machine learning, and their applications in medicine and human health, with a particular emphasis on passive, continuous, remote health monitoring to support virtual clinical trials and health-care management. More specifically, He aims to develop trustworthy AI models that promote equitable access and deliver fair performance independent of race, gender, and age. In his past work, He has developed monitoring systems applied in clinical studies of Parkinson’s disease, Alzheimer’s disease, and epilepsy. Supported by a Takeda Fellowship, He will develop a novel technology for the passive monitoring of sleep stages (using radio signaling) that seeks to address existing gaps in performance across different demographic groups. His project will tackle the problem of imbalance in available datasets and account for intrinsic differences across subpopulations, using generative AI and multi-modality/multi-domain learning, with the goal of learning robust features that are invariant to different subpopulations. He’s work holds great promise for delivering advanced, equitable health-care services to all people and could significantly impact health care and AI.

    Chengyi Long

    Chengyi Long is a PhD candidate in the Department of Civil and Environmental Engineering. Long’s interdisciplinary research integrates the methodology of physics, mathematics, and computer science to investigate questions in ecology. Specifically, Long is developing a series of potentially groundbreaking techniques to explain and predict the temporal dynamics of ecological systems, including human microbiota, which are essential subjects in health and medical research. His current work, supported by a Takeda Fellowship, is focused on developing a conceptual, mathematical, and practical framework to understand the interplay between external perturbations and internal community dynamics in microbial systems, which may serve as a key step toward finding bio solutions to health management. A broader perspective of his research is to develop AI-assisted platforms to anticipate the changing behavior of microbial systems, which may help to differentiate between healthy and unhealthy hosts and design probiotics for the prevention and mitigation of pathogen infections. By creating novel methods to address these issues, Long’s research has the potential to offer powerful contributions to medicine and global health.

    Omar Mohd

    Omar Mohd is a PhD candidate in the Department of Electrical Engineering and Computer Science. Mohd’s research is focused on developing new technologies for the spatial profiling of microRNAs, with potentially important applications in cancer research. Through innovative combinations of micro-technologies and AI-enabled image analysis to measure the spatial variations of microRNAs within tissue samples, Mohd hopes to gain new insights into drug resistance in cancer. This work, supported by a Takeda Fellowship, falls within the emerging field of spatial transcriptomics, which seeks to understand cancer and other diseases by examining the relative locations of cells and their contents within tissues. The ultimate goal of Mohd’s current project is to find multidimensional patterns in tissues that may have prognostic value for cancer patients. One valuable component of his work is an open-source AI program developed with collaborators at Beth Israel Deaconess Medical Center and Harvard Medical School to auto-detect cancer epithelial cells from other cell types in a tissue sample and to correlate their abundance with the spatial variations of microRNAs. Through his research, Mohd is making innovative contributions at the interface of microsystem technology, AI-based image analysis, and cancer treatment, which could significantly impact medicine and human health.

    Sanghyun Park

    Sanghyun Park is a PhD candidate in the Department of Mechanical Engineering. Park specializes in the integration of AI and biomedical engineering to address complex challenges in human health. Drawing on his expertise in polymer physics, drug delivery, and rheology, his research focuses on the pioneering field of in-situ forming implants (ISFIs) for drug delivery. Supported by a Takeda Fellowship, Park is currently developing an injectable formulation designed for long-term drug delivery. The primary goal of his research is to unravel the compaction mechanism of drug particles in ISFI formulations through comprehensive modeling and in-vitro characterization studies utilizing advanced AI tools. He aims to gain a thorough understanding of this unique compaction mechanism and apply it to drug microcrystals to achieve properties optimal for long-term drug delivery. Beyond these fundamental studies, Park’s research also focuses on translating this knowledge into practical applications in a clinical setting through animal studies specifically aimed at extending drug release duration and improving mechanical properties. The innovative use of AI in developing advanced drug delivery systems, coupled with Park’s valuable insights into the compaction mechanism, could contribute to improving long-term drug delivery. This work has the potential to pave the way for effective management of chronic diseases, benefiting patients, clinicians, and the pharmaceutical industry.

    Huaiyao Peng

    Huaiyao Peng is a PhD candidate in the Department of Biological Engineering. Peng’s research interests are focused on engineered tissue, microfabrication platforms, cancer metastasis, and the tumor microenvironment. Specifically, she is advancing novel AI techniques for the development of pre-cancer organoid models of high-grade serous ovarian cancer (HGSOC), an especially lethal and difficult-to-treat cancer, with the goal of gaining new insights into progression and effective treatments. Peng’s project, supported by a Takeda Fellowship, will be one of the first to use cells from serous tubal intraepithelial carcinoma lesions found in the fallopian tubes of many HGSOC patients. By examining the cellular and molecular changes that occur in response to treatment with small molecule inhibitors, she hopes to identify potential biomarkers and promising therapeutic targets for HGSOC, including personalized treatment options for HGSOC patients, ultimately improving their clinical outcomes. Peng’s work has the potential to bring about important advances in cancer treatment and spur innovative new applications of AI in health care. 

    Priyanka Raghavan

    Priyanka Raghavan is a PhD candidate in the Department of Chemical Engineering. Raghavan’s research interests lie at the frontier of predictive chemistry, integrating computational and experimental approaches to build powerful new predictive tools for societally important applications, including drug discovery. Specifically, Raghavan is developing novel models to predict small-molecule substrate reactivity and compatibility in regimes where little data is available (the most realistic regimes). A Takeda Fellowship will enable Raghavan to push the boundaries of her research, making innovative use of low-data and multi-task machine learning approaches, synthetic chemistry, and robotic laboratory automation, with the goal of creating an autonomous, closed-loop system for the discovery of high-yielding organic small molecules in the context of underexplored reactions. Raghavan’s work aims to identify new, versatile reactions to broaden a chemist’s synthetic toolbox with novel scaffolds and substrates that could form the basis of essential drugs. Her work has the potential for far-reaching impacts in early-stage, small-molecule discovery and could help make the lengthy drug-discovery process significantly faster and cheaper.

    Zhiye Song

    Zhiye “Zoey” Song is a PhD candidate in the Department of Electrical Engineering and Computer Science. Song’s research integrates cutting-edge approaches in machine learning (ML) and hardware optimization to create next-generation, wearable medical devices. Specifically, Song is developing novel approaches for the energy-efficient implementation of ML computation in low-power medical devices, including a wearable ultrasound “patch” that captures and processes images for real-time decision-making capabilities. Her recent work, conducted in collaboration with clinicians, has centered on bladder volume monitoring; other potential applications include blood pressure monitoring, muscle diagnosis, and neuromodulation. With the support of a Takeda Fellowship, Song will build on that promising work and pursue key improvements to existing wearable device technologies, including developing low-compute and low-memory ML algorithms and low-power chips to enable ML on smart wearable devices. The technologies emerging from Song’s research could offer exciting new capabilities in health care, enabling powerful and cost-effective point-of-care diagnostics and expanding individual access to autonomous and continuous medical monitoring.

    Peiqi Wang

    Peiqi Wang is a PhD candidate in the Department of Electrical Engineering and Computer Science. Wang’s research aims to develop machine learning methods for learning and interpretation from medical images and associated clinical data to support clinical decision-making. He is developing a multimodal representation learning approach that aligns knowledge captured in large amounts of medical image and text data to transfer this knowledge to new tasks and applications. Supported by a Takeda Fellowship, Wang will advance this promising line of work to build robust tools that interpret images, learn from sparse human feedback, and reason like doctors, with potentially major benefits to important stakeholders in health care.

    Oscar Wu

    Haoyang “Oscar” Wu is a PhD candidate in the Department of Chemical Engineering. Wu’s research integrates quantum chemistry and deep learning methods to accelerate the process of small-molecule screening in the development of new drugs. By identifying and automating reliable methods for finding transition state geometries and calculating barrier heights for new reactions, Wu’s work could make it possible to conduct the high-throughput ab initio calculations of reaction rates needed to screen the reactivity of large numbers of active pharmaceutical ingredients (APIs). A Takeda Fellowship will support his current project to: (1) develop open-source software for high-throughput quantum chemistry calculations, focusing on the reactivity of drug-like molecules, and (2) develop deep learning models that can quantitatively predict the oxidative stability of APIs. The tools and insights resulting from Wu’s research could help to transform and accelerate the drug-discovery process, offering significant benefits to the pharmaceutical and medical fields and to patients.

    Soojung Yang

    Soojung Yang is a PhD candidate in the Department of Materials Science and Engineering. Yang’s research applies cutting-edge methods in geometric deep learning and generative modeling, along with atomistic simulations, to better understand and model protein dynamics. Specifically, Yang is developing novel tools in generative AI to explore protein conformational landscapes that offer greater speed and detail than physics-based simulations at a substantially lower cost. With the support of a Takeda Fellowship, she will build upon her successful work on the reverse transformation of coarse-grained proteins to the all-atom resolution, aiming to build machine-learning models that bridge multiple size scales of protein conformation diversity (all-atom, residue-level, and domain-level). Yang’s research holds the potential to provide a powerful and widely applicable new tool for researchers who seek to understand the complex protein functions at work in human diseases and to design drugs to treat and cure those diseases.

    Yuzhe Yang

    Yuzhe Yang is a PhD candidate in the Department of Electrical Engineering and Computer Science. Yang’s research interests lie at the intersection of machine learning and health care. In his past and current work, Yang has developed and applied innovative machine-learning models that address key challenges in disease diagnosis and tracking. His many notable achievements include the creation of one of the first machine learning-based solutions using nocturnal breathing signals to detect Parkinson’s disease (PD), estimate disease severity, and track PD progression. With the support of a Takeda Fellowship, Yang will expand this promising work to develop an AI-based diagnosis model for Alzheimer’s disease (AD) using sleep-breathing data that is significantly more reliable, flexible, and economical than current diagnostic tools. This passive, in-home, contactless monitoring system — resembling a simple home Wi-Fi router — will also enable remote disease assessment and continuous progression tracking. Yang’s groundbreaking work has the potential to advance the diagnosis and treatment of prevalent diseases like PD and AD, and it offers exciting possibilities for addressing many health challenges with reliable, affordable machine-learning tools.  More

  • in

    MIT welcomes nine MLK Visiting Professors and Scholars for 2023-24

    Established in 1990, the MLK Visiting Professors and Scholars Program at MIT welcomes outstanding scholars to the Institute for visiting appointments. MIT aspires to attract candidates who are, in the words of Martin Luther King Jr., “trailblazers in human, academic, scientific and religious freedom.” The program honors King’s life and legacy by expanding and extending the reach of our community. 

    The MLK Scholars Program has welcomed more than 140 professors, practitioners, and professionals at the forefront of their respective fields to MIT. They contribute to the growth and enrichment of the community through their interactions with students, staff, and faculty. They pay tribute to Martin Luther King Jr.’s life and legacy of service and social justice, and they embody MIT’s values: excellence and curiosity, openness and respect, and belonging and community.  

    Each new cohort of scholars actively participates in community engagement and supports MIT’s mission of “advancing knowledge and educating students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.” 

    The 2023-2024 MLK Scholars:

    Tawanna Dillahunt is an associate professor at the University of Michigan’s School of Information with a joint appointment in their electrical engineering and computer science department. She is joining MIT at the end of a one-year visiting appointment as a Harvard Radcliffe Fellow. Her faculty hosts at the Institute are Catherine D’Ignazio in the Department of Urban Studies and Planning and Fotini Christia in the Institute for Data, Systems, and Society (IDSS). Dillahunt’s research focuses on equitable and inclusive computing. During her appointment, she will host a podcast to explore ethical and socially responsible ways to engage with communities, with a special emphasis on technology. 

    Kwabena Donkor is an assistant professor of marketing at Stanford Graduate School of Business; he is hosted by Dean Eckles, an associate professor of marketing at MIT Sloan School of Management. Donkor’s work bridges economics, psychology, and marketing. His scholarship combines insights from behavioral economics with data and field experiments to study social norms, identity, and how these constructs interact with policy in the marketplace.

    Denise Frazier joins MIT from Tulane University, where she is an assistant director in the New Orleans Center for the Gulf South. She is a researcher and performer and brings a unique interdisciplinary approach to her work at the intersection of cultural studies, environmental justice, and music. Frazier is hosted by Christine Ortiz, the Morris Cohen Professor in the Department of Materials Science and Engineering. 

    Wasalu Jaco, an accomplished performer and artist, is renewing his appointment at MIT for a second year; he is hosted jointly by Nick Montfort, a professor of digital media in the Comparative Media Studies Program/Writing, and Mary Fuller, a professor in the Literature Section and the current chair of the MIT faculty. In his second year, Jaco will work on Cyber/Cypher Rapper, a research project to develop a computational system that participates in responsive and improvisational rap.

    Morgane Konig first joined the Center for Theoretical Physics at MIT in December 2021 as a postdoc. Now a member of the 2023–24 MLK Visiting Scholars Program cohort, she will deepen her ties with scholars and research groups working in cosmology, primarily on early-universe inflation and late-universe signatures that could enable the scientific community to learn more about the mysterious nature of dark matter and dark energy. Her faculty hosts are David Kaiser, the Germeshausen Professor of the History of Science and professor of physics, and Alan Guth, the Victor F. Weisskopf Professor of Physics, both from the Department of Physics.

    The former minister of culture for Colombia and a transformational leader dedicated to environmental protection, Angelica Mayolo-Obregon joins MIT from Buenaventura, Colombia. During her time at MIT, she will serve as an advisor and guest speaker, and help MIT facilitate gatherings of environmental leaders committed to addressing climate action and conserving biodiversity across the Americas, with a special emphasis on Afro-descendant communities. Mayolo-Obregon is hosted by John Fernandez, a professor of building technology in the Department of Architecture and director of MIT’s Environmental Solutions Initiative, and by J. Phillip Thompson, an associate professor in the Department of Urban Studies and Planning (and a former MLK Scholar).

    Jean-Luc Pierite is a member of the Tunica-Biloxi Tribe of Louisiana and the president of the board of directors of North American Indian Center of Boston. While at MIT, Pierite will build connections between MIT and the local Indigenous communities. His research focuses on enhancing climate resilience planning by infusing Indigenous knowledge and ecological practices into scientific and other disciplines. His faculty host is Janelle Knox-Hayes, the Lister Brothers Professor of Economic Geography and Planning in the Department of Urban Studies and Planning.

    Christine Taylor-Butler ’81 is a children’s book author who has written over 90 books; she is hosted by Graham Jones, an associate professor of anthropology. An advocate for literacy and STEAM education in underserved urban and rural schools, Taylor-Butler will partner with community organizations in the Boston area. She is also completing the fourth installment of her middle-grade series, “The Lost Tribe.” These books follow a team of five kids as they use science and technology to crack codes and solve mysteries.

    Angelino Viceisza, a professor of economics at Spelman College, joins MIT Sloan as an MLK Visiting Professor and the Phyllis Wallace Visiting Professor; he is hosted by Robert Gibbons, Sloan Distinguished Professor of Management, and Ray Reagans, Alfred P. Sloan Professor of Management, professor of organization studies, and associate dean for diversity, equity, and inclusion at MIT Sloan. Viceisza has strong, ongoing connections with MIT. His research focuses on remittances, retirement, and household finance in low-income countries and is relevant to public finance and financial economics, as well as the development and organizational economics communities at MIT. 

    Javit Drake, Moriba Jah, and Louis Massiah, members of last year’s cohort of MLK Scholars, will remain at MIT through the end of 2023.

    There are multiple opportunities throughout the year to meet our MLK Visiting Scholars and learn more about their research projects and their social impact. 

    For more information about the MLK Visiting Professors and Scholars Program and upcoming events, visit the website. More

  • in

    3 Questions: A new PhD program from the Center for Computational Science and Engineering

    This fall, the Center for Computational Science and Engineering (CCSE), an academic unit in the MIT Schwarzman College of Computing, is introducing a new standalone PhD degree program that will enable students to pursue research in cross-cutting methodological aspects of computational science and engineering. The launch follows approval of the center’s degree program proposal at the May 2023 Institute faculty meeting.

    Doctoral-level graduate study in computational science and engineering (CSE) at MIT has, for the past decade, been offered through an interdisciplinary program in which CSE students are admitted to one of eight participating academic departments in the School of Engineering or School of Science. While this model adds a strong disciplinary component to students’ education, the rapid growth of the CSE field and the establishment of the MIT Schwarzman College of Computing have prompted an exciting expansion of MIT’s graduate-level offerings in computation.

    The new degree, offered by the college, will run alongside MIT’s existing interdisciplinary offerings in CSE, complementing these doctoral training programs and preparing students to contribute to the leading edge of the field. Here, CCSE co-directors Youssef Marzouk and Nicolas Hadjiconstantinou discuss the standalone program and how they expect it to elevate the visibility and impact of CSE research and education at MIT.

    Q: What is computational science and engineering?

    Marzouk: Computational science and engineering focuses on the development and analysis of state-of-the-art methods for computation and their innovative application to problems of science and engineering interest. It has intellectual foundations in applied mathematics, statistics, and computer science, and touches the full range of science and engineering disciplines. Yet, it synthesizes these foundations into a discipline of its own — one that links the digital and physical worlds. It’s an exciting and evolving multidisciplinary field.

    Hadjiconstantinou: Examples of CSE research happening at MIT include modeling and simulation techniques, the underlying computational mathematics, and data-driven modeling of physical systems. Computational statistics and scientific machine learning have become prominent threads within CSE, joining high-performance computing, mathematically-oriented programming languages, and their broader links to algorithms and software. Application domains include energy, environment and climate, materials, health, transportation, autonomy, and aerospace, among others. Some of our researchers focus on general and widely applicable methodology, while others choose to focus on methods and algorithms motivated by a specific domain of application.

    Q: What was the motivation behind creating a standalone PhD program?

    Marzouk: The new degree focuses on a particular class of students whose background and interests are primarily in CSE methodology, in a manner that cuts across the disciplinary research structure represented by our current “with-departments” degree program. There is a strong research demand for such methodologically-focused students among CCSE faculty and MIT faculty in general. Our objective is to create a targeted, coherent degree program in this field that, alongside our other thriving CSE offerings, will create the leading environment for top CSE students worldwide.

    Hadjiconstantinou: One of CCSE’s most important functions is to recruit exceptional students who are trained in and want to work in computational science and engineering. Experience with our CSE master’s program suggests that students with a strong background and interests in the discipline prefer to apply to a pure CSE program for their graduate studies. The standalone degree aims to bring these students to MIT and make them available to faculty across the Institute.

    Q: How will this impact computing education and research at MIT? 

    Hadjiconstantinou: We believe that offering a standalone PhD program in CSE alongside the existing “with-departments” programs will significantly strengthen MIT’s graduate programs in computing. In particular, it will strengthen the methodological core of CSE research and education at MIT, while continuing to support the disciplinary-flavored CSE work taking place in our participating departments, which include Aeronautics and Astronautics; Chemical Engineering; Civil and Environmental Engineering; Materials Science and Engineering; Mechanical Engineering; Nuclear Science and Engineering; Earth, Atmospheric and Planetary Sciences; and Mathematics. Together, these programs will create a stronger CSE student cohort and facilitate deeper exchanges between the college and other units at MIT.

    Marzouk: In a broader sense, the new program is designed to help realize one of the key opportunities presented by the college, which is to create a richer variety of graduate degrees in computation and to involve as many faculty and units in these educational endeavors as possible. The standalone CSE PhD will join other distinguished doctoral programs of the college — such as the Department of Electrical Engineering and Computer Science PhD; the Operations Research Center PhD; and the Interdisciplinary Doctoral Program in Statistics and the Social and Engineering Systems PhD within the Institute for Data, Systems, and Society — and grow in a way that is informed by them. The confluence of these academic programs, and natural synergies among them, will make MIT quite unique. More

  • in

    On the hunt for sustainable materials

    By the time she started high school, Avni Singhal had attended six different schools in a variety of settings, from a traditional public school to a self-paced program. The transitions opened her eyes to how widely educational environments can vary, and made her think about that impact on students.

    “Experiencing so many different types of educational systems exposed me to different ways of looking at things and how that shapes people’s worldviews,” says Singhal.

    Now a fourth-year PhD student in the Department of Materials Science and Engineering, Singhal is still thinking about increasing opportunities for her fellow students, while also pursuing her research. She devotes herself to both developing sustainable materials and improving the graduate experience in her department.

    She recently completed her two-year term as a student representative on the department’s graduate studies committee. In this role, she helped revamp the communication around the qualifying exams and introducing student input to the faculty search process.

    “It’s given me a lot of insight into how our department works,” says Singhal. “It’s a chance to get to know faculty, bring up issues that students experience, and work on changing things that we think could be improved.”

    At the same time, Singhal uses atomistic simulations to model material properties, with an eye toward sustainability. She is a part of the Learning Matter Lab, a group that merges data science tools with engineering and physics-based simulation to better design and understand materials. As part of a computational group, Singhal has worked on a range of projects in collaboration with other labs that are looking to combine computing with other disciplines. Some of this work is sponsored by the MIT Climate and Sustainability Consortium, which facilitates connections across MIT labs and industry.

    Joining the Learning Matter Lab was a step out of Singhal’s comfort zone. She arrived at MIT from the University of California at Berkeley with a joint degree in materials science and bioengineering, as well as a degree in electrical engineering and computer science.

    “I was generally interested in doing work on environment-related applications,” says Singhal. “I was pretty hesitant at first to switch entirely to computation because it’s a very different type of lifestyle of research than what I was doing before.”

    Singhal has taken the challenge in stride, contributing to projects including improving carbon capture molecules and developing new deconstructable, degradable plastics. Not only does Singhal have to understand the technical details of her own work, she also needs to understand the big picture and how to best wield the expertise of her collaborators.

    “When I came in, I was very wide-eyed, thinking computation can do everything because I had never done it before,” says Singhal. “It’s that curve where you know a little bit about something, and you think it can do everything. And then as you learn more, you learn where it can and can’t help us, where it can be valuable, and how to figure out in what part of a project it’s useful.”

    Singhal applies a similarly critical lens when thinking about graduate school as a whole. She notes that access to information and resources is often the main factor determining who enters selective educational programs, and that such access becomes increasingly limited at the graduate level.

    “I realized just how much applying is a function of knowing how to do it,” says Singhal, who co-organized and volunteers with the DMSE Application Assistance Program. The program matches prospective applicants with current students to give feedback on their application materials and provide insight into what it’s like attending MIT. Some of the first students Singhal mentored through the program are now also participants as well.

    “The further you get in your educational career, the more you realize how much assistance you got along the way to get where you are,” says Singhal. “That happens at every stage.”

    Looking toward the future, Singhal wants to continue to pursue research with a sustainability impact. She also wants to continue mentoring in some capacity but isn’t in a rush to figure out exactly what that will look like.

    “Grad school doesn’t mean I have to do one thing. I can stay open to all the possibilities of what comes next.”  More

  • in

    The tenured engineers of 2023

    In 2023, MIT granted tenure to nine faculty members across the School of Engineering. This year’s tenured engineers hold appointments in the departments of Biological Engineering, Civil and Environmental Engineering, Electrical Engineering and Computer Science (which reports jointly to the School of Engineering and MIT Schwarzman College of Computing), Materials Science and Engineering, and Mechanical Engineering, as well as the Institute for Medical Engineering and Science (IMES).

    “I am truly inspired by this remarkable group of talented faculty members,” says Anantha Chandrakasan, dean of the School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science. “The work they are doing, both in the lab and in the classroom, has made a tremendous impact at MIT and in the wider world. Their important research has applications in a diverse range of fields and industries. I am thrilled to congratulate them on the milestone of receiving tenure.”

    This year’s newly tenured engineering faculty include:

    Michael Birnbaum, Class of 1956 Career Development Professor, associate professor of biological engineering, and faculty member at the Koch Institute for Integrative Cancer Research at MIT, works on understanding and manipulating immune recognition in cancer and infections. By using a variety of techniques to study the antigen recognition of T cells, he and his team aim to develop the next generation of immunotherapies.  
    Tamara Broderick, associate professor of electrical engineering and computer science and member of the MIT Laboratory for Information and Decision Systems (LIDS) and the MIT Institute for Data, Systems, and Society (IDSS), works to provide fast and reliable quantification of uncertainty and robustness in modern data analysis procedures. Broderick and her research group develop data analysis tools with applications in fields, including genetics, economics, and assistive technology. 
    Tal Cohen, associate professor of civil and environmental engineering and mechanical engineering, uses nonlinear solid mechanics to understand how materials behave under extreme conditions. By studying material instabilities, extreme dynamic loading conditions, growth, and chemical coupling, Cohen and her team combine theoretical models and experiments to shape our understanding of the observed phenomena and apply those insights in the design and characterization of material systems. 
    Betar Gallant, Class of 1922 Career Development Professor and associate professor of mechanical engineering, develops advanced materials and chemistries for next-generation lithium-ion and lithium primary batteries and electrochemical carbon dioxide mitigation technologies. Her group’s work could lead to higher-energy and more sustainable batteries for electric vehicles, longer-lasting implantable medical devices, and new methods of carbon capture and conversion. 
    Rafael Jaramillo, Thomas Lord Career Development Professor and associate professor of materials science and engineering, studies the synthesis, properties, and applications of electronic materials, particularly chalcogenide compound semiconductors. His work has applications in microelectronics, integrated photonics, telecommunications, and photovoltaics. 
    Benedetto Marelli, associate professor of civil and environmental engineering, conducts research on the synthesis, assembly, and nanomanufacturing of structural biopolymers. He and his research team develop biomaterials for applications in agriculture, food security, and food safety. 
    Ellen Roche, Latham Family Career Development Professor, an associate professor of mechanical engineering, and a core faculty of IMES, designs and develops implantable, biomimetic therapeutic devices and soft robotics that mechanically assist and repair tissue, deliver therapies, and enable enhanced preclinical testing. Her devices have a wide range of applications in human health, including cardiovascular and respiratory disease. 
    Serguei Saavedra, associate professor of civil and environmental engineering, uses systems thinking, synthesis, and mathematical modeling to study the persistence of ecological systems under changing environments. His theoretical research is used to develop hypotheses and corroborate predictions of how ecological systems respond to climate change. 
    Justin Solomon, associate professor of electrical engineering and computer science and member of the MIT Computer Science and Artificial Intelligence Laboratory and MIT Center for Computational Science and Engineering, works at the intersection of geometry, large-scale optimization, computer graphics, and machine learning. His research has diverse applications in machine learning, computer graphics, and geometric data processing.  More

  • in

    MIT-Pillar AI Collective announces first seed grant recipients

    The MIT-Pillar AI Collective has announced its first six grant recipients. Students, alumni, and postdocs working on a broad range of topics in artificial intelligence, machine learning, and data science will receive funding and support for research projects that could translate into commercially viable products or companies. These grants are intended to help students explore commercial applications for their research, and eventually drive that commercialization through the creation of a startup.

    “These tremendous students and postdocs are working on projects that have the potential to be truly transformative across a diverse range of industries. It’s thrilling to think that the novel research these teams are conducting could lead to the founding of startups that revolutionize everything from drug delivery to video conferencing,” says Anantha Chandrakasan, dean of the School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science.

    Launched in September 2022, the MIT-Pillar AI Collective is a pilot program funded by a $1 million gift from Pillar VC that aims to cultivate prospective entrepreneurs and drive innovation in areas related to AI. Administered by the MIT Deshpande Center for Technological Innovation, the AI Collective centers on the market discovery process, advancing projects through market research, customer discovery, and prototyping. Graduate students and postdocs supported by the program work toward the development of minimum viable products.

    “In addition to funding, the MIT-Pillar AI Collective provides grant recipients with mentorship and guidance. With the rapid advancement of AI technologies, this type of support is critical to ensure students and postdocs are able to access the resources required to move quickly in this fast-pace environment,” says Jinane Abounadi, managing director of the MIT-Pillar AI Collective.

    The six inaugural recipients will receive support in identifying key milestones and advice from experienced entrepreneurs. The AI Collective assists seed grant recipients in gathering feedback from potential end-users, as well as getting insights from early-stage investors. The program also organizes community events, including a “Founder Talks” speaker series, and other team-building activities.   

    “Each one of these grant recipients exhibits an entrepreneurial spirit. It is exciting to provide support and guidance as they start a journey that could one day see them as founders and leaders of successful companies,” adds Jamie Goldstein ’89, founder of Pillar VC.

    The first cohort of grant recipients include the following projects:

    Predictive query interface

    Abdullah Alomar SM ’21, a PhD candidate studying electrical engineering and computer science, is building a predictive query interface for time series databases to better forecast demand and financial data. This user-friendly interface can help alleviate some of the bottlenecks and issues related to unwieldy data engineering processes while providing state-of-the-art statistical accuracy. Alomar is advised by Devavrat Shah, the Andrew (1956) and Erna Viterbi Professor at MIT.

    Design of light-activated drugs

    Simon Axelrod, a PhD candidate studying chemical physics at Harvard University, is combining AI with physics simulations to design light-activated drugs that could reduce side effects and improve effectiveness. Patients would receive an inactive form of a drug, which is then activated by light in a specific area of the body containing diseased tissue. This localized use of photoactive drugs would minimize the side effects from drugs targeting healthy cells. Axelrod is developing novel computational models that predict properties of photoactive drugs with high speed and accuracy, allowing researchers to focus on only the highest-quality drug candidates. He is advised by Rafael Gomez-Bombarelli, the Jeffrey Cheah Career Development Chair in Engineering in the MIT Department of Materials Science and Engineering. 

    Low-cost 3D perception

    Arjun Balasingam, a PhD student in electrical engineering and computer science and a member of the Computer Science and Artificial Intelligence Laboratory’s (CSAIL) Networks and Mobile Systems group, is developing a technology, called MobiSee, that enables real-time 3D reconstruction in challenging dynamic environments. MobiSee uses self-supervised AI methods along with video and lidar to provide low-cost, state-of-the-art 3D perception on consumer mobile devices like smartphones. This technology could have far-reaching applications across mixed reality, navigation, safety, and sports streaming, in addition to unlocking opportunities for new real-time and immersive experiences. He is advised by Hari Balakrishnan, the Fujitsu Professor of Computer Science and Artificial Intelligence at MIT and member of CSAIL.

    Sleep therapeutics

    Guillermo Bernal SM ’14, PhD ’23, a recent PhD graduate in media arts and sciences, is developing a sleep therapeutic platform that would enable sleep specialists and researchers to conduct robust sleep studies and develop therapy plans remotely, while the patient is comfortable in their home. Called Fascia, the three-part system consists of a polysomnogram with a sleep mask form factor that collects data, a hub that enables researchers to provide stimulation and feedback via olfactory, auditory, and visual stimuli, and a web portal that enables researchers to read a patient’s signals in real time with machine learning analysis. Bernal was advised by Pattie Maes, professor of media arts and sciences at the MIT Media Lab.

    Autonomous manufacturing assembly with human-like tactile perception

    Michael Foshey, a mechanical engineer and project manager with MIT CSAIL’s Computational Design and Fabrication Group, is developing an AI-enabled tactile perception system that can be used to give robots human-like dexterity. With this new technology platform, Foshey and his team hope to enable industry-changing applications in manufacturing. Currently, assembly tasks in manufacturing are largely done by hand and are typically repetitive and tedious. As a result, these jobs are being largely left unfilled. These labor shortages can cause supply chain shortages and increases in the cost of production. Foshey’s new technology platform aims to address this by automating assembly tasks to reduce reliance on manual labor. Foshey is supervised by Wojciech Matusik, MIT professor of electrical engineering and computer science and member of CSAIL.  

    Generative AI for video conferencing

    Vibhaalakshmi Sivaraman SM ’19, a PhD candidate in electrical engineering and computer science who is a member of CSAIL’s Networking and Mobile Systems Group, is developing a generative technology, Gemino, to facilitate video conferencing in high-latency and low-bandwidth network environments. Gemino is a neural compression system for video conferencing that overcomes the robustness concerns and compute complexity challenges that limit current face-image-synthesis models. This technology could enable sustained video conferencing calls in regions and scenarios that cannot reliably support video calls today. Sivaraman is advised by Mohammad Alizadeh, MIT associate professor of electrical engineering and computer science and member of CSAIL.  More

  • in

    J-WAFS announces 2023 seed grant recipients

    Today, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) announced its ninth round of seed grants to support innovative research projects at MIT. The grants are designed to fund research efforts that tackle challenges related to water and food for human use, with the ultimate goal of creating meaningful impact as the world population continues to grow and the planet undergoes significant climate and environmental changes.Ten new projects led by 15 researchers from seven different departments will be supported this year. The projects address a range of challenges by employing advanced materials, technology innovations, and new approaches to resource management. The new projects aim to remove harmful chemicals from water sources, develop monitoring and other systems to help manage various aquaculture industries, optimize water purification materials, and more.“The seed grant program is J-WAFS’ flagship grant initiative,” says J-WAFS executive director Renee J. Robins. “The funding is intended to spur groundbreaking MIT research addressing complex issues that are challenging our water and food systems. The 10 projects selected this year show great promise, and we look forward to the progress and accomplishments these talented researchers will make,” she adds.The 2023 J-WAFS seed grant researchers and their projects are:Sara Beery, an assistant professor in the Department of Electrical Engineering and Computer Science (EECS), is building the first completely automated system to estimate the size of salmon populations in the Pacific Northwest (PNW).Salmon are a keystone species in the PNW, feeding human populations for the last 7,500 years at least. However, overfishing, habitat loss, and climate change threaten extinction of salmon populations across the region. Accurate salmon counts during their seasonal migration to their natal river to spawn are essential for fisheries’ regulation and management but are limited by human capacity. Fish population monitoring is a widespread challenge in the United States and worldwide. Beery and her team are working to build a system that will provide a detailed picture of the state of salmon populations in unprecedented, spatial, and temporal resolution by combining sonar sensors and computer vision and machine learning (CVML) techniques. The sonar will capture individual fish as they swim upstream and CVML will train accurate algorithms to interpret the sonar video for detecting, tracking, and counting fish automatically while adapting to changing river conditions and fish densities.Another aquaculture project is being led by Michael Triantafyllou, the Henry L. and Grace Doherty Professor in Ocean Science and Engineering in the Department of Mechanical Engineering, and Robert Vincent, the assistant director at MIT’s Sea Grant Program. They are working with Otto Cordero, an associate professor in the Department of Civil and Environmental Engineering, to control harmful bacteria blooms in aquaculture algae feed production.

    Aquaculture in the United States represents a $1.5 billion industry annually and helps support 1.7 million jobs, yet many American hatcheries are not able to keep up with demand. One barrier to aquaculture production is the high degree of variability in survival rates, most likely caused by a poorly controlled microbiome that leads to bacterial infections and sub-optimal feed efficiency. Triantafyllou, Vincent, and Cordero plan to monitor the microbiome composition of a shellfish hatchery in order to identify possible causing agents of mortality, as well as beneficial microbes. They hope to pair microbe data with detail phenotypic information about the animal population to generate rapid diagnostic tests and explore the potential for microbiome therapies to protect larvae and prevent future outbreaks. The researchers plan to transfer their findings and technology to the local and regional aquaculture community to ensure healthy aquaculture production that will support the expansion of the U.S. aquaculture industry.

    David Des Marais is the Cecil and Ida Green Career Development Professor in the Department of Civil and Environmental Engineering. His 2023 J-WAFS project seeks to understand plant growth responses to elevated carbon dioxide (CO2) in the atmosphere, in the hopes of identifying breeding strategies that maximize crop yield under future CO2 scenarios.Today’s crop plants experience higher atmospheric CO2 than 20 or 30 years ago. Crops such as wheat, oat, barley, and rice typically increase their growth rate and biomass when grown at experimentally elevated atmospheric CO2. This is known as the so-called “CO2 fertilization effect.” However, not all plant species respond to rising atmospheric CO2 with increased growth, and for the ones that do, increased growth doesn’t necessarily correspond to increased crop yield. Using specially built plant growth chambers that can control the concentration of CO2, Des Marais will explore how CO2 availability impacts the development of tillers (branches) in the grass species Brachypodium. He will study how gene expression controls tiller development, and whether this is affected by the growing environment. The tillering response refers to how many branches a plant produces, which sets a limit on how much grain it can yield. Therefore, optimizing the tillering response to elevated CO2 could greatly increase yield. Des Marais will also look at the complete genome sequence of Brachypodium, wheat, oat, and barley to help identify genes relevant for branch growth.Darcy McRose, an assistant professor in the Department of Civil and Environmental Engineering, is researching whether a combination of plant metabolites and soil bacteria can be used to make mineral-associated phosphorus more bioavailable.The nutrient phosphorus is essential for agricultural plant growth, but when added as a fertilizer, phosphorus sticks to the surface of soil minerals, decreasing bioavailability, limiting plant growth, and accumulating residual phosphorus. Heavily fertilized agricultural soils often harbor large reservoirs of this type of mineral-associated “legacy” phosphorus. Redox transformations are one chemical process that can liberate mineral-associated phosphorus. However, this needs to be carefully controlled, as overly mobile phosphorus can lead to runoff and pollution of natural waters. Ideally, phosphorus would be made bioavailable when plants need it and immobile when they don’t. Many plants make small metabolites called coumarins that might be able to solubilize mineral-adsorbed phosphorus and be activated and inactivated under different conditions. McRose will use laboratory experiments to determine whether a combination of plant metabolites and soil bacteria can be used as a highly efficient and tunable system for phosphorus solubilization. She also aims to develop an imaging platform to investigate exchanges of phosphorus between plants and soil microbes.Many of the 2023 seed grants will support innovative technologies to monitor, quantify, and remediate various kinds of pollutants found in water. Two of the new projects address the problem of per- and polyfluoroalkyl substances (PFAS), human-made chemicals that have recently emerged as a global health threat. Known as “forever chemicals,” PFAS are used in many manufacturing processes. These chemicals are known to cause significant health issues including cancer, and they have become pervasive in soil, dust, air, groundwater, and drinking water. Unfortunately, the physical and chemical properties of PFAS render them difficult to detect and remove.Aristide Gumyusenge, the Merton C. Assistant Professor of Materials Science and Engineering, is using metal-organic frameworks for low-cost sensing and capture of PFAS. Most metal-organic frameworks (MOFs) are synthesized as particles, which complicates their high accuracy sensing performance due to defects such as intergranular boundaries. Thin, film-based electronic devices could enable the use of MOFs for many applications, especially chemical sensing. Gumyusenge’s project aims to design test kits based on two-dimensional conductive MOF films for detecting PFAS in drinking water. In early demonstrations, Gumyusenge and his team showed that these MOF films can sense PFAS at low concentrations. They will continue to iterate using a computation-guided approach to tune sensitivity and selectivity of the kits with the goal of deploying them in real-world scenarios.Carlos Portela, the Brit (1961) and Alex (1949) d’Arbeloff Career Development Professor in the Department of Mechanical Engineering, and Ariel Furst, the Cook Career Development Professor in the Department of Chemical Engineering, are building novel architected materials to act as filters for the removal of PFAS from water. Portela and Furst will design and fabricate nanoscale materials that use activated carbon and porous polymers to create a physical adsorption system. They will engineer the materials to have tunable porosities and morphologies that can maximize interactions between contaminated water and functionalized surfaces, while providing a mechanically robust system.Rohit Karnik is a Tata Professor and interim co-department head of the Department of Mechanical Engineering. He is working on another technology, his based on microbead sensors, to rapidly measure and monitor trace contaminants in water.Water pollution from both biological and chemical contaminants contributes to an estimated 1.36 million deaths annually. Chemical contaminants include pesticides and herbicides, heavy metals like lead, and compounds used in manufacturing. These emerging contaminants can be found throughout the environment, including in water supplies. The Environmental Protection Agency (EPA) in the United States sets recommended water quality standards, but states are responsible for developing their own monitoring criteria and systems, which must be approved by the EPA every three years. However, the availability of data on regulated chemicals and on candidate pollutants is limited by current testing methods that are either insensitive or expensive and laboratory-based, requiring trained scientists and technicians. Karnik’s project proposes a simple, self-contained, portable system for monitoring trace and emerging pollutants in water, making it suitable for field studies. The concept is based on multiplexed microbead-based sensors that use thermal or gravitational actuation to generate a signal. His proposed sandwich assay, a testing format that is appealing for environmental sensing, will enable both single-use and continuous monitoring. The hope is that the bead-based assays will increase the ease and reach of detecting and quantifying trace contaminants in water for both personal and industrial scale applications.Alexander Radosevich, a professor in the Department of Chemistry, and Timothy Swager, the John D. MacArthur Professor of Chemistry, are teaming up to create rapid, cost-effective, and reliable techniques for on-site arsenic detection in water.Arsenic contamination of groundwater is a problem that affects as many as 500 million people worldwide. Arsenic poisoning can lead to a range of severe health problems from cancer to cardiovascular and neurological impacts. Both the EPA and the World Health Organization have established that 10 parts per billion is a practical threshold for arsenic in drinking water, but measuring arsenic in water at such low levels is challenging, especially in resource-limited environments where access to sensitive laboratory equipment may not be readily accessible. Radosevich and Swager plan to develop reaction-based chemical sensors that bind and extract electrons from aqueous arsenic. In this way, they will exploit the inherent reactivity of aqueous arsenic to selectively detect and quantify it. This work will establish the chemical basis for a new method of detecting trace arsenic in drinking water.Rajeev Ram is a professor in the Department of Electrical Engineering and Computer Science. His J-WAFS research will advance a robust technology for monitoring nitrogen-containing pollutants, which threaten over 15,000 bodies of water in the United States alone.Nitrogen in the form of nitrate, nitrite, ammonia, and urea can run off from agricultural fertilizer and lead to harmful algal blooms that jeopardize human health. Unfortunately, monitoring these contaminants in the environment is challenging, as sensors are difficult to maintain and expensive to deploy. Ram and his students will work to establish limits of detection for nitrate, nitrite, ammonia, and urea in environmental, industrial, and agricultural samples using swept-source Raman spectroscopy. Swept-source Raman spectroscopy is a method of detecting the presence of a chemical by using a tunable, single mode laser that illuminates a sample. This method does not require costly, high-power lasers or a spectrometer. Ram will then develop and demonstrate a portable system that is capable of achieving chemical specificity in complex, natural environments. Data generated by such a system should help regulate polluters and guide remediation.Kripa Varanasi, a professor in the Department of Mechanical Engineering, and Angela Belcher, the James Mason Crafts Professor and head of the Department of Biological Engineering, will join forces to develop an affordable water disinfection technology that selectively identifies, adsorbs, and kills “superbugs” in domestic and industrial wastewater.Recent research predicts that antibiotic-resistance bacteria (superbugs) will result in $100 trillion in health care expenses and 10 million deaths annually by 2050. The prevalence of superbugs in our water systems has increased due to corroded pipes, contamination, and climate change. Current drinking water disinfection technologies are designed to kill all types of bacteria before human consumption. However, for certain domestic and industrial applications there is a need to protect the good bacteria required for ecological processes that contribute to soil and plant health. Varanasi and Belcher will combine material, biological, process, and system engineering principles to design a sponge-based water disinfection technology that can identify and destroy harmful bacteria while leaving the good bacteria unharmed. By modifying the sponge surface with specialized nanomaterials, their approach will be able to kill superbugs faster and more efficiently. The sponge filters can be deployed under very low pressure, making them an affordable technology, especially in resource-constrained communities.In addition to the 10 seed grant projects, J-WAFS will also fund a research initiative led by Greg Sixt. Sixt is the research manager for climate and food systems at J-WAFS, and the director of the J-WAFS-led Food and Climate Systems Transformation (FACT) Alliance. His project focuses on the Lake Victoria Basin (LVB) of East Africa. The second-largest freshwater lake in the world, Lake Victoria straddles three countries (Uganda, Tanzania, and Kenya) and has a catchment area that encompasses two more (Rwanda and Burundi). Sixt will collaborate with Michael Hauser of the University of Natural Resources and Life Sciences, Vienna, and Paul Kariuki, of the Lake Victoria Basin Commission.The group will study how to adapt food systems to climate change in the Lake Victoria Basin. The basin is facing a range of climate threats that could significantly impact livelihoods and food systems in the expansive region. For example, extreme weather events like droughts and floods are negatively affecting agricultural production and freshwater resources. Across the LVB, current approaches to land and water management are unsustainable and threaten future food and water security. The Lake Victoria Basin Commission (LVBC), a specialized institution of the East African Community, wants to play a more vital role in coordinating transboundary land and water management to support transitions toward more resilient, sustainable, and equitable food systems. The primary goal of this research will be to support the LVBC’s transboundary land and water management efforts, specifically as they relate to sustainability and climate change adaptation in food systems. The research team will work with key stakeholders in Kenya, Uganda, and Tanzania to identify specific capacity needs to facilitate land and water management transitions. The two-year project will produce actionable recommendations to the LVBC. More

  • in

    MIT announces five flagship projects in first-ever Climate Grand Challenges competition

    MIT today announced the five flagship projects selected in its first-ever Climate Grand Challenges competition. These multiyear projects will define a dynamic research agenda focused on unraveling some of the toughest unsolved climate problems and bringing high-impact, science-based solutions to the world on an accelerated basis.

    Representing the most promising concepts to emerge from the two-year competition, the five flagship projects will receive additional funding and resources from MIT and others to develop their ideas and swiftly transform them into practical solutions at scale.

    “Climate Grand Challenges represents a whole-of-MIT drive to develop game-changing advances to confront the escalating climate crisis, in time to make a difference,” says MIT President L. Rafael Reif. “We are inspired by the creativity and boldness of the flagship ideas and by their potential to make a significant contribution to the global climate response. But given the planet-wide scale of the challenge, success depends on partnership. We are eager to work with visionary leaders in every sector to accelerate this impact-oriented research, implement serious solutions at scale, and inspire others to join us in confronting this urgent challenge for humankind.”

    Brief descriptions of the five Climate Grand Challenges flagship projects are provided below.

    Bringing Computation to the Climate Challenge

    This project leverages advances in artificial intelligence, machine learning, and data sciences to improve the accuracy of climate models and make them more useful to a variety of stakeholders — from communities to industry. The team is developing a digital twin of the Earth that harnesses more data than ever before to reduce and quantify uncertainties in climate projections.

    Research leads: Raffaele Ferrari, the Cecil and Ida Green Professor of Oceanography in the Department of Earth, Atmospheric and Planetary Sciences, and director of the Program in Atmospheres, Oceans, and Climate; and Noelle Eckley Selin, director of the Technology and Policy Program and professor with a joint appointment in the Institute for Data, Systems, and Society and the Department of Earth, Atmospheric and Planetary Sciences

    Center for Electrification and Decarbonization of Industry

    This project seeks to reinvent and electrify the processes and materials behind hard-to-decarbonize industries like steel, cement, ammonia, and ethylene production. A new innovation hub will perform targeted fundamental research and engineering with urgency, pushing the technological envelope on electricity-driven chemical transformations.

    Research leads: Yet-Ming Chiang, the Kyocera Professor of Materials Science and Engineering, and Bilge Yıldız, the Breene M. Kerr Professor in the Department of Nuclear Science and Engineering and professor in the Department of Materials Science and Engineering

    Preparing for a new world of weather and climate extremes

    This project addresses key gaps in knowledge about intensifying extreme events such as floods, hurricanes, and heat waves, and quantifies their long-term risk in a changing climate. The team is developing a scalable climate-change adaptation toolkit to help vulnerable communities and low-carbon energy providers prepare for these extreme weather events.

    Research leads: Kerry Emanuel, the Cecil and Ida Green Professor of Atmospheric Science in the Department of Earth, Atmospheric and Planetary Sciences and co-director of the MIT Lorenz Center; Miho Mazereeuw, associate professor of architecture and urbanism in the Department of Architecture and director of the Urban Risk Lab; and Paul O’Gorman, professor in the Program in Atmospheres, Oceans, and Climate in the Department of Earth, Atmospheric and Planetary Sciences

    The Climate Resilience Early Warning System

    The CREWSnet project seeks to reinvent climate change adaptation with a novel forecasting system that empowers underserved communities to interpret local climate risk, proactively plan for their futures incorporating resilience strategies, and minimize losses. CREWSnet will initially be demonstrated in southwestern Bangladesh, serving as a model for similarly threatened regions around the world.

    Research leads: John Aldridge, assistant leader of the Humanitarian Assistance and Disaster Relief Systems Group at MIT Lincoln Laboratory, and Elfatih Eltahir, the H.M. King Bhumibol Professor of Hydrology and Climate in the Department of Civil and Environmental Engineering

    Revolutionizing agriculture with low-emissions, resilient crops

    This project works to revolutionize the agricultural sector with climate-resilient crops and fertilizers that have the ability to dramatically reduce greenhouse gas emissions from food production.

    Research lead: Christopher Voigt, the Daniel I.C. Wang Professor in the Department of Biological Engineering

    “As one of the world’s leading institutions of research and innovation, it is incumbent upon MIT to draw on our depth of knowledge, ingenuity, and ambition to tackle the hard climate problems now confronting the world,” says Richard Lester, MIT associate provost for international activities. “Together with collaborators across industry, finance, community, and government, the Climate Grand Challenges teams are looking to develop and implement high-impact, path-breaking climate solutions rapidly and at a grand scale.”

    The initial call for ideas in 2020 yielded nearly 100 letters of interest from almost 400 faculty members and senior researchers, representing 90 percent of MIT departments. After an extensive evaluation, 27 finalist teams received a total of $2.7 million to develop comprehensive research and innovation plans. The projects address four broad research themes:

    To select the winning projects, research plans were reviewed by panels of international experts representing relevant scientific and technical domains as well as experts in processes and policies for innovation and scalability.

    “In response to climate change, the world really needs to do two things quickly: deploy the solutions we already have much more widely, and develop new solutions that are urgently needed to tackle this intensifying threat,” says Maria Zuber, MIT vice president for research. “These five flagship projects exemplify MIT’s strong determination to bring its knowledge and expertise to bear in generating new ideas and solutions that will help solve the climate problem.”

    “The Climate Grand Challenges flagship projects set a new standard for inclusive climate solutions that can be adapted and implemented across the globe,” says MIT Chancellor Melissa Nobles. “This competition propels the entire MIT research community — faculty, students, postdocs, and staff — to act with urgency around a worsening climate crisis, and I look forward to seeing the difference these projects can make.”

    “MIT’s efforts on climate research amid the climate crisis was a primary reason that I chose to attend MIT, and remains a reason that I view the Institute favorably. MIT has a clear opportunity to be a thought leader in the climate space in our own MIT way, which is why CGC fits in so well,” says senior Megan Xu, who served on the Climate Grand Challenges student committee and is studying ways to make the food system more sustainable.

    The Climate Grand Challenges competition is a key initiative of “Fast Forward: MIT’s Climate Action Plan for the Decade,” which the Institute published in May 2021. Fast Forward outlines MIT’s comprehensive plan for helping the world address the climate crisis. It consists of five broad areas of action: sparking innovation, educating future generations, informing and leveraging government action, reducing MIT’s own climate impact, and uniting and coordinating all of MIT’s climate efforts. More